

Colophon
Copyright © 2020-2024 Raspberry Pi Ltd (formerly Raspberry Pi (Trading) Ltd.)

The documentation of the RP2040 microcontroller is licensed under a Creative Commons Attribution-NoDerivatives 4.0

International (CC BY-ND).

Portions Copyright © 2019 Synopsys, Inc.

All rights reserved. Used with permission. Synopsys & DesignWare are registered trademarks of Synopsys, Inc.

Portions Copyright © 2000-2001, 2005, 2007, 2009, 2011-2012, 2016 ARM Limited.

All rights reserved. Used with permission.

build-date: 2024-02-02

build-version: 169135e-dirty

About the SDK

Throughout the text "the SDK" refers to our Raspberry Pi Pico SDK. More details about the SDK can be

found in the Raspberry Pi Pico C/C++ SDK book. Source code included in the documentation is

Copyright © 2020-2023 Raspberry Pi Ltd (formerly Raspberry Pi (Trading) Ltd.) and licensed under the 3-

Clause BSD license.

Legal disclaimer notice

TECHNICAL AND RELIABILITY DATA FOR RASPBERRY PI PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM

TIME TO TIME (“RESOURCES”) ARE PROVIDED BY RASPBERRY PI LTD (“RPL”) "AS IS" AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN NO

EVENT SHALL RPL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER

IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

RPL reserves the right to make any enhancements, improvements, corrections or any other modifications to the

RESOURCES or any products described in them at any time and without further notice.

The RESOURCES are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for

their selection and use of the RESOURCES and any application of the products described in them. User agrees to

indemnify and hold RPL harmless against all liabilities, costs, damages or other losses arising out of their use of the

RESOURCES.

RPL grants users permission to use the RESOURCES solely in conjunction with the Raspberry Pi products. All other use

of the RESOURCES is prohibited. No licence is granted to any other RPL or other third party intellectual property right.

HIGH RISK ACTIVITIES. Raspberry Pi products are not designed, manufactured or intended for use in hazardous

environments requiring fail safe performance, such as in the operation of nuclear facilities, aircraft navigation or

communication systems, air traffic control, weapons systems or safety-critical applications (including life support

systems and other medical devices), in which the failure of the products could lead directly to death, personal injury or

severe physical or environmental damage (“High Risk Activities”). RPL specifically disclaims any express or implied

warranty of fitness for High Risk Activities and accepts no liability for use or inclusions of Raspberry Pi products in High

Risk Activities.

Raspberry Pi products are provided subject to RPL’s Standard Terms. RPL’s provision of the RESOURCES does not

expand or otherwise modify RPL’s Standard Terms including but not limited to the disclaimers and warranties

RP2040 Datasheet

Legal disclaimer notice 1

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://github.com/raspberrypi/pico-sdk
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://www.raspberrypi.com/terms-conditions-sale/
https://www.raspberrypi.com/terms-conditions-sale/

expressed in them.

RP2040 Datasheet

Legal disclaimer notice 2

Table of contents
Colophon . 1

Legal disclaimer notice . 1

1. Introduction. 9

1.1. Why is the chip called RP2040?. 9

1.2. Summary . 10

1.3. The Chip . 10

1.4. Pinout Reference. 11

1.4.1. Pin Locations . 11

1.4.2. Pin Descriptions . 12

1.4.3. GPIO Functions . 13

2. System Description . 15

2.1. Bus Fabric . 15

2.1.1. AHB-Lite Crossbar . 16

2.1.2. Atomic Register Access . 18

2.1.3. APB Bridge . 18

2.1.4. Narrow IO Register Writes. 18

2.1.5. List of Registers . 19

2.2. Address Map . 24

2.2.1. Summary. 24

2.2.2. Detail . 25

2.3. Processor subsystem. 27

2.3.1. SIO . 27

2.3.2. Interrupts. 60

2.3.3. Event Signals . 61

2.3.4. Debug . 61

2.4. Cortex-M0+ . 62

2.4.1. Features . 63

2.4.2. Functional Description . 64

2.4.3. Programmer’s model. 69

2.4.4. System control . 74

2.4.5. NVIC. 74

2.4.6. MPU. 76

2.4.7. Debug . 76

2.4.8. List of Registers . 77

2.5. DMA . 91

2.5.1. Configuring Channels . 92

2.5.2. Starting Channels. 94

2.5.3. Data Request (DREQ). 95

2.5.4. Interrupts. 97

2.5.5. Additional Features . 97

2.5.6. Example Use Cases . 98

2.5.7. List of Registers . 102

2.6. Memory . 121

2.6.1. ROM. 121

2.6.2. SRAM . 122

2.6.3. Flash . 123

2.7. Boot Sequence . 130

2.8. Bootrom . 130

2.8.1. Processor Controlled Boot Sequence . 131

2.8.2. Launching Code On Processor Core 1 . 133

2.8.3. Bootrom Contents . 134

2.8.4. USB Mass Storage Interface . 145

2.8.5. USB PICOBOOT Interface . 146

2.9. Power Supplies . 152

2.9.1. Digital IO Supply (IOVDD) . 153

RP2040 Datasheet

Table of contents 3

2.9.2. Digital Core Supply (DVDD). 153

2.9.3. On-Chip Voltage Regulator Input Supply (VREG_VIN) . 153

2.9.4. USB PHY Supply (USB_VDD) . 153

2.9.5. ADC Supply (ADC_AVDD) . 154

2.9.6. Power Supply Sequencing . 154

2.9.7. Power Supply Schemes . 154

2.10. Core Supply Regulator . 157

2.10.1. Application Circuit . 157

2.10.2. Operating Modes . 158

2.10.3. Output Voltage Select . 159

2.10.4. Status . 159

2.10.5. Current Limit . 159

2.10.6. List of Registers. 159

2.10.7. Detailed Specifications . 162

2.11. Power Control . 162

2.11.1. Top-level Clock Gates . 162

2.11.2. SLEEP State . 163

2.11.3. DORMANT State . 163

2.11.4. Memory Power Down . 163

2.11.5. Programmer’s Model . 164

2.12. Chip-Level Reset . 165

2.12.1. Overview . 165

2.12.2. Power-on Reset . 166

2.12.3. Brown-out Detection . 167

2.12.4. Supply Monitor. 169

2.12.5. External Reset . 169

2.12.6. Rescue Debug Port Reset . 169

2.12.7. Source of Last Reset . 169

2.12.8. List of Registers. 170

2.13. Power-On State Machine . 170

2.13.1. Overview . 170

2.13.2. Power On Sequence . 170

2.13.3. Register Control . 171

2.13.4. Interaction with Watchdog . 171

2.13.5. List of Registers. 171

2.14. Subsystem Resets . 174

2.14.1. Overview . 174

2.14.2. Programmer’s Model . 175

2.14.3. List of Registers. 177

2.15. Clocks . 180

2.15.1. Overview . 180

2.15.2. Clock sources . 181

2.15.3. Clock Generators . 184

2.15.4. Frequency Counter . 188

2.15.5. Resus . 188

2.15.6. Programmer’s Model . 189

2.15.7. List of Registers. 195

2.16. Crystal Oscillator (XOSC). 216

2.16.1. Overview . 216

2.16.2. Usage . 217

2.16.3. Startup Delay . 217

2.16.4. XOSC Counter . 218

2.16.5. DORMANT mode . 218

2.16.6. Programmer’s Model . 218

2.16.7. List of Registers. 219

2.17. Ring Oscillator (ROSC) . 222

2.17.1. Overview . 222

2.17.2. ROSC/XOSC trade-offs . 222

2.17.3. Modifying the frequency. 222

2.17.4. ROSC divider . 223

RP2040 Datasheet

Table of contents 4

2.17.5. Random Number Generator . 223

2.17.6. ROSC Counter . 223

2.17.7. DORMANT mode . 223

2.17.8. List of Registers. 224

2.18. PLL . 228

2.18.1. Overview . 228

2.18.2. Calculating PLL parameters. 229

2.18.3. Configuration . 232

2.18.4. List of Registers. 234

2.19. GPIO . 236

2.19.1. Overview . 236

2.19.2. Function Select . 237

2.19.3. Interrupts . 239

2.19.4. Pads . 240

2.19.5. Software Examples . 240

2.19.6. List of Registers. 244

2.20. Sysinfo . 304

2.20.1. Overview . 304

2.20.2. List of Registers. 304

2.21. Syscfg . 305

2.21.1. Overview . 305

2.21.2. List of Registers. 305

2.22. TBMAN. 308

2.22.1. List of Registers. 308

3. PIO . 310

3.1. Overview . 310

3.2. Programmer’s Model . 311

3.2.1. PIO Programs. 311

3.2.2. Control Flow . 312

3.2.3. Registers. 313

3.2.4. Stalling . 316

3.2.5. Pin Mapping . 317

3.2.6. IRQ Flags. 317

3.2.7. Interactions Between State Machines . 317

3.3. PIO Assembler (pioasm) . 318

3.3.1. Directives . 318

3.3.2. Values . 319

3.3.3. Expressions . 319

3.3.4. Comments . 319

3.3.5. Labels . 319

3.3.6. Instructions. 320

3.3.7. Pseudoinstructions . 320

3.4. Instruction Set . 320

3.4.1. Summary. 320

3.4.2. JMP . 321

3.4.3. WAIT . 322

3.4.4. IN . 323

3.4.5. OUT . 324

3.4.6. PUSH . 325

3.4.7. PULL . 326

3.4.8. MOV. 327

3.4.9. IRQ . 328

3.4.10. SET . 329

3.5. Functional Details . 330

3.5.1. Side-set . 330

3.5.2. Program Wrapping . 331

3.5.3. FIFO Joining . 333

3.5.4. Autopush and Autopull . 334

3.5.5. Clock Dividers . 338

3.5.6. GPIO Mapping . 339

RP2040 Datasheet

Table of contents 5

3.5.7. Forced and EXEC’d Instructions. 341

3.6. Examples . 343

3.6.1. Duplex SPI . 343

3.6.2. WS2812 LEDs. 347

3.6.3. UART TX . 348

3.6.4. UART RX . 351

3.6.5. Manchester Serial TX and RX. 354

3.6.6. Differential Manchester (BMC) TX and RX . 356

3.6.7. I2C . 359

3.6.8. PWM . 363

3.6.9. Addition. 365

3.6.10. Further Examples. 366

3.7. List of Registers . 367

4. Peripherals . 382

4.1. USB . 382

4.1.1. Overview . 382

4.1.2. Architecture . 383

4.1.3. Programmer’s Model. 393

4.1.4. List of Registers . 397

References . 416

4.2. UART . 416

4.2.1. Overview . 417

4.2.2. Functional description. 417

4.2.3. Operation . 419

4.2.4. UART hardware flow control . 422

4.2.5. UART DMA Interface . 423

4.2.6. Interrupts . 424

4.2.7. Programmer’s Model. 426

4.2.8. List of Registers . 428

4.3. I2C. 440

4.3.1. Features . 441

4.3.2. IP Configuration . 441

4.3.3. I2C Overview. 442

4.3.4. I2C Terminology. 444

4.3.5. I2C Behaviour . 444

4.3.6. I2C Protocols . 446

4.3.7. Tx FIFO Management and START, STOP and RESTART Generation. 449

4.3.8. Multiple Master Arbitration. 451

4.3.9. Clock Synchronization. 452

4.3.10. Operation Modes . 453

4.3.11. Spike Suppression. 458

4.3.12. Fast Mode Plus Operation . 459

4.3.13. Bus Clear Feature . 459

4.3.14. IC_CLK Frequency Configuration . 460

4.3.15. DMA Controller Interface . 464

4.3.16. Operation of Interrupt Registers . 465

4.3.17. List of Registers. 465

4.4. SPI . 503

4.4.1. Overview . 504

4.4.2. Functional Description . 505

4.4.3. Operation . 507

4.4.4. List of Registers . 517

4.5. PWM. 524

4.5.1. Overview . 524

4.5.2. Programmer’s Model. 525

4.5.3. List of Registers . 532

4.6. Timer . 537

4.6.1. Overview . 537

4.6.2. Counter . 538

4.6.3. Alarms. 538

RP2040 Datasheet

Table of contents 6

4.6.4. Programmer’s Model. 539

4.6.5. List of Registers . 542

4.7. Watchdog. 547

4.7.1. Overview . 547

4.7.2. Tick generation . 547

4.7.3. Watchdog Counter. 548

4.7.4. Scratch Registers. 548

4.7.5. Programmer’s Model. 548

4.7.6. List of Registers . 550

4.8. RTC . 551

4.8.1. Storage Format . 551

4.8.2. Leap year . 552

4.8.3. Interrupts . 552

4.8.4. Reference clock . 552

4.8.5. Programmer’s Model. 553

4.8.6. List of Registers . 556

4.9. ADC and Temperature Sensor. 560

4.9.1. ADC controller . 561

4.9.2. SAR ADC . 562

4.9.3. ADC ENOB . 564

4.9.4. INL and DNL . 565

4.9.5. Temperature Sensor . 566

4.9.6. List of Registers . 567

4.10. SSI . 570

4.10.1. Overview . 571

4.10.2. Features . 572

4.10.3. IP Modifications. 572

4.10.4. Clock Ratios . 574

4.10.5. Transmit and Receive FIFO Buffers. 574

4.10.6. 32-Bit Frame Size Support . 575

4.10.7. SSI Interrupts . 575

4.10.8. Transfer Modes . 576

4.10.9. Operation Modes . 577

4.10.10. Partner Connection Interfaces. 582

4.10.11. DMA Controller Interface . 598

4.10.12. APB Interface. 600

4.10.13. List of Registers. 601

5. Electrical and Mechanical . 610

5.1. Package . 610

5.1.1. Thermal characteristics . 611

5.1.2. Recommended PCB Footprint . 611

5.1.3. Package markings . 611

5.2. Storage conditions . 612

5.3. Solder profile . 612

5.4. Compliance . 614

5.5. Pinout . 614

5.5.1. Pin Locations . 614

5.5.2. Pin Definitions . 615

5.5.3. Pin Specifications . 617

5.6. Power Supplies . 621

5.7. Power Consumption. 622

5.7.1. Peripheral power consumption . 622

5.7.2. Power consumption for typical user cases . 622

Appendix A: Register Field Types. 625

Standard types . 625

RW . 625

RO. 625

WO . 625

Clear types . 625

SC . 625

RP2040 Datasheet

Table of contents 7

WC . 625

FIFO types . 625

RF . 625

WF . 626

RWF . 626

Appendix B: Errata . 627

Bootrom. 627

RP2040-E9. 627

RP2040-E14 . 627

Clocks . 628

RP2040-E7. 628

RP2040-E10 . 628

DMA . 629

RP2040-E12 . 629

RP2040-E13 . 629

GPIO / ADC . 630

RP2040-E6. 630

RP2040-E11 . 630

USB . 630

RP2040-E2. 630

RP2040-E3. 631

RP2040-E4. 631

RP2040-E5. 631

RP2040-E15 . 633

Watchdog . 634

RP2040-E1. 634

XIP Flash . 634

RP2040-E8. 634

Appendix C: Availability . 635

Support . 635

Ordering code . 635

Appendix D: Documentation release history. 636

RP2040 Datasheet

Table of contents 8

Chapter 1. Introduction
Microcontrollers connect the world of software to the world of hardware. They allow developers to write software which

interacts with the physical world in the same deterministic, cycle-accurate manner as digital logic. They occupy the

bottom left corner of the price/performance space, outselling their more powerful brethren by a factor of ten to one.

They are the workhorses that power the digital transformation of our world.

RP2040 is the debut microcontroller from Raspberry Pi. It brings our signature values of high performance, low cost,

and ease of use to the microcontroller space.

With a large on-chip memory, symmetric dual-core processor complex, deterministic bus fabric, and rich peripheral set

augmented with our unique Programmable I/O (PIO) subsystem, it provides professional users with unrivalled power

and flexibility. With detailed documentation, a polished MicroPython port, and a UF2 bootloader in ROM, it has the

lowest possible barrier to entry for beginner and hobbyist users.

RP2040 is a stateless device, with support for cached execute-in-place from external QSPI memory. This design

decision allows you to choose the appropriate density of non-volatile storage for your application, and to benefit from

the low pricing of commodity Flash parts.

RP2040 is manufactured on a modern 40nm process node, delivering high performance, low dynamic power

consumption, and low leakage, with a variety of low-power modes to support extended-duration operation on battery

power.

Key features:

• Dual ARM Cortex-M0+ @ 133MHz

• 264kB on-chip SRAM in six independent banks

• Support for up to 16MB of off-chip Flash memory via dedicated QSPI bus

• DMA controller

• Fully-connected AHB crossbar

• Interpolator and integer divider peripherals

• On-chip programmable LDO to generate core voltage

• 2 on-chip PLLs to generate USB and core clocks

• 30 GPIO pins, 4 of which can be used as analogue inputs

• Peripherals

◦ 2 UARTs

◦ 2 SPI controllers

◦ 2 I2C controllers

◦ 16 PWM channels

◦ USB 1.1 controller and PHY, with host and device support

◦ 8 PIO state machines

Whatever your microcontroller application, from machine learning to motor control, from agriculture to audio, RP2040

has the performance, feature set, and support to make your product fly.

1.1. Why is the chip called RP2040?

The post-fix numeral on RP2040 comes from the following,

RP2040 Datasheet

1.1. Why is the chip called RP2040? 9

1. Number of processor cores (2)

2. Loosely which type of processor (M0+)

3. floor(log2(ram / 16k))

4. floor(log2(nonvolatile / 16k)) or 0 if no onboard nonvolatile storage

see Figure 1.

RP 2 0 4 0

Raspberry Pi

Number of cores

Type of core (e.g. M0+)

floor(log2(ram / 16k))

floor(log2(nonvolatile / 16k))

Figure 1. An

explanation for the

name of the RP2040

chip.

1.2. Summary

RP2040 is a low-cost, high-performance microcontroller device with flexible digital interfaces. Key features:

• Dual Cortex M0+ processor cores, up to 133MHz

• 264kB of embedded SRAM in 6 banks

• 30 multifunction GPIO

• 6 dedicated IO for SPI Flash (supporting XIP)

• Dedicated hardware for commonly used peripherals

• Programmable IO for extended peripheral support

• 4 channel ADC with internal temperature sensor, 500ksps, 12-bit conversion

• USB 1.1 Host/Device

1.3. The Chip

RP2040 has a dual M0+ processor cores, DMA, internal memory and peripheral blocks connected via AHB/APB bus

fabric.

RP2040 Datasheet

1.2. Summary 10

Figure 2. A system

overview of the

RP2040 chip

Code may be executed directly from external memory through a dedicated SPI, DSPI or QSPI interface. A small cache

improves performance for typical applications.

Debug is available via the SWD interface.

Internal SRAM can contain code or data. It is addressed as a single 264 kB region, but physically partitioned into 6

banks to allow simultaneous parallel access from different masters.

DMA bus masters are available to offload repetitive data transfer tasks from the processors.

GPIO pins can be driven directly, or from a variety of dedicated logic functions.

Dedicated hardware for fixed functions such as SPI, I2C, UART.

Flexible configurable PIO controllers can be used to provide a wide variety of IO functions.

A USB controller with embedded PHY can be used to provide FS/LS Host or Device connectivity under software control.

Four ADC inputs which are shared with GPIO pins.

Two PLLs to provide a fixed 48MHz clock for USB or ADC, and a flexible system clock up to 133MHz.

An internal Voltage Regulator to supply the core voltage so the end product only needs supply the IO voltage.

1.4. Pinout Reference

This section provides a quick reference for pinout and pin functions. Full details, including electrical specifications and

package drawings, can be found in Chapter 5.

1.4.1. Pin Locations

RP2040 Datasheet

1.4. Pinout Reference 11

Figure 3. RP2040

Pinout for QFN-56

7×7mm (reduced ePad

size)

1.4.2. Pin Descriptions

Table 1. The function

of each pin is briefly

described here. Full

electrical

specifications can be

found in Chapter 5.

Name Description

GPIOx General-purpose digital input and output. RP2040 can connect one of a number of internal

peripherals to each GPIO, or control GPIOs directly from software.

GPIOx/ADCy General-purpose digital input and output, with analogue-to-digital converter function. The RP2040

ADC has an analogue multiplexer which can select any one of these pins, and sample the voltage.

QSPIx Interface to a SPI, Dual-SPI or Quad-SPI flash device, with execute-in-place support. These pins can

also be used as software-controlled GPIOs, if they are not required for flash access.

USB_DM and

USB_DP

USB controller, supporting Full Speed device and Full/Low Speed host. A 27Ω series termination

resistor is required on each pin, but bus pull-ups and pull-downs are provided internally.

XIN and XOUT Connect a crystal to RP2040’s crystal oscillator. XIN can also be used as a single-ended CMOS

clock input, with XOUT disconnected. The USB bootloader requires a 12MHz crystal or 12MHz

clock input. For recommended crystals, see Crystal Oscillator (Section 2.16).

RUN Global asynchronous reset pin. Reset when driven low, run when driven high. If no external reset is

required, this pin can be tied directly to IOVDD.

SWCLK and

SWDIO

Access to the internal Serial Wire Debug multi-drop bus. Provides debug access to both

processors, and can be used to download code.

TESTEN Factory test mode pin. Tie to GND.

GND Single external ground connection, bonded to a number of internal ground pads on the RP2040 die.

IOVDD Power supply for digital GPIOs, nominal voltage 1.8V to 3.3V

RP2040 Datasheet

1.4. Pinout Reference 12

Name Description

USB_VDD Power supply for internal USB Full Speed PHY, nominal voltage 3.3V

ADC_AVDD Power supply for analogue-to-digital converter, nominal voltage 3.3V

VREG_VIN Power input for the internal core voltage regulator, nominal voltage 1.8V to 3.3V

VREG_VOUT Power output for the internal core voltage regulator, nominal voltage 1.1V, 100mA max current

DVDD Digital core power supply, nominal voltage 1.1V. Can be connected to VREG_VOUT, or to some

other board-level power supply.

1.4.3. GPIO Functions

Each individual GPIO pin can be connected to an internal peripheral via the GPIO functions defined below. Some internal

peripheral connections appear in multiple places to allow some system level flexibility. SIO, PIO0 and PIO1 can connect

to all GPIO pins and are controlled by software (or software controlled state machines) so can be used to implement

many functions.

Table 2. General

Purpose Input/Output

(GPIO) Bank 0

Functions

Function

GPIO F1 F2 F3 F4 F5 F6 F7 F8 F9

0 SPI0 RX UART0 TX I2C0 SDA PWM0 A SIO PIO0 PIO1 USB OVCUR DET

1 SPI0 CSn UART0 RX I2C0 SCL PWM0 B SIO PIO0 PIO1 USB VBUS DET

2 SPI0 SCK UART0 CTS I2C1 SDA PWM1 A SIO PIO0 PIO1 USB VBUS EN

3 SPI0 TX UART0 RTS I2C1 SCL PWM1 B SIO PIO0 PIO1 USB OVCUR DET

4 SPI0 RX UART1 TX I2C0 SDA PWM2 A SIO PIO0 PIO1 USB VBUS DET

5 SPI0 CSn UART1 RX I2C0 SCL PWM2 B SIO PIO0 PIO1 USB VBUS EN

6 SPI0 SCK UART1 CTS I2C1 SDA PWM3 A SIO PIO0 PIO1 USB OVCUR DET

7 SPI0 TX UART1 RTS I2C1 SCL PWM3 B SIO PIO0 PIO1 USB VBUS DET

8 SPI1 RX UART1 TX I2C0 SDA PWM4 A SIO PIO0 PIO1 USB VBUS EN

9 SPI1 CSn UART1 RX I2C0 SCL PWM4 B SIO PIO0 PIO1 USB OVCUR DET

10 SPI1 SCK UART1 CTS I2C1 SDA PWM5 A SIO PIO0 PIO1 USB VBUS DET

11 SPI1 TX UART1 RTS I2C1 SCL PWM5 B SIO PIO0 PIO1 USB VBUS EN

12 SPI1 RX UART0 TX I2C0 SDA PWM6 A SIO PIO0 PIO1 USB OVCUR DET

13 SPI1 CSn UART0 RX I2C0 SCL PWM6 B SIO PIO0 PIO1 USB VBUS DET

14 SPI1 SCK UART0 CTS I2C1 SDA PWM7 A SIO PIO0 PIO1 USB VBUS EN

15 SPI1 TX UART0 RTS I2C1 SCL PWM7 B SIO PIO0 PIO1 USB OVCUR DET

16 SPI0 RX UART0 TX I2C0 SDA PWM0 A SIO PIO0 PIO1 USB VBUS DET

17 SPI0 CSn UART0 RX I2C0 SCL PWM0 B SIO PIO0 PIO1 USB VBUS EN

18 SPI0 SCK UART0 CTS I2C1 SDA PWM1 A SIO PIO0 PIO1 USB OVCUR DET

19 SPI0 TX UART0 RTS I2C1 SCL PWM1 B SIO PIO0 PIO1 USB VBUS DET

20 SPI0 RX UART1 TX I2C0 SDA PWM2 A SIO PIO0 PIO1 CLOCK GPIN0 USB VBUS EN

21 SPI0 CSn UART1 RX I2C0 SCL PWM2 B SIO PIO0 PIO1 CLOCK GPOUT0 USB OVCUR DET

RP2040 Datasheet

1.4. Pinout Reference 13

Function

22 SPI0 SCK UART1 CTS I2C1 SDA PWM3 A SIO PIO0 PIO1 CLOCK GPIN1 USB VBUS DET

23 SPI0 TX UART1 RTS I2C1 SCL PWM3 B SIO PIO0 PIO1 CLOCK GPOUT1 USB VBUS EN

24 SPI1 RX UART1 TX I2C0 SDA PWM4 A SIO PIO0 PIO1 CLOCK GPOUT2 USB OVCUR DET

25 SPI1 CSn UART1 RX I2C0 SCL PWM4 B SIO PIO0 PIO1 CLOCK GPOUT3 USB VBUS DET

26 SPI1 SCK UART1 CTS I2C1 SDA PWM5 A SIO PIO0 PIO1 USB VBUS EN

27 SPI1 TX UART1 RTS I2C1 SCL PWM5 B SIO PIO0 PIO1 USB OVCUR DET

28 SPI1 RX UART0 TX I2C0 SDA PWM6 A SIO PIO0 PIO1 USB VBUS DET

29 SPI1 CSn UART0 RX I2C0 SCL PWM6 B SIO PIO0 PIO1 USB VBUS EN

Table 3. GPIO bank 0

function descriptions
Function Name Description

SPIx Connect one of the internal PL022 SPI peripherals to GPIO

UARTx Connect one of the internal PL011 UART peripherals to GPIO

I2Cx Connect one of the internal DW I2C peripherals to GPIO

PWMx A/B Connect a PWM slice to GPIO. There are eight PWM slices, each with two output

channels (A/B). The B pin can also be used as an input, for frequency and duty cycle

measurement.

SIO Software control of GPIO, from the single-cycle IO (SIO) block. The SIO function (F5)

must be selected for the processors to drive a GPIO, but the input is always connected,

so software can check the state of GPIOs at any time.

PIOx Connect one of the programmable IO blocks (PIO) to GPIO. PIO can implement a wide

variety of interfaces, and has its own internal pin mapping hardware, allowing flexible

placement of digital interfaces on bank 0 GPIOs. The PIO function (F6, F7) must be

selected for PIO to drive a GPIO, but the input is always connected, so the PIOs can

always see the state of all pins.

CLOCK GPINx General purpose clock inputs. Can be routed to a number of internal clock domains on

RP2040, e.g. to provide a 1Hz clock for the RTC, or can be connected to an internal

frequency counter.

CLOCK GPOUTx General purpose clock outputs. Can drive a number of internal clocks (including PLL

outputs) onto GPIOs, with optional integer divide.

USB OVCUR DET/VBUS

DET/VBUS EN

USB power control signals to/from the internal USB controller

RP2040 Datasheet

1.4. Pinout Reference 14

Chapter 2. System Description
This chapter describes the RP2040 key system features including processor, memory, how blocks are connected,

clocks, resets, power, and IO. Refer to Figure 2 for an overview diagram.

2.1. Bus Fabric

The RP2040 bus fabric routes addresses and data across the chip.

Figure 4 shows the high-level structure of the bus fabric. The main AHB-Lite crossbar routes addresses and data

between its 4 upstream ports and 10 downstream ports: up to four bus transfers can take place each cycle. All data

paths are 32 bits wide. Memory devices have dedicated ports on the main crossbar, to satisfy their high bandwidth

requirements. High-bandwidth AHB-Lite peripherals have a shared port on the crossbar, and an APB bridge provides bus

access to system control registers and lower-bandwidth peripherals.

Figure 4. RP2040 bus

fabric overview.

The bus fabric connects 4 AHB-Lite masters, i.e. devices which generate addresses:

• Processor core 0

• Processor core 1

• DMA controller Read port

• DMA controller Write port

These are routed through to 10 downstream ports on the main crossbar:

• ROM

• Flash XIP

• SRAM 0 to 5 (one port each)

• Fast AHB-Lite peripherals: PIO0, PIO1, USB, DMA control registers, XIP aux (one shared port)

• Bridge to all APB peripherals, and system control registers

The four bus masters can access any four different crossbar ports simultaneously, the bus fabric does not add wait

RP2040 Datasheet

2.1. Bus Fabric 15

states to any AHB-Lite slave access. So at a system clock of 125MHz the maximum sustained bus bandwidth is

2.0GBps. The system address map has been arranged to make this parallel bandwidth available to as many software

use cases as possible — for example, the striped SRAM alias (Section 2.6.2) scatters main memory accesses across

four crossbar ports (SRAM0…3), so that more memory accesses can proceed in parallel.

2.1.1. AHB-Lite Crossbar

At the centre of the RP2040 bus fabric is a 4:10 fully-connected crossbar. Its 4 upstream ports are connected to the 4

system bus masters, and the 10 downstream ports connect to the highest-bandwidth AHB-Lite slaves (namely the

memory interfaces) and to lower layers of the fabric. Figure 5 shows the structure of a 2:3 AHB-Lite crossbar, arranged

identically to the 4:10 crossbar on RP2040, but easier to show in the diagram.

Figure 5. A 2:3 AHB-

Lite crossbar. Each

upstream port

connects to a splitter,

which routes bus

requests toward one

of the 3 downstream

ports, and routes

responses back. Each

downstream port

connects to an arbiter,

which safely manages

concurrent access to

the port.

The crossbar is built from two components:

• Splitters

◦ Perform coarse address decode

◦ Route requests (addresses, write data) to the downstream port indicated by the initial address decode

◦ Route responses (read data, bus errors) from the correct arbiter back to the upstream port

• Arbiters

◦ Manage concurrent requests to a downstream port

◦ Route responses (read data, bus errors) to the correct splitter

◦ Implement bus priority rules

The main crossbar on RP2040 consists of 4 1:10 splitters and 10 4:1 arbiters, with a mesh of 40 AHB-Lite bus channels

between them. Note that, as AHB-Lite is a pipelined bus, the splitter may be routing back a response to an earlier

request from downstream port A, whilst a new request to downstream port B is already in progress. This does not incur

any cycle penalty.

2.1.1.1. Bus Priority

The arbiters in the main AHB-Lite crossbar implement a two-level bus priority scheme. Priority levels are configured per-

master, using the BUS_PRIORITY register in the BUSCTRL register block.

When there are multiple simultaneous accesses to same arbiter, any requests from high-priority masters (priority level

1) will be considered before any requests from low-priority masters (priority 0). If multiple masters of the same priority

level attempt to access the same slave simultaneously, a round-robin tie break is applied, i.e. the arbiter grants access

to each master in turn.

RP2040 Datasheet

2.1. Bus Fabric 16

 NOTE

Priority arbitration only applies to multiple masters attempting to access the same slave on the same cycle.

Accesses to different slaves, e.g. different SRAM banks, can proceed simultaneously.

When accessing a slave with zero wait states, such as SRAM (i.e. can be accessed once per system clock cycle), high-

priority masters will never observe any slowdown or other timing effects caused by accesses from low-priority masters.

This allows guaranteed latency and throughput for hard real time use cases; it does however mean a low-priority master

may get stalled until there is a free cycle.

2.1.1.2. Bus Performance Counters

The performance counters automatically count accesses to the main AHB-Lite crossbar arbiters. This can assist in

diagnosing performance issues, in high-traffic use cases.

There are four performance counters. Each is a 24-bit saturating counter. Counter values can be read from

BUSCTRL_PERFCTRx, and cleared by writing any value to BUSCTRL_PERFCTRx. Each counter can count one of the 20 available

events at a time, as selected by BUSCTRL_PERFSELx. The available bus events are:

PERFSEL

x

Event Description

0 APB access,

contested

Completion of an access to the APB arbiter (which is upstream of all APB

peripherals), which was previously delayed due to an access by another master.

1 APB access Completion of an access to the APB arbiter

2 FASTPERI access,

contested

Completion of an access to the FASTPERI arbiter (which is upstream of PIOs, DMA

config port, USB, XIP aux FIFO port), which was previously delayed due to an access

by another master.

3 FASTPERI access Completion of an access to the FASTPERI arbiter

4 SRAM5 access,

contested

Completion of an access to the SRAM5 arbiter, which was previously delayed due to

an access by another master.

5 SRAM5 access Completion of an access to the SRAM5 arbiter

6 SRAM4 access,

contested

Completion of an access to the SRAM4 arbiter, which was previously delayed due to

an access by another master.

7 SRAM4 access Completion of an access to the SRAM4 arbiter

8 SRAM3 access,

contested

Completion of an access to the SRAM3 arbiter, which was previously delayed due to

an access by another master.

9 SRAM3 access Completion of an access to the SRAM3 arbiter

10 SRAM2 access,

contested

Completion of an access to the SRAM2 arbiter, which was previously delayed due to

an access by another master.

11 SRAM2 access Completion of an access to the SRAM2 arbiter

12 SRAM1 access,

contested

Completion of an access to the SRAM1 arbiter, which was previously delayed due to

an access by another master.

13 SRAM1 access Completion of an access to the SRAM1 arbiter

14 SRAM0 access,

contested

Completion of an access to the SRAM0 arbiter, which was previously delayed due to

an access by another master.

15 SRAM0 access Completion of an access to the SRAM0 arbiter

RP2040 Datasheet

2.1. Bus Fabric 17

PERFSEL

x

Event Description

16 XIP_MAIN access,

contested

Completion of an access to the XIP_MAIN arbiter, which was previously delayed due

to an access by another master.

17 XIP_MAIN access Completion of an access to the XIP_MAIN arbiter

18 ROM access,

contested

Completion of an access to the ROM arbiter, which was previously delayed due to an

access by another master.

19 ROM access Completion of an access to the ROM arbiter

2.1.2. Atomic Register Access

Each peripheral register block is allocated 4kB of address space, with registers accessed using one of 4 methods,

selected by address decode.

• Addr + 0x0000 : normal read write access

• Addr + 0x1000 : atomic XOR on write

• Addr + 0x2000 : atomic bitmask set on write

• Addr + 0x3000 : atomic bitmask clear on write

This allows individual fields of a control register to be modified without performing a read-modify-write sequence in

software: instead the changes are posted to the peripheral, and performed in-situ. Without this capability, it is difficult to

safely access IO registers when an interrupt service routine is concurrent with code running in the foreground, or when

the two processors are running code in parallel.

The four atomic access aliases occupy a total of 16kB. Most peripherals on RP2040 provide this functionality natively,

and atomic writes have the same timing as normal read/write access. Some peripherals (I2C, UART, SPI and SSI)

instead have this functionality added using a bus interposer, which translates upstream atomic writes into downstream

read-modify-write sequences, at the boundary of the peripheral. This extends the access time by two system clock

cycles.

The SIO (Section 2.3.1), a single-cycle IO block attached directly to the cores' IO ports, does not support atomic

accesses at the bus level, although some individual registers (e.g. GPIO) have set/clear/xor aliases.

2.1.3. APB Bridge

The APB bridge interfaces the high-speed main AHB-Lite interconnect to the lower-bandwidth peripherals. Whilst the

AHB-Lite fabric offers zero-wait-state access everywhere, APB accesses have a cycle penalty:

• APB bus accesses take two cycles minimum (setup phase and access phase)

• The bridge adds an additional cycle to read accesses, as the bus request and response are registered

• The bridge adds two additional cycles to write accesses, as the APB setup phase can not begin until the AHB-Lite

write data is valid

As a result, the throughput of the APB portion of the bus fabric is somewhat lower than the AHB-Lite portion. However,

there is more than sufficient bandwidth to saturate the APB serial peripherals.

2.1.4. Narrow IO Register Writes

Memory-mapped IO registers on RP2040 ignore the width of bus read/write accesses. They treat all writes as though

they were 32 bits in size. This means software can not use byte or halfword writes to modify part of an IO register: any

write to an address where the 30 address MSBs match the register address will affect the contents of the entire

RP2040 Datasheet

2.1. Bus Fabric 18

register.

To update part of an IO register, without a read-modify-write sequence, the best solution on RP2040 is atomic

set/clear/XOR (see Section 2.1.2). Note that this is more flexible than byte or halfword writes, as any combination of

fields can be updated in one operation.

Upon a 8-bit or 16-bit write (such as a strb instruction on the Cortex-M0+), an IO register will sample the entire 32-bit

write databus. The Cortex-M0+ and DMA on RP2040 will always replicate narrow data across the bus:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/system/narrow_io_write/narrow_io_write.c Lines 19 - 62

19 int main() {
20 stdio_init_all();
21
22 // We'll use WATCHDOG_SCRATCH0 as a convenient 32 bit read/write register
23 // that we can assign arbitrary values to
24 io_rw_32 *scratch32 = &watchdog_hw->scratch[0];
25 // Alias the scratch register as two halfwords at offsets +0x0 and +0x2
26 volatile uint16_t *scratch16 = (volatile uint16_t *) scratch32;
27 // Alias the scratch register as four bytes at offsets +0x0, +0x1, +0x2, +0x3:
28 volatile uint8_t *scratch8 = (volatile uint8_t *) scratch32;
29
30 // Show that we can read/write the scratch register as normal:
31 printf("Writing 32 bit value\n");
32 *scratch32 = 0xdeadbeef;
33 printf("Should be 0xdeadbeef: 0x%08x\n", *scratch32);
34
35 // We can do narrow reads just fine -- IO registers treat this as a 32 bit
36 // read, and the processor/DMA will pick out the correct byte lanes based
37 // on transfer size and address LSBs
38 printf("\nReading back 1 byte at a time\n");
39 // Little-endian!
40 printf("Should be ef be ad de: %02x ", scratch8[0]);
41 printf("%02x ", scratch8[1]);
42 printf("%02x ", scratch8[2]);
43 printf("%02x\n", scratch8[3]);
44
45 // The Cortex-M0+ and the RP2040 DMA replicate byte writes across the bus,
46 // and IO registers will sample the entire write bus always.
47 printf("\nWriting 8 bit value 0xa5 at offset 0\n");
48 scratch8[0] = 0xa5;
49 // Read back the whole scratch register in one go
50 printf("Should be 0xa5a5a5a5: 0x%08x\n", *scratch32);
51
52 // The IO register ignores the address LSBs [1:0] as well as the transfer
53 // size, so it doesn't matter what byte offset we use
54 printf("\nWriting 8 bit value at offset 1\n");
55 scratch8[1] = 0x3c;
56 printf("Should be 0x3c3c3c3c: 0x%08x\n", *scratch32);
57
58 // Halfword writes are also replicated across the write data bus
59 printf("\nWriting 16 bit value at offset 0\n");
60 scratch16[0] = 0xf00d;
61 printf("Should be 0xf00df00d: 0x%08x\n", *scratch32);
62 }

2.1.5. List of Registers

The Bus Fabric registers start at a base address of 0x40030000 (defined as BUSCTRL_BASE in SDK).

RP2040 Datasheet

2.1. Bus Fabric 19

https://github.com/raspberrypi/pico-examples/blob/master/system/narrow_io_write/narrow_io_write.c#L19-L62

Table 4. List of

BUSCTRL registers
Offset Name Info

0x00 BUS_PRIORITY Set the priority of each master for bus arbitration.

0x04 BUS_PRIORITY_ACK Bus priority acknowledge

0x08 PERFCTR0 Bus fabric performance counter 0

0x0c PERFSEL0 Bus fabric performance event select for PERFCTR0

0x10 PERFCTR1 Bus fabric performance counter 1

0x14 PERFSEL1 Bus fabric performance event select for PERFCTR1

0x18 PERFCTR2 Bus fabric performance counter 2

0x1c PERFSEL2 Bus fabric performance event select for PERFCTR2

0x20 PERFCTR3 Bus fabric performance counter 3

0x24 PERFSEL3 Bus fabric performance event select for PERFCTR3

BUSCTRL: BUS_PRIORITY Register

Offset: 0x00

Description

Set the priority of each master for bus arbitration.

Table 5.

BUS_PRIORITY

Register

Bits Name Description Type Reset

31:13 Reserved. - - -

12 DMA_W 0 - low priority, 1 - high priority RW 0x0

11:9 Reserved. - - -

8 DMA_R 0 - low priority, 1 - high priority RW 0x0

7:5 Reserved. - - -

4 PROC1 0 - low priority, 1 - high priority RW 0x0

3:1 Reserved. - - -

0 PROC0 0 - low priority, 1 - high priority RW 0x0

BUSCTRL: BUS_PRIORITY_ACK Register

Offset: 0x04

Description

Bus priority acknowledge

Table 6.

BUS_PRIORITY_ACK

Register

Bits Description Type Reset

31:1 Reserved. - -

0 Goes to 1 once all arbiters have registered the new global priority levels.

Arbiters update their local priority when servicing a new nonsequential access.

In normal circumstances this will happen almost immediately.

RO 0x0

BUSCTRL: PERFCTR0 Register

Offset: 0x08

RP2040 Datasheet

2.1. Bus Fabric 20

Description

Bus fabric performance counter 0

Table 7. PERFCTR0

Register
Bits Description Type Reset

31:24 Reserved. - -

23:0 Busfabric saturating performance counter 0

Count some event signal from the busfabric arbiters.

Write any value to clear. Select an event to count using PERFSEL0

WC 0x000000

BUSCTRL: PERFSEL0 Register

Offset: 0x0c

Description

Bus fabric performance event select for PERFCTR0

Table 8. PERFSEL0

Register
Bits Description Type Reset

31:5 Reserved. - -

4:0 Select an event for PERFCTR0. Count either contested accesses, or all

accesses, on a downstream port of the main crossbar.

0x00 → apb_contested

0x01 → apb

0x02 → fastperi_contested

0x03 → fastperi

0x04 → sram5_contested

0x05 → sram5

0x06 → sram4_contested

0x07 → sram4

0x08 → sram3_contested

0x09 → sram3

0x0a → sram2_contested

0x0b → sram2

0x0c → sram1_contested

0x0d → sram1

0x0e → sram0_contested

0x0f → sram0

0x10 → xip_main_contested

0x11 → xip_main

0x12 → rom_contested

0x13 → rom

RW 0x1f

BUSCTRL: PERFCTR1 Register

Offset: 0x10

Description

Bus fabric performance counter 1

RP2040 Datasheet

2.1. Bus Fabric 21

Table 9. PERFCTR1

Register
Bits Description Type Reset

31:24 Reserved. - -

23:0 Busfabric saturating performance counter 1

Count some event signal from the busfabric arbiters.

Write any value to clear. Select an event to count using PERFSEL1

WC 0x000000

BUSCTRL: PERFSEL1 Register

Offset: 0x14

Description

Bus fabric performance event select for PERFCTR1

Table 10. PERFSEL1

Register
Bits Description Type Reset

31:5 Reserved. - -

4:0 Select an event for PERFCTR1. Count either contested accesses, or all

accesses, on a downstream port of the main crossbar.

0x00 → apb_contested

0x01 → apb

0x02 → fastperi_contested

0x03 → fastperi

0x04 → sram5_contested

0x05 → sram5

0x06 → sram4_contested

0x07 → sram4

0x08 → sram3_contested

0x09 → sram3

0x0a → sram2_contested

0x0b → sram2

0x0c → sram1_contested

0x0d → sram1

0x0e → sram0_contested

0x0f → sram0

0x10 → xip_main_contested

0x11 → xip_main

0x12 → rom_contested

0x13 → rom

RW 0x1f

BUSCTRL: PERFCTR2 Register

Offset: 0x18

Description

Bus fabric performance counter 2

RP2040 Datasheet

2.1. Bus Fabric 22

Table 11. PERFCTR2

Register
Bits Description Type Reset

31:24 Reserved. - -

23:0 Busfabric saturating performance counter 2

Count some event signal from the busfabric arbiters.

Write any value to clear. Select an event to count using PERFSEL2

WC 0x000000

BUSCTRL: PERFSEL2 Register

Offset: 0x1c

Description

Bus fabric performance event select for PERFCTR2

Table 12. PERFSEL2

Register
Bits Description Type Reset

31:5 Reserved. - -

4:0 Select an event for PERFCTR2. Count either contested accesses, or all

accesses, on a downstream port of the main crossbar.

0x00 → apb_contested

0x01 → apb

0x02 → fastperi_contested

0x03 → fastperi

0x04 → sram5_contested

0x05 → sram5

0x06 → sram4_contested

0x07 → sram4

0x08 → sram3_contested

0x09 → sram3

0x0a → sram2_contested

0x0b → sram2

0x0c → sram1_contested

0x0d → sram1

0x0e → sram0_contested

0x0f → sram0

0x10 → xip_main_contested

0x11 → xip_main

0x12 → rom_contested

0x13 → rom

RW 0x1f

BUSCTRL: PERFCTR3 Register

Offset: 0x20

Description

Bus fabric performance counter 3

RP2040 Datasheet

2.1. Bus Fabric 23

Table 13. PERFCTR3

Register
Bits Description Type Reset

31:24 Reserved. - -

23:0 Busfabric saturating performance counter 3

Count some event signal from the busfabric arbiters.

Write any value to clear. Select an event to count using PERFSEL3

WC 0x000000

BUSCTRL: PERFSEL3 Register

Offset: 0x24

Description

Bus fabric performance event select for PERFCTR3

Table 14. PERFSEL3

Register
Bits Description Type Reset

31:5 Reserved. - -

4:0 Select an event for PERFCTR3. Count either contested accesses, or all

accesses, on a downstream port of the main crossbar.

0x00 → apb_contested

0x01 → apb

0x02 → fastperi_contested

0x03 → fastperi

0x04 → sram5_contested

0x05 → sram5

0x06 → sram4_contested

0x07 → sram4

0x08 → sram3_contested

0x09 → sram3

0x0a → sram2_contested

0x0b → sram2

0x0c → sram1_contested

0x0d → sram1

0x0e → sram0_contested

0x0f → sram0

0x10 → xip_main_contested

0x11 → xip_main

0x12 → rom_contested

0x13 → rom

RW 0x1f

2.2. Address Map

The address map for the device is split in to sections as shown in Table 15. Details are shown in the following sections.

Unmapped address ranges raise a bus error when accessed.

2.2.1. Summary

Table 15. Address

Map Summary
ROM 0x00000000

XIP 0x10000000

SRAM 0x20000000

APB Peripherals 0x40000000

RP2040 Datasheet

2.2. Address Map 24

AHB-Lite Peripherals 0x50000000

IOPORT Registers 0xd0000000

Cortex-M0+ internal registers 0xe0000000

2.2.2. Detail

ROM:

ROM_BASE 0x00000000

XIP:

XIP_BASE 0x10000000

XIP_NOALLOC_BASE 0x11000000

XIP_NOCACHE_BASE 0x12000000

XIP_NOCACHE_NOALLOC_BASE 0x13000000

XIP_CTRL_BASE 0x14000000

XIP_SRAM_BASE 0x15000000

XIP_SRAM_END 0x15004000

XIP_SSI_BASE 0x18000000

SRAM. SRAM0-3 striped:

SRAM_BASE 0x20000000

SRAM_STRIPED_BASE 0x20000000

SRAM_STRIPED_END 0x20040000

SRAM 4-5 are always non-striped:

SRAM4_BASE 0x20040000

SRAM5_BASE 0x20041000

SRAM_END 0x20042000

Non-striped aliases of SRAM0-3:

SRAM0_BASE 0x21000000

SRAM1_BASE 0x21010000

SRAM2_BASE 0x21020000

SRAM3_BASE 0x21030000

APB Peripherals:

SYSINFO_BASE 0x40000000

SYSCFG_BASE 0x40004000

CLOCKS_BASE 0x40008000

RP2040 Datasheet

2.2. Address Map 25

RESETS_BASE 0x4000c000

PSM_BASE 0x40010000

IO_BANK0_BASE 0x40014000

IO_QSPI_BASE 0x40018000

PADS_BANK0_BASE 0x4001c000

PADS_QSPI_BASE 0x40020000

XOSC_BASE 0x40024000

PLL_SYS_BASE 0x40028000

PLL_USB_BASE 0x4002c000

BUSCTRL_BASE 0x40030000

UART0_BASE 0x40034000

UART1_BASE 0x40038000

SPI0_BASE 0x4003c000

SPI1_BASE 0x40040000

I2C0_BASE 0x40044000

I2C1_BASE 0x40048000

ADC_BASE 0x4004c000

PWM_BASE 0x40050000

TIMER_BASE 0x40054000

WATCHDOG_BASE 0x40058000

RTC_BASE 0x4005c000

ROSC_BASE 0x40060000

VREG_AND_CHIP_RESET_BASE 0x40064000

TBMAN_BASE 0x4006c000

AHB-Lite peripherals:

DMA_BASE 0x50000000

USB has a DPRAM at its base followed by registers:

USBCTRL_BASE 0x50100000

USBCTRL_DPRAM_BASE 0x50100000

USBCTRL_REGS_BASE 0x50110000

Remaining AHB-Lite peripherals:

PIO0_BASE 0x50200000

PIO1_BASE 0x50300000

XIP_AUX_BASE 0x50400000

IOPORT Peripherals:

RP2040 Datasheet

2.2. Address Map 26

SIO_BASE 0xd0000000

Cortex-M0+ Internal Peripherals:

PPB_BASE 0xe0000000

2.3. Processor subsystem

The RP2040 processor subsystem consists of two Arm Cortex-M0+ processors — each with its standard internal Arm

CPU peripherals — alongside external peripherals for GPIO access and inter-core communication. Details of the Arm

Cortex-M0+ processors, including the specific feature configuration used on RP2040, can be found in Section 2.4.

SIO

Core 0

Cortex-M0+

Bus Interface

NVIC DAP

Core 1

Cortex-M0+

Bus Interface

NVIC DAP

To GPIO Muxing

From external debuggerFrom peripherals

GPIO ×36

To bus fabric

AHB-Lite

To bus fabric

AHB-Lite

IOPORT

Events

IOPORT

Interrupts Serial Wire Debug

Figure 6. Two Cortex-

M0+ processors, each

with a dedicated 32-bit

AHB-Lite bus port, for

code fetch, loads and

stores. The SIO is

connected to the

single-cycle IOPORT

bus of each processor,

and provides GPIO

access, two-way

communications, and

other core-local

peripherals. Both

processors can be

debugged via a single

multi-drop Serial Wire

Debug bus. 26

interrupts (plus NMI)

are routed to the NVIC

and WIC on each

processor.

 NOTE

The terms core0 and core1, proc0 and proc1 are used interchangeably in RP2040’s registers and documentation to

refer to processor 0, and processor 1 respectively.

The processors use a number of interfaces to communicate with the rest of the system:

• Each processor uses its own independent 32-bit AHB-Lite bus to access memory and memory-mapped peripherals

(more detail in Section 2.1)

• The single-cycle IO block provides high-speed, deterministic access to GPIOs via each processor’s IOPORT

• 26 system-level interrupts are routed to both processors

• A multi-drop Serial Wire Debug bus provides debug access to both processors from an external debug host

2.3.1. SIO

The Single-cycle IO block (SIO) contains several peripherals that require low-latency, deterministic access from the

processors. It is accessed via each processor’s IOPORT: this is an auxiliary bus port on the Cortex-M0+ which can

perform rapid 32-bit reads and writes. The SIO has a dedicated bus interface for each processor’s IOPORT, as shown in

Figure 7. Processors access their IOPORT with normal load and store instructions, directed to the special IOPORT

address segment, 0xd0000000…0xdfffffff. The SIO appears as memory-mapped hardware within the IOPORT space.

RP2040 Datasheet

2.3. Processor subsystem 27

 NOTE

The SIO is not connected to the main system bus due to its tight timing requirements. It can only be accessed by the

processors, or by the debugger via the processor debug ports.

Core 0 Core 1

CPUID 0 CPUID 1

Integer Divider Integer Divider

Interpolator 0 Interpolator 0

Interpolator 1 Interpolator 1

FIFO 0 to 1

FIFO 1 to 0

Bus

Interface
Hardware Spinlock ×32

GPIO Registers Shared, atomic

set/clear/xor

Bus

Interface

To GPIO Muxing

Single-cycle IO
IOPORTIOPORT

GPIO ×36

Figure 7. The single-

cycle IO block

contains memory-

mapped hardware

which the processors

must be able to

access quickly. The

FIFOs and spinlocks

support message

passing and

synchronisation

between the two

cores. The shared

GPIO registers provide

fast and concurrency-

safe direct access to

GPIO-capable pins.

Some core-local

arithmetic hardware

can be used to

accelerate common

tasks on the

processors.

All IOPORT reads and writes (and therefore all SIO accesses) take place in exactly one cycle, unlike the main AHB-Lite

system bus, where the Cortex-M0+ requires two cycles for a load or store, and may have to wait longer due to

contention from other system bus masters. This is vital for interfaces such as GPIO, which have tight timing

requirements.

SIO registers are mapped to word-aligned addresses in the range 0xd0000000…0xd000017c. The remainder of the IOPORT

space is reserved for future use.

The SIO peripherals are described in more detail in the following sections.

2.3.1.1. CPUID

The register CPUID is the first register in the IOPORT space. Core 0 reads a value of 0 when accessing this address, and

core 1 reads a value of 1. This is a convenient method for software to determine on which core it is running. This is

checked during the initial boot sequence: both cores start running simultaneously, core 1 goes into a deep sleep state,

and core 0 continues with the main boot sequence.

RP2040 Datasheet

2.3. Processor subsystem 28

 IMPORTANT

CPUID should not be confused with the Cortex-M0+ CPUID register (Section 2.4.4.1.1) on each processor’s internal

Private Peripheral Bus, which lists the processor’s part number and version.

2.3.1.2. GPIO Control

The processors have access to GPIO registers for fast and direct control of pins with GPIO functionality. There are two

identical sets of registers:

• GPIO_x for direct control of IO bank 0 (user GPIOs 0 to 29, starting at the LSB)

• GPIO_HI_x for direct control of the QSPI IO bank (in the order SCLK, SSn, SD0, SD1, SD2, SD3, starting at the LSB)

 NOTE

To drive a pin with the SIO’s GPIO registers, the GPIO multiplexer for this pin must first be configured to select the

SIO GPIO function. See Table 279.

These GPIO registers are shared between the two cores, and both cores can access them simultaneously. There are

three registers for each bank:

• Output registers, GPIO_OUT and GPIO_HI_OUT, are used to set the output level of the GPIO (1/0 for high/low)

• Output enable registers, GPIO_OE and GPIO_HI_OE, are used to enable the output driver. 0 for high-impedance, 1

for drive high/low based on GPIO_OUT and GPIO_HI_OUT.

• Input registers, GPIO_IN and GPIO_HI_IN, allow the processor to sample the current state of the GPIOs

Reading GPIO_IN returns all 30 GPIO values (or 6 for GPIO_HI_IN) in a single read. Software can then mask out

individual pins it is interested in.

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h Lines 674 - 676

674 static inline bool gpio_get(uint gpio) {
675 return !!((1ul << gpio) & sio_hw->gpio_in);
676 }

The OUT and OE registers also have atomic SET, CLR, and XOR aliases, which allows software to update a subset of the

pins in one operation. This is vital not only for safe parallel GPIO access between the two cores, but also safe

concurrent GPIO access in an interrupt handler and foreground code running on one core.

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h Lines 696 - 698

696 static inline void gpio_set_mask(uint32_t mask) {
697 sio_hw->gpio_set = mask;
698 }

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h Lines 705 - 707

705 static inline void gpio_clr_mask(uint32_t mask) {
706 sio_hw->gpio_clr = mask;
707 }

RP2040 Datasheet

2.3. Processor subsystem 29

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L674-L676
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L696-L698
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L705-L707

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h Lines 748 - 754

748 static inline void gpio_put(uint gpio, bool value) {
749 uint32_t mask = 1ul << gpio;
750 if (value)
751 gpio_set_mask(mask);
752 else
753 gpio_clr_mask(mask);
754 }

If both processors write to an OUT or OE register (or any of its SET/CLR/XOR aliases) on the same clock cycle, the result is

as though core 0 wrote first, and core 1 wrote immediately afterward. For example, if core 0 SETs a bit, and core 1

simultaneously XORs it, the bit will be set to 0, irrespective of it original value.

 NOTE

This is a conceptual model for the result that is produced when two cores write to a GPIO register simultaneously.

The register does not actually contain this intermediate value at any point. In the previous example, if the pin is

initially 0, and core 0 performs a SET while core 1 performs a XOR, the GPIO output remains low without any positive

glitch.

2.3.1.3. Hardware Spinlocks

The SIO provides 32 hardware spinlocks, which can be used to manage mutually-exclusive access to shared software

resources. Each spinlock is a one-bit flag, mapped to a different address (from SPINLOCK0 to SPINLOCK31). Software

interacts with each spinlock with one of the following operations:

• Read: attempt to claim the lock. Read value is nonzero if the lock was successfully claimed, or zero if the lock had

already been claimed by a previous read.

• Write (any value): release the lock. The next attempt to claim the lock will be successful.

If both cores try to claim the same lock on the same clock cycle, core 0 succeeds.

Generally software will acquire a lock by repeatedly polling the lock bit ("spinning" on the lock) until it is successfully

claimed. This is inefficient if the lock is held for long periods, so generally the spinlocks should be used to protect the

short critical sections of higher-level primitives such as mutexes, semaphores and queues.

For debugging purposes, the current state of all 32 spinlocks can be observed via SPINLOCK_ST.

2.3.1.4. Inter-processor FIFOs (Mailboxes)

The SIO contains two FIFOs for passing data, messages or ordered events between the two cores. Each FIFO is 32 bits

wide, and eight entries deep. One of the FIFOs can only be written by core 0, and read by core 1. The other can only be

written by core 1, and read by core 0.

Each core writes to its outgoing FIFO by writing to FIFO_WR, and reads from its incoming FIFO by reading from FIFO_RD.

A status register, FIFO_ST, provides the following status signals:

• Incoming FIFO contains data (VLD)

• Outgoing FIFO has room for more data (RDY)

• The incoming FIFO was read from while empty at some point in the past (ROE)

• The outgoing FIFO was written to while full at some point in the past (WOF)

Writing to the outgoing FIFO while full, or reading from the incoming FIFO while empty, does not affect the FIFO state.

The current contents and level of the FIFO is preserved. However, this does represent some loss of data or reception of

invalid data by the software accessing the FIFO, so a sticky error flag is raised (ROE or WOF).

RP2040 Datasheet

2.3. Processor subsystem 30

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L748-L754

The SIO has a FIFO IRQ output for each core, mapped to system IRQ numbers 15 and 16. Each IRQ output is the logical

OR of the VLD, ROE and WOF bits in that core’s FIFO_ST register: that is, the IRQ is asserted if any of these three bits is high,

and clears again when they are all low. The ROE and WOF flags are cleared by writing any value to FIFO_ST, and the VLD flag

is cleared by reading data from the FIFO until empty.

If the corresponding interrupt line is enabled in the Cortex-M0+ NVIC, then the processor will take an interrupt each time

data appears in its FIFO, or if it has performed some invalid FIFO operation (read on empty, write on full). Typically Core

0 will use IRQ15 and core 1 will use IRQ16. If the IRQs are used the other way round then it is difficult for the core that

has been interrupted to correctly identify the reason for the interrupt as the core doesn’t have access to the other core’s

FIFO status register.

 NOTE

ROE and WOF only become set if software misbehaves in some way. Generally, the interrupt handler will trigger when

data appears in the FIFO (raising the VLD flag), and the interrupt handler clears the IRQ by reading data from the FIFO

until VLD goes low once more.

The inter-processor FIFOs and the Cortex-M0+ Event signals are used by the bootrom (Section 2.8) wait_for_vector

routine, where core 1 remains in a sleep state until it is woken, and provided with its initial stack pointer, entry point and

vector table through the FIFO.

2.3.1.5. Integer Divider

The SIO provides one 8-cycle signed/unsigned divide/modulo module to each of the cores. Calculation is started by

writing a dividend and divisor to the two argument registers, DIVIDEND and DIVISOR. The divider calculates the quotient /

and remainder % of this division over the next 8 cycles, and on the 9th cycle the results can be read from the two result

registers DIV_QUOTIENT and DIV_REMAINDER. A 'ready' bit in register DIV_CSR can be polled to wait for the calculation

to complete, or software can insert a fixed 8-cycle delay.

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_divider/divider.S Lines 8 - 12

 8 regular_func_with_section hw_divider_divmod_s32
 9 ldr r3, =(SIO_BASE)
10 str r0, [r3, #SIO_DIV_SDIVIDEND_OFFSET]
11 str r1, [r3, #SIO_DIV_SDIVISOR_OFFSET]
12 b hw_divider_divmod_return

 NOTE

Software is free to perform other non-divider operations during these 8 cycles.

There are two aliases of the operand registers: writing to the signed alias (DIV_SDIVIDEND and DIV_SDIVISOR) will

initiate a signed calculation, and the other (DIV_UDIVIDEND and DIV_UDIVISOR) will initiate an unsigned calculation.

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_divider/divider.S Lines 16 - 20

16 regular_func_with_section hw_divider_divmod_u32
17 ldr r3, =(SIO_BASE)
18 str r0, [r3, #SIO_DIV_UDIVIDEND_OFFSET]
19 str r1, [r3, #SIO_DIV_UDIVISOR_OFFSET]
20 b hw_divider_divmod_return

RP2040 Datasheet

2.3. Processor subsystem 31

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_divider/divider.S#L8-L12
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_divider/divider.S#L16-L20

 NOTE

A new calculation begins immediately with every write to an operand register, and a new operand write immediately

squashes any calculation currently in progress. For example, when dividing many numbers by the same divisor, only

xDIVISOR needs to be written, and the signedness of each calculation is determined by whether SDIVIDEND or UDIVIDEND

is written.

To support save and restore on interrupt handler entry/exit (or on e.g. an RTOS context switch), the result registers are

also writable. Writing to a result register will cancel any operation in progress at the time. The DIV_CSR.DIRTY flag can

help make save/restore more efficient: this flag is set when any divider register (operand or result) is written to, and

cleared when the quotient is read.

 NOTE

When enabled, the default divider AEABI support maps C level / and % to the hardware divider. When building

software using the SDK and using the divider directly, it is important to read the quotient register last. This ensures

the partial divider state will be correctly saved and restored by any interrupt code that uses the divider. You should

read the quotient register whether you need the value or not.

The SDK module pico_divider https://github.com/raspberrypi/pico-sdk/blob/master/src/common/pico_divider/include/

pico/divider.h provides both the AEABI implementation needed to hook the C / and % operators for both 32-bit and 64-bit

integer division, as well as some additional C functions that return quotients and remainders at the same time. All of

these functions correctly save and restore the hardware divider state (when dirty) so that they can be used in either user

or IRQ handler code.

The SDK module hardware_divider https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/

hardware_divider/include/hardware/divider.h provides lower level macros and helper functions for accessing the

hardware_divider, but these do not save and restore the hardware divider state (although this header does provide

separate functions to do so).

2.3.1.6. Interpolator

Each core is equipped with two interpolators (INTERP0 and INTERP1) which can accelerate tasks by combining certain pre-

configured operations into a single processor cycle. Intended for cases where the pre-configured operation is repeated

many times, this results in code which uses both fewer CPU cycles and fewer CPU registers in the time-critical sections

of the code.

The interpolators are used to accelerate audio operations within the SDK, but their flexible configuration makes it

possible to optimise many other tasks such as quantization and dithering, table lookup address generation, affine

texture mapping, decompression and linear feedback.

RP2040 Datasheet

2.3. Processor subsystem 32

https://github.com/raspberrypi/pico-sdk/blob/master/src/common/pico_divider/include/pico/divider.h
https://github.com/raspberrypi/pico-sdk/blob/master/src/common/pico_divider/include/pico/divider.h
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_divider/include/hardware/divider.h
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_divider/include/hardware/divider.h

Base 0

0

1

MaskAccumulator 0 Result 0

Result 0

Result 1

Result 0

Result 1

Result 2

Accumulator 1

Accumulator 0

Right Shift
Sign-extend

 fromMask

Base 2

Base 1

Accumulator 1

0

1

1

0

1

0

1

0

1

0

MaskRight Shift
Sign-extend

 fromMask

0

1

0

1

Result 1

+

+

+

Figure 8. An

interpolator. The two

accumulator registers

and three base

registers have single-

cycle read/write

access from the

processor. The

interpolator is

organised into two

lanes, which perform

masking, shifting and

sign-extension

operations on the two

accumulators. This

produces three

possible results, by

adding the

intermediate

shift/mask values to

the three base

registers. From left to

right, the multiplexers

on each lane are

controlled by the

following flags in the

CTRL registers:

CROSS_RESULT,

CROSS_INPUT,

SIGNED, ADD_RAW.

The processor can write or read any interpolator register in one cycle, and the results are ready on the next cycle. The

processor can also perform an addition on one of the two accumulators ACCUM0 or ACCUM1 by writing to the corresponding

ACCUMx_ADD register.

The three results are available in the read-only locations PEEK0, PEEK1, PEEK2. Reading from these locations does not

change the state of the interpolator. The results are also aliased at the locations POP0, POP1, POP2; reading from a POPx alias

returns the same result as the corresponding PEEKx, and simultaneously writes back the lane results to the

accumulators. This can be used to advance the state of interpolator each time a result is read.

Additionally the interpolator supports simple fractional blending between two values as well as clamping values such

that they lie within a given range.

The following example shows a trivial example of popping a lane result to produce simple iterative feedback.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 11 - 23

11 void times_table() {
12 puts("9 times table:");
13
14 // Initialise lane 0 on interp0 on this core
15 interp_config cfg = interp_default_config();
16 interp_set_config(interp0, 0, &cfg);
17
18 interp0->accum[0] = 0;
19 interp0->base[0] = 9;
20
21 for (int i = 0; i < 10; ++i)
22 printf("%d\n", interp0->pop[0]);
23 }

 NOTE

By sheer coincidence, the interpolators are extremely well suited to SNES MODE7-style graphics routines. For

example, on each core, INTERP0 can provide a stream of tile lookups for some affine transform, and INTERP1 can

provide offsets into the tiles for the same transform.

2.3.1.6.1. Lane Operations

RP2040 Datasheet

2.3. Processor subsystem 33

https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L11-L23

0

1

MaskAccumulator 0
Add to BASE1

(for PEEK0/POP0)

Add to BASE2

(forms part of

PEEK2/POP2)

Result 0

Result 1

Accumulator 1

Right Shift
Sign-extend

 fromMask

0

1

1

0

1

0

Figure 9. Each lane of

each interpolator can

be configured to

perform mask, shift

and sign-extension on

one of the

accumulators. This is

fed into adders which

produces final results,

which may optionally

be fed back into the

accumulators with

each read. The

datapath can be

configured using a

handful of 32-bit

multiplexers. From left

to right, these are

controlled by the

following CTRL flags:

CROSS_RESULT,

CROSS_INPUT,

SIGNED, ADD_RAW.

Each lane performs these three operations, in sequence:

• A right shift by CTRL_LANEx_SHIFT (0 to 31 bits)

• A mask of bits from CTRL_LANEx_MASK_LSB to CTRL_LANEx_MASK_MSB inclusive (each ranging from bit 0 to bit 31)

• A sign extension from the top of the mask, i.e. take bit CTRL_LANEx_MASK_MSB and OR it into all more-significant bits, if

CTRL_LANEx_SIGNED is set

For example, if:

• ACCUM0 = 0xdeadbeef

• CTRL_LANE0_SHIFT = 8

• CTRL_LANE0_MASK_LSB = 4

• CTRL_LANE0_MASK_MSB = 7

• CTRL_SIGNED = 1

Then lane 0 would produce the following results at each stage:

• Right shift by 8 to produce 0x00deadbe

• Mask bits 7 to 4 to produce 0x00deadbe & 0x000000f0 = 0x000000b0

• Sign-extend up from bit 7 to produce 0xffffffb0

In software:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 25 - 46

25 void moving_mask() {
26 interp_config cfg = interp_default_config();
27 interp0->accum[0] = 0x1234abcd;
28
29 puts("Masking:");
30 printf("ACCUM0 = %08x\n", interp0->accum[0]);
31 for (int i = 0; i < 8; ++i) {
32 // LSB, then MSB. These are inclusive, so 0,31 means "the entire 32 bit register"
33 interp_config_set_mask(&cfg, i * 4, i * 4 + 3);
34 interp_set_config(interp0, 0, &cfg);
35 // Reading from ACCUMx_ADD returns the raw lane shift and mask value, without BASEx
 added
36 printf("Nibble %d: %08x\n", i, interp0->add_raw[0]);
37 }
38
39 puts("Masking with sign extension:");
40 interp_config_set_signed(&cfg, true);
41 for (int i = 0; i < 8; ++i) {
42 interp_config_set_mask(&cfg, i * 4, i * 4 + 3);
43 interp_set_config(interp0, 0, &cfg);
44 printf("Nibble %d: %08x\n", i, interp0->add_raw[0]);
45 }
46 }

The above example should print:

RP2040 Datasheet

2.3. Processor subsystem 34

https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L25-L46

ACCUM0 = 1234abcd
Nibble 0: 0000000d
Nibble 1: 000000c0
Nibble 2: 00000b00
Nibble 3: 0000a000
Nibble 4: 00040000
Nibble 5: 00300000
Nibble 6: 02000000
Nibble 7: 10000000
Masking with sign extension:
Nibble 0: fffffffd
Nibble 1: ffffffc0
Nibble 2: fffffb00
Nibble 3: ffffa000
Nibble 4: 00040000
Nibble 5: 00300000
Nibble 6: 02000000
Nibble 7: 10000000

Changing the result and input multiplexers can create feedback between the accumulators. This is useful e.g. for audio

dithering.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 48 - 66

48 void cross_lanes() {
49 interp_config cfg = interp_default_config();
50 interp_config_set_cross_result(&cfg, true);
51 // ACCUM0 gets lane 1 result:
52 interp_set_config(interp0, 0, &cfg);
53 // ACCUM1 gets lane 0 result:
54 interp_set_config(interp0, 1, &cfg);
55
56 interp0->accum[0] = 123;
57 interp0->accum[1] = 456;
58 interp0->base[0] = 1;
59 interp0->base[1] = 0;
60 puts("Lane result crossover:");
61 for (int i = 0; i < 10; ++i) {
62 uint32_t peek0 = interp0->peek[0];
63 uint32_t pop1 = interp0->pop[1];
64 printf("PEEK0, POP1: %d, %d\n", peek0, pop1);
65 }
66 }

This should print:

PEEK0, POP1: 124, 456
PEEK0, POP1: 457, 124
PEEK0, POP1: 125, 457
PEEK0, POP1: 458, 125
PEEK0, POP1: 126, 458
PEEK0, POP1: 459, 126
PEEK0, POP1: 127, 459
PEEK0, POP1: 460, 127
PEEK0, POP1: 128, 460
PEEK0, POP1: 461, 128

RP2040 Datasheet

2.3. Processor subsystem 35

https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L48-L66

2.3.1.6.2. Blend Mode

Blend mode is available on INTERP0 on each core, and is enabled by the CTRL_LANE0_BLEND control flag. It performs linear

interpolation, which we define as follows:

Where is the register BASE0, is the register BASE1, and is a fractional value formed from the least significant 8 bits

of the lane 1 shift and mask value.

Blend mode has the following differences from normal mode:

• PEEK0, POP0 return the 8-bit alpha value (the 8 LSBs of the lane 1 shift and mask value), with zeroes in result bits 31

down to 24.

• PEEK1, POP1 return the linear interpolation between BASE0 and BASE1

• PEEK2, POP2 do not include lane 1 result in the addition (i.e. it is BASE2 + lane 0 shift and mask value)

The result of the linear interpolation is equal to BASE0 when the alpha value is 0, and equal to BASE0 + 255/256 * (BASE1 -

BASE0) when the alpha value is all-ones.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 68 - 87

68 void simple_blend1() {
69 puts("Simple blend 1:");
70
71 interp_config cfg = interp_default_config();
72 interp_config_set_blend(&cfg, true);
73 interp_set_config(interp0, 0, &cfg);
74
75 cfg = interp_default_config();
76 interp_set_config(interp0, 1, &cfg);
77
78 interp0->base[0] = 500;
79 interp0->base[1] = 1000;
80
81 for (int i = 0; i <= 6; i++) {
82 // set fraction to value between 0 and 255
83 interp0->accum[1] = 255 * i / 6;
84 // ≈ 500 + (1000 - 500) * i / 6;
85 printf("%d\n", (int) interp0->peek[1]);
86 }
87 }

This should print (note the 255/256 resulting in 998 not 1000):

500
582
666
748
832
914
998

CTRL_LANE1_SIGNED controls whether BASE0 and BASE1 are sign-extended for this interpolation (this sign extension is required

because the interpolation produces an intermediate product value 40 bits in size). CTRL_LANE0_SIGNED continues to control

the sign extension of the lane 0 intermediate result in PEEK2, POP2 as normal.

RP2040 Datasheet

2.3. Processor subsystem 36

https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L68-L87

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 90 - 121

 90 void print_simple_blend2_results(bool is_signed) {
 91 // lane 1 signed flag controls whether base 0/1 are treated as signed or unsigned
 92 interp_config cfg = interp_default_config();
 93 interp_config_set_signed(&cfg, is_signed);
 94 interp_set_config(interp0, 1, &cfg);
 95
 96 for (int i = 0; i <= 6; i++) {
 97 interp0->accum[1] = 255 * i / 6;
 98 if (is_signed) {
 99 printf("%d\n", (int) interp0->peek[1]);
100 } else {
101 printf("0x%08x\n", (uint) interp0->peek[1]);
102 }
103 }
104 }
105
106 void simple_blend2() {
107 puts("Simple blend 2:");
108
109 interp_config cfg = interp_default_config();
110 interp_config_set_blend(&cfg, true);
111 interp_set_config(interp0, 0, &cfg);
112
113 interp0->base[0] = (uint32_t) -1000;
114 interp0->base[1] = 1000;
115
116 puts("signed:");
117 print_simple_blend2_results(true);
118
119 puts("unsigned:");
120 print_simple_blend2_results(false);
121 }

This should print:

signed:
-1000
-672
-336
-8
328
656
992
unsigned:
0xfffffc18
0xd5fffd60
0xaafffeb0
0x80fffff8
0x56000148
0x2c000290
0x010003e0

Finally, in blend mode when using the BASE_1AND0 register to send a 16-bit value to each of BASE0 and BASE1 with a single

32-bit write, the sign-extension of these 16-bit values to full 32-bit values during the write is controlled by

CTRL_LANE1_SIGNED for both bases, as opposed to non-blend-mode operation, where CTRL_LANE0_SIGNED affects extension

into BASE0 and CTRL_LANE1_SIGNED affects extension into BASE1.

RP2040 Datasheet

2.3. Processor subsystem 37

https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L90-L121

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 124 - 145

124 void simple_blend3() {
125 puts("Simple blend 3:");
126
127 interp_config cfg = interp_default_config();
128 interp_config_set_blend(&cfg, true);
129 interp_set_config(interp0, 0, &cfg);
130
131 cfg = interp_default_config();
132 interp_set_config(interp0, 1, &cfg);
133
134 interp0->accum[1] = 128;
135 interp0->base01 = 0x30005000;
136 printf("0x%08x\n", (int) interp0->peek[1]);
137 interp0->base01 = 0xe000f000;
138 printf("0x%08x\n", (int) interp0->peek[1]);
139
140 interp_config_set_signed(&cfg, true);
141 interp_set_config(interp0, 1, &cfg);
142
143 interp0->base01 = 0xe000f000;
144 printf("0x%08x\n", (int) interp0->peek[1]);
145 }

This should print:

0x00004000
0x0000e800
0xffffe800

2.3.1.6.3. Clamp Mode

Clamp mode is available on INTERP1 on each core, and is enabled by the CTRL_LANE0_CLAMP control flag. In clamp mode, the

PEEK0/POP0 result is the lane value (shifted, masked, sign-extended ACCUM0) clamped between BASE0 and BASE1. In other

words, if the lane value is greater than BASE1, a value of BASE1 is produced; if less than BASE0, a value of BASE0 is produced;

otherwise, the value passes through. No addition is performed. The signedness of these comparisons is controlled by

the CTRL_LANE0_SIGNED flag.

Other than this, the interpolator behaves the same as in normal mode.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 193 - 211

193 void clamp() {
194 puts("Clamp:");
195 interp_config cfg = interp_default_config();
196 interp_config_set_clamp(&cfg, true);
197 interp_config_set_shift(&cfg, 2);
198 // set mask according to new position of sign bit..
199 interp_config_set_mask(&cfg, 0, 29);
200 // ...so that the shifted value is correctly sign extended
201 interp_config_set_signed(&cfg, true);
202 interp_set_config(interp1, 0, &cfg);
203
204 interp1->base[0] = 0;
205 interp1->base[1] = 255;
206
207 for (int i = -1024; i <= 1024; i += 256) {

RP2040 Datasheet

2.3. Processor subsystem 38

https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L124-L145
https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L193-L211

208 interp1->accum[0] = i;
209 printf("%d\t%d\n", i, (int) interp1->peek[0]);
210 }
211 }

This should print:

-1024 0
-768 0
-512 0
-256 0
0 0
256 64
512 128
768 192
1024 255

2.3.1.6.4. Sample Use Case: Linear Interpolation

Linear interpolation is a more complete example of using blend mode in conjunction with other interpolator

functionality:

In this example, ACCUM0 is used to track a fixed point (integer/fraction) position within a list of values to be interpolated.

Lane 0 is used to produce an address into the value array for the integer part of the position. The fractional part of the

position is shifted to produce a value from 0-255 for the blend. The blend is performed between two consecutive values

in the array.

Finally the fractional position is updated via a single write to ACCUM0_ADD_RAW.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 147 - 191

147 void linear_interpolation() {
148 puts("Linear interpolation:");
149 const int uv_fractional_bits = 12;
150
151 // for lane 0
152 // shift and mask XXXX XXXX XXXX XXXX XXXX FFFF FFFF FFFF (accum 0)
153 // to 0000 0000 000X XXXX XXXX XXXX XXXX XXX0
154 // i.e. non fractional part times 2 (for uint16_t)
155 interp_config cfg = interp_default_config();
156 interp_config_set_shift(&cfg, uv_fractional_bits - 1);
157 interp_config_set_mask(&cfg, 1, 32 - uv_fractional_bits);
158 interp_config_set_blend(&cfg, true);
159 interp_set_config(interp0, 0, &cfg);
160
161 // for lane 1
162 // shift XXXX XXXX XXXX XXXX XXXX FFFF FFFF FFFF (accum 0 via cross input)
163 // to 0000 XXXX XXXX XXXX XXXX FFFF FFFF FFFF
164
165 cfg = interp_default_config();
166 interp_config_set_shift(&cfg, uv_fractional_bits - 8);
167 interp_config_set_signed(&cfg, true);
168 interp_config_set_cross_input(&cfg, true); // signed blending
169 interp_set_config(interp0, 1, &cfg);
170
171 int16_t samples[] = {0, 10, -20, -1000, 500};
172
173 // step is 1/4 in our fractional representation

RP2040 Datasheet

2.3. Processor subsystem 39

https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L147-L191

174 uint step = (1 << uv_fractional_bits) / 4;
175
176 interp0->accum[0] = 0; // initial sample_offset;
177 interp0->base[2] = (uintptr_t) samples;
178 for (int i = 0; i < 16; i++) {
179 // result2 = samples + (lane0 raw result)
180 // i.e. ptr to the first of two samples to blend between
181 int16_t *sample_pair = (int16_t *) interp0->peek[2];
182 interp0->base[0] = sample_pair[0];
183 interp0->base[1] = sample_pair[1];
184 uint32_t peek1 = interp0->peek[1];
185 uint32_t add_raw1 = interp0->add_raw[1];
186 printf("%d\t(%d%% between %d and %d)\n", (int) peek1,
187 100 * (add_raw1 & 0xff) / 0xff,
188 sample_pair[0], sample_pair[1]);
189 interp0->add_raw[0] = step;
190 }
191 }

This should print:

0 (0% between 0 and 10)
2 (25% between 0 and 10)
5 (50% between 0 and 10)
7 (75% between 0 and 10)
10 (0% between 10 and -20)
2 (25% between 10 and -20)
-5 (50% between 10 and -20)
-13 (75% between 10 and -20)
-20 (0% between -20 and -1000)
-265 (25% between -20 and -1000)
-510 (50% between -20 and -1000)
-755 (75% between -20 and -1000)
-1000 (0% between -1000 and 500)
-625 (25% between -1000 and 500)
-250 (50% between -1000 and 500)
125 (75% between -1000 and 500)

This method is used for fast approximate audio upscaling in the SDK

2.3.1.6.5. Sample Use Case: Simple Affine Texture Mapping

Simple affine texture mapping can be implemented by using fixed point arithmetic for texture coordinates, and stepping

a fixed amount in each coordinate for every pixel in a scanline. The integer part of the texture coordinates are used to

form an address within the texture to lookup a pixel colour.

By using two lanes, all three base values and the CTRL_LANEx_ADD_RAW flag, it is possible to reduce what would be quite an

expensive CPU operation to a single cycle iteration using the interpolator.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c Lines 214 - 272

214 void texture_mapping_setup(uint8_t *texture, uint texture_width_bits, uint
 texture_height_bits,
215 uint uv_fractional_bits) {
216 interp_config cfg = interp_default_config();
217 // set add_raw flag to use raw (un-shifted and un-masked) lane accumulator value when
 adding
218 // it to the the lane base to make the lane result

RP2040 Datasheet

2.3. Processor subsystem 40

https://github.com/raspberrypi/pico-examples/blob/master/interp/hello_interp/hello_interp.c#L214-L272

219 interp_config_set_add_raw(&cfg, true);
220 interp_config_set_shift(&cfg, uv_fractional_bits);
221 interp_config_set_mask(&cfg, 0, texture_width_bits - 1);
222 interp_set_config(interp0, 0, &cfg);
223
224 interp_config_set_shift(&cfg, uv_fractional_bits - texture_width_bits);
225 interp_config_set_mask(&cfg, texture_width_bits, texture_width_bits +
 texture_height_bits - 1);
226 interp_set_config(interp0, 1, &cfg);
227
228 interp0->base[2] = (uintptr_t) texture;
229 }
230
231 void texture_mapped_span(uint8_t *output, uint32_t u, uint32_t v, uint32_t du, uint32_t dv,
 uint count) {
232 // u, v are texture coordinates in fixed point with uv_fractional_bits fractional bits
233 // du, dv are texture coordinate steps across the span in same fixed point.
234 interp0->accum[0] = u;
235 interp0->base[0] = du;
236 interp0->accum[1] = v;
237 interp0->base[1] = dv;
238 for (uint i = 0; i < count; i++) {
239 // equivalent to
240 // uint32_t sm_result0 = (accum0 >> uv_fractional_bits) & (1 << (texture_width_bits -
 1);
241 // uint32_t sm_result1 = (accum1 >> uv_fractional_bits) & (1 << (texture_height_bits -
 1);
242 // uint8_t *address = texture + sm_result0 + (sm_result1 << texture_width_bits);
243 // output[i] = *address;
244 // accum0 = du + accum0;
245 // accum1 = dv + accum1;
246
247 // result2 is the texture address for the current pixel;
248 // popping the result advances to the next iteration
249 output[i] = *(uint8_t *) interp0->pop[2];
250 }
251 }
252
253 void texture_mapping() {
254 puts("Affine Texture mapping (with texture wrap):");
255
256 uint8_t texture[] = {
257 0x00, 0x01, 0x02, 0x03,
258 0x10, 0x11, 0x12, 0x13,
259 0x20, 0x21, 0x22, 0x23,
260 0x30, 0x31, 0x32, 0x33,
261 };
262 // 4x4 texture
263 texture_mapping_setup(texture, 2, 2, 16);
264 uint8_t output[12];
265 uint32_t du = 65536 / 2; // step of 1/2
266 uint32_t dv = 65536 / 3; // step of 1/3
267 texture_mapped_span(output, 0, 0, du, dv, 12);
268
269 for (uint i = 0; i < 12; i++) {
270 printf("0x%02x\n", output[i]);
271 }
272 }

This should print:

RP2040 Datasheet

2.3. Processor subsystem 41

0x00
0x00
0x01
0x01
0x12
0x12
0x13
0x23
0x20
0x20
0x31
0x31

2.3.1.7. List of Registers

The SIO registers start at a base address of 0xd0000000 (defined as SIO_BASE in SDK).

Table 16. List of SIO

registers
Offset Name Info

0x000 CPUID Processor core identifier

0x004 GPIO_IN Input value for GPIO pins

0x008 GPIO_HI_IN Input value for QSPI pins

0x010 GPIO_OUT GPIO output value

0x014 GPIO_OUT_SET GPIO output value set

0x018 GPIO_OUT_CLR GPIO output value clear

0x01c GPIO_OUT_XOR GPIO output value XOR

0x020 GPIO_OE GPIO output enable

0x024 GPIO_OE_SET GPIO output enable set

0x028 GPIO_OE_CLR GPIO output enable clear

0x02c GPIO_OE_XOR GPIO output enable XOR

0x030 GPIO_HI_OUT QSPI output value

0x034 GPIO_HI_OUT_SET QSPI output value set

0x038 GPIO_HI_OUT_CLR QSPI output value clear

0x03c GPIO_HI_OUT_XOR QSPI output value XOR

0x040 GPIO_HI_OE QSPI output enable

0x044 GPIO_HI_OE_SET QSPI output enable set

0x048 GPIO_HI_OE_CLR QSPI output enable clear

0x04c GPIO_HI_OE_XOR QSPI output enable XOR

0x050 FIFO_ST Status register for inter-core FIFOs (mailboxes).

0x054 FIFO_WR Write access to this core’s TX FIFO

0x058 FIFO_RD Read access to this core’s RX FIFO

0x05c SPINLOCK_ST Spinlock state

0x060 DIV_UDIVIDEND Divider unsigned dividend

RP2040 Datasheet

2.3. Processor subsystem 42

Offset Name Info

0x064 DIV_UDIVISOR Divider unsigned divisor

0x068 DIV_SDIVIDEND Divider signed dividend

0x06c DIV_SDIVISOR Divider signed divisor

0x070 DIV_QUOTIENT Divider result quotient

0x074 DIV_REMAINDER Divider result remainder

0x078 DIV_CSR Control and status register for divider.

0x080 INTERP0_ACCUM0 Read/write access to accumulator 0

0x084 INTERP0_ACCUM1 Read/write access to accumulator 1

0x088 INTERP0_BASE0 Read/write access to BASE0 register.

0x08c INTERP0_BASE1 Read/write access to BASE1 register.

0x090 INTERP0_BASE2 Read/write access to BASE2 register.

0x094 INTERP0_POP_LANE0 Read LANE0 result, and simultaneously write lane results to both

accumulators (POP).

0x098 INTERP0_POP_LANE1 Read LANE1 result, and simultaneously write lane results to both

accumulators (POP).

0x09c INTERP0_POP_FULL Read FULL result, and simultaneously write lane results to both

accumulators (POP).

0x0a0 INTERP0_PEEK_LANE0 Read LANE0 result, without altering any internal state (PEEK).

0x0a4 INTERP0_PEEK_LANE1 Read LANE1 result, without altering any internal state (PEEK).

0x0a8 INTERP0_PEEK_FULL Read FULL result, without altering any internal state (PEEK).

0x0ac INTERP0_CTRL_LANE0 Control register for lane 0

0x0b0 INTERP0_CTRL_LANE1 Control register for lane 1

0x0b4 INTERP0_ACCUM0_ADD Values written here are atomically added to ACCUM0

0x0b8 INTERP0_ACCUM1_ADD Values written here are atomically added to ACCUM1

0x0bc INTERP0_BASE_1AND0 On write, the lower 16 bits go to BASE0, upper bits to BASE1

simultaneously.

0x0c0 INTERP1_ACCUM0 Read/write access to accumulator 0

0x0c4 INTERP1_ACCUM1 Read/write access to accumulator 1

0x0c8 INTERP1_BASE0 Read/write access to BASE0 register.

0x0cc INTERP1_BASE1 Read/write access to BASE1 register.

0x0d0 INTERP1_BASE2 Read/write access to BASE2 register.

0x0d4 INTERP1_POP_LANE0 Read LANE0 result, and simultaneously write lane results to both

accumulators (POP).

0x0d8 INTERP1_POP_LANE1 Read LANE1 result, and simultaneously write lane results to both

accumulators (POP).

0x0dc INTERP1_POP_FULL Read FULL result, and simultaneously write lane results to both

accumulators (POP).

0x0e0 INTERP1_PEEK_LANE0 Read LANE0 result, without altering any internal state (PEEK).

RP2040 Datasheet

2.3. Processor subsystem 43

Offset Name Info

0x0e4 INTERP1_PEEK_LANE1 Read LANE1 result, without altering any internal state (PEEK).

0x0e8 INTERP1_PEEK_FULL Read FULL result, without altering any internal state (PEEK).

0x0ec INTERP1_CTRL_LANE0 Control register for lane 0

0x0f0 INTERP1_CTRL_LANE1 Control register for lane 1

0x0f4 INTERP1_ACCUM0_ADD Values written here are atomically added to ACCUM0

0x0f8 INTERP1_ACCUM1_ADD Values written here are atomically added to ACCUM1

0x0fc INTERP1_BASE_1AND0 On write, the lower 16 bits go to BASE0, upper bits to BASE1

simultaneously.

0x100 SPINLOCK0 Spinlock register 0

0x104 SPINLOCK1 Spinlock register 1

0x108 SPINLOCK2 Spinlock register 2

0x10c SPINLOCK3 Spinlock register 3

0x110 SPINLOCK4 Spinlock register 4

0x114 SPINLOCK5 Spinlock register 5

0x118 SPINLOCK6 Spinlock register 6

0x11c SPINLOCK7 Spinlock register 7

0x120 SPINLOCK8 Spinlock register 8

0x124 SPINLOCK9 Spinlock register 9

0x128 SPINLOCK10 Spinlock register 10

0x12c SPINLOCK11 Spinlock register 11

0x130 SPINLOCK12 Spinlock register 12

0x134 SPINLOCK13 Spinlock register 13

0x138 SPINLOCK14 Spinlock register 14

0x13c SPINLOCK15 Spinlock register 15

0x140 SPINLOCK16 Spinlock register 16

0x144 SPINLOCK17 Spinlock register 17

0x148 SPINLOCK18 Spinlock register 18

0x14c SPINLOCK19 Spinlock register 19

0x150 SPINLOCK20 Spinlock register 20

0x154 SPINLOCK21 Spinlock register 21

0x158 SPINLOCK22 Spinlock register 22

0x15c SPINLOCK23 Spinlock register 23

0x160 SPINLOCK24 Spinlock register 24

0x164 SPINLOCK25 Spinlock register 25

0x168 SPINLOCK26 Spinlock register 26

0x16c SPINLOCK27 Spinlock register 27

RP2040 Datasheet

2.3. Processor subsystem 44

Offset Name Info

0x170 SPINLOCK28 Spinlock register 28

0x174 SPINLOCK29 Spinlock register 29

0x178 SPINLOCK30 Spinlock register 30

0x17c SPINLOCK31 Spinlock register 31

SIO: CPUID Register

Offset: 0x000

Description

Processor core identifier

Table 17. CPUID

Register
Bits Description Type Reset

31:0 Value is 0 when read from processor core 0, and 1 when read from processor

core 1.

RO -

SIO: GPIO_IN Register

Offset: 0x004

Description

Input value for GPIO pins

Table 18. GPIO_IN

Register
Bits Description Type Reset

31:30 Reserved. - -

29:0 Input value for GPIO0…29 RO 0x00000000

SIO: GPIO_HI_IN Register

Offset: 0x008

Description

Input value for QSPI pins

Table 19. GPIO_HI_IN

Register
Bits Description Type Reset

31:6 Reserved. - -

5:0 Input value on QSPI IO in order 0..5: SCLK, SSn, SD0, SD1, SD2, SD3 RO 0x00

SIO: GPIO_OUT Register

Offset: 0x010

Description

GPIO output value

Table 20. GPIO_OUT

Register
Bits Description Type Reset

31:30 Reserved. - -

RP2040 Datasheet

2.3. Processor subsystem 45

Bits Description Type Reset

29:0 Set output level (1/0 → high/low) for GPIO0…29.

Reading back gives the last value written, NOT the input value from the pins.

If core 0 and core 1 both write to GPIO_OUT simultaneously (or to a

SET/CLR/XOR alias),

the result is as though the write from core 0 took place first,

and the write from core 1 was then applied to that intermediate result.

RW 0x00000000

SIO: GPIO_OUT_SET Register

Offset: 0x014

Description

GPIO output value set

Table 21.

GPIO_OUT_SET

Register

Bits Description Type Reset

31:30 Reserved. - -

29:0 Perform an atomic bit-set on GPIO_OUT, i.e. GPIO_OUT |= wdata WO 0x00000000

SIO: GPIO_OUT_CLR Register

Offset: 0x018

Description

GPIO output value clear

Table 22.

GPIO_OUT_CLR

Register

Bits Description Type Reset

31:30 Reserved. - -

29:0 Perform an atomic bit-clear on GPIO_OUT, i.e. GPIO_OUT &= ~wdata WO 0x00000000

SIO: GPIO_OUT_XOR Register

Offset: 0x01c

Description

GPIO output value XOR

Table 23.

GPIO_OUT_XOR

Register

Bits Description Type Reset

31:30 Reserved. - -

29:0 Perform an atomic bitwise XOR on GPIO_OUT, i.e. GPIO_OUT ^= wdata WO 0x00000000

SIO: GPIO_OE Register

Offset: 0x020

Description

GPIO output enable

Table 24. GPIO_OE

Register
Bits Description Type Reset

31:30 Reserved. - -

RP2040 Datasheet

2.3. Processor subsystem 46

Bits Description Type Reset

29:0 Set output enable (1/0 → output/input) for GPIO0…29.

Reading back gives the last value written.

If core 0 and core 1 both write to GPIO_OE simultaneously (or to a

SET/CLR/XOR alias),

the result is as though the write from core 0 took place first,

and the write from core 1 was then applied to that intermediate result.

RW 0x00000000

SIO: GPIO_OE_SET Register

Offset: 0x024

Description

GPIO output enable set

Table 25.

GPIO_OE_SET Register
Bits Description Type Reset

31:30 Reserved. - -

29:0 Perform an atomic bit-set on GPIO_OE, i.e. GPIO_OE |= wdata WO 0x00000000

SIO: GPIO_OE_CLR Register

Offset: 0x028

Description

GPIO output enable clear

Table 26.

GPIO_OE_CLR Register
Bits Description Type Reset

31:30 Reserved. - -

29:0 Perform an atomic bit-clear on GPIO_OE, i.e. GPIO_OE &= ~wdata WO 0x00000000

SIO: GPIO_OE_XOR Register

Offset: 0x02c

Description

GPIO output enable XOR

Table 27.

GPIO_OE_XOR

Register

Bits Description Type Reset

31:30 Reserved. - -

29:0 Perform an atomic bitwise XOR on GPIO_OE, i.e. GPIO_OE ^= wdata WO 0x00000000

SIO: GPIO_HI_OUT Register

Offset: 0x030

Description

QSPI output value

Table 28.

GPIO_HI_OUT Register
Bits Description Type Reset

31:6 Reserved. - -

RP2040 Datasheet

2.3. Processor subsystem 47

Bits Description Type Reset

5:0 Set output level (1/0 → high/low) for QSPI IO0…5.

Reading back gives the last value written, NOT the input value from the pins.

If core 0 and core 1 both write to GPIO_HI_OUT simultaneously (or to a

SET/CLR/XOR alias),

the result is as though the write from core 0 took place first,

and the write from core 1 was then applied to that intermediate result.

RW 0x00

SIO: GPIO_HI_OUT_SET Register

Offset: 0x034

Description

QSPI output value set

Table 29.

GPIO_HI_OUT_SET

Register

Bits Description Type Reset

31:6 Reserved. - -

5:0 Perform an atomic bit-set on GPIO_HI_OUT, i.e. GPIO_HI_OUT |= wdata WO 0x00

SIO: GPIO_HI_OUT_CLR Register

Offset: 0x038

Description

QSPI output value clear

Table 30.

GPIO_HI_OUT_CLR

Register

Bits Description Type Reset

31:6 Reserved. - -

5:0 Perform an atomic bit-clear on GPIO_HI_OUT, i.e. GPIO_HI_OUT &= ~wdata WO 0x00

SIO: GPIO_HI_OUT_XOR Register

Offset: 0x03c

Description

QSPI output value XOR

Table 31.

GPIO_HI_OUT_XOR

Register

Bits Description Type Reset

31:6 Reserved. - -

5:0 Perform an atomic bitwise XOR on GPIO_HI_OUT, i.e. GPIO_HI_OUT ^= wdata WO 0x00

SIO: GPIO_HI_OE Register

Offset: 0x040

Description

QSPI output enable

Table 32. GPIO_HI_OE

Register
Bits Description Type Reset

31:6 Reserved. - -

RP2040 Datasheet

2.3. Processor subsystem 48

Bits Description Type Reset

5:0 Set output enable (1/0 → output/input) for QSPI IO0…5.

Reading back gives the last value written.

If core 0 and core 1 both write to GPIO_HI_OE simultaneously (or to a

SET/CLR/XOR alias),

the result is as though the write from core 0 took place first,

and the write from core 1 was then applied to that intermediate result.

RW 0x00

SIO: GPIO_HI_OE_SET Register

Offset: 0x044

Description

QSPI output enable set

Table 33.

GPIO_HI_OE_SET

Register

Bits Description Type Reset

31:6 Reserved. - -

5:0 Perform an atomic bit-set on GPIO_HI_OE, i.e. GPIO_HI_OE |= wdata WO 0x00

SIO: GPIO_HI_OE_CLR Register

Offset: 0x048

Description

QSPI output enable clear

Table 34.

GPIO_HI_OE_CLR

Register

Bits Description Type Reset

31:6 Reserved. - -

5:0 Perform an atomic bit-clear on GPIO_HI_OE, i.e. GPIO_HI_OE &= ~wdata WO 0x00

SIO: GPIO_HI_OE_XOR Register

Offset: 0x04c

Description

QSPI output enable XOR

Table 35.

GPIO_HI_OE_XOR

Register

Bits Description Type Reset

31:6 Reserved. - -

5:0 Perform an atomic bitwise XOR on GPIO_HI_OE, i.e. GPIO_HI_OE ^= wdata WO 0x00

SIO: FIFO_ST Register

Offset: 0x050

Description

Status register for inter-core FIFOs (mailboxes).

There is one FIFO in the core 0 → core 1 direction, and one core 1 → core 0. Both are 32 bits wide and 8 words

deep.

Core 0 can see the read side of the 1→0 FIFO (RX), and the write side of 0→1 FIFO (TX).

Core 1 can see the read side of the 0→1 FIFO (RX), and the write side of 1→0 FIFO (TX).

The SIO IRQ for each core is the logical OR of the VLD, WOF and ROE fields of its FIFO_ST register.

RP2040 Datasheet

2.3. Processor subsystem 49

Table 36. FIFO_ST

Register
Bits Name Description Type Reset

31:4 Reserved. - - -

3 ROE Sticky flag indicating the RX FIFO was read when empty.

This read was ignored by the FIFO.

WC 0x0

2 WOF Sticky flag indicating the TX FIFO was written when full.

This write was ignored by the FIFO.

WC 0x0

1 RDY Value is 1 if this core’s TX FIFO is not full (i.e. if FIFO_WR

is ready for more data)

RO 0x1

0 VLD Value is 1 if this core’s RX FIFO is not empty (i.e. if

FIFO_RD is valid)

RO 0x0

SIO: FIFO_WR Register

Offset: 0x054

Table 37. FIFO_WR

Register
Bits Description Type Reset

31:0 Write access to this core’s TX FIFO WF 0x00000000

SIO: FIFO_RD Register

Offset: 0x058

Table 38. FIFO_RD

Register
Bits Description Type Reset

31:0 Read access to this core’s RX FIFO RF -

SIO: SPINLOCK_ST Register

Offset: 0x05c

Table 39.

SPINLOCK_ST

Register

Bits Description Type Reset

31:0 Spinlock state

A bitmap containing the state of all 32 spinlocks (1=locked).

Mainly intended for debugging.

RO 0x00000000

SIO: DIV_UDIVIDEND Register

Offset: 0x060

Table 40.

DIV_UDIVIDEND

Register

Bits Description Type Reset

31:0 Divider unsigned dividend

Write to the DIVIDEND operand of the divider, i.e. the p in p / q.

Any operand write starts a new calculation. The results appear in QUOTIENT,

REMAINDER.

UDIVIDEND/SDIVIDEND are aliases of the same internal register. The U alias

starts an

unsigned calculation, and the S alias starts a signed calculation.

RW 0x00000000

SIO: DIV_UDIVISOR Register

Offset: 0x064

RP2040 Datasheet

2.3. Processor subsystem 50

Table 41.

DIV_UDIVISOR

Register

Bits Description Type Reset

31:0 Divider unsigned divisor

Write to the DIVISOR operand of the divider, i.e. the q in p / q.

Any operand write starts a new calculation. The results appear in QUOTIENT,

REMAINDER.

UDIVISOR/SDIVISOR are aliases of the same internal register. The U alias

starts an

unsigned calculation, and the S alias starts a signed calculation.

RW 0x00000000

SIO: DIV_SDIVIDEND Register

Offset: 0x068

Table 42.

DIV_SDIVIDEND

Register

Bits Description Type Reset

31:0 Divider signed dividend

The same as UDIVIDEND, but starts a signed calculation, rather than unsigned.

RW 0x00000000

SIO: DIV_SDIVISOR Register

Offset: 0x06c

Table 43.

DIV_SDIVISOR

Register

Bits Description Type Reset

31:0 Divider signed divisor

The same as UDIVISOR, but starts a signed calculation, rather than unsigned.

RW 0x00000000

SIO: DIV_QUOTIENT Register

Offset: 0x070

Table 44.

DIV_QUOTIENT

Register

Bits Description Type Reset

31:0 Divider result quotient

The result of DIVIDEND / DIVISOR (division). Contents undefined while

CSR_READY is low.

For signed calculations, QUOTIENT is negative when the signs of DIVIDEND

and DIVISOR differ.

This register can be written to directly, for context save/restore purposes. This

halts any

in-progress calculation and sets the CSR_READY and CSR_DIRTY flags.

Reading from QUOTIENT clears the CSR_DIRTY flag, so should read results in

the order

REMAINDER, QUOTIENT if CSR_DIRTY is used.

RW 0x00000000

SIO: DIV_REMAINDER Register

Offset: 0x074

RP2040 Datasheet

2.3. Processor subsystem 51

Table 45.

DIV_REMAINDER

Register

Bits Description Type Reset

31:0 Divider result remainder

The result of DIVIDEND % DIVISOR (modulo). Contents undefined while

CSR_READY is low.

For signed calculations, REMAINDER is negative only when DIVIDEND is

negative.

This register can be written to directly, for context save/restore purposes. This

halts any

in-progress calculation and sets the CSR_READY and CSR_DIRTY flags.

RW 0x00000000

SIO: DIV_CSR Register

Offset: 0x078

Description

Control and status register for divider.

Table 46. DIV_CSR

Register
Bits Name Description Type Reset

31:2 Reserved. - - -

1 DIRTY Changes to 1 when any register is written, and back to 0

when QUOTIENT is read.

Software can use this flag to make save/restore more

efficient (skip if not DIRTY).

If the flag is used in this way, it’s recommended to either

read QUOTIENT only,

or REMAINDER and then QUOTIENT, to prevent data loss

on context switch.

RO 0x0

0 READY Reads as 0 when a calculation is in progress, 1 otherwise.

Writing an operand (xDIVIDEND, xDIVISOR) will

immediately start a new calculation, no

matter if one is already in progress.

Writing to a result register will immediately terminate any

in-progress calculation

and set the READY and DIRTY flags.

RO 0x1

SIO: INTERP0_ACCUM0 Register

Offset: 0x080

Table 47.

INTERP0_ACCUM0

Register

Bits Description Type Reset

31:0 Read/write access to accumulator 0 RW 0x00000000

SIO: INTERP0_ACCUM1 Register

Offset: 0x084

Table 48.

INTERP0_ACCUM1

Register

Bits Description Type Reset

31:0 Read/write access to accumulator 1 RW 0x00000000

SIO: INTERP0_BASE0 Register

Offset: 0x088

RP2040 Datasheet

2.3. Processor subsystem 52

Table 49.

INTERP0_BASE0

Register

Bits Description Type Reset

31:0 Read/write access to BASE0 register. RW 0x00000000

SIO: INTERP0_BASE1 Register

Offset: 0x08c

Table 50.

INTERP0_BASE1

Register

Bits Description Type Reset

31:0 Read/write access to BASE1 register. RW 0x00000000

SIO: INTERP0_BASE2 Register

Offset: 0x090

Table 51.

INTERP0_BASE2

Register

Bits Description Type Reset

31:0 Read/write access to BASE2 register. RW 0x00000000

SIO: INTERP0_POP_LANE0 Register

Offset: 0x094

Table 52.

INTERP0_POP_LANE0

Register

Bits Description Type Reset

31:0 Read LANE0 result, and simultaneously write lane results to both

accumulators (POP).

RO 0x00000000

SIO: INTERP0_POP_LANE1 Register

Offset: 0x098

Table 53.

INTERP0_POP_LANE1

Register

Bits Description Type Reset

31:0 Read LANE1 result, and simultaneously write lane results to both

accumulators (POP).

RO 0x00000000

SIO: INTERP0_POP_FULL Register

Offset: 0x09c

Table 54.

INTERP0_POP_FULL

Register

Bits Description Type Reset

31:0 Read FULL result, and simultaneously write lane results to both accumulators

(POP).

RO 0x00000000

SIO: INTERP0_PEEK_LANE0 Register

Offset: 0x0a0

Table 55.

INTERP0_PEEK_LANE

0 Register

Bits Description Type Reset

31:0 Read LANE0 result, without altering any internal state (PEEK). RO 0x00000000

SIO: INTERP0_PEEK_LANE1 Register

Offset: 0x0a4

RP2040 Datasheet

2.3. Processor subsystem 53

Table 56.

INTERP0_PEEK_LANE

1 Register

Bits Description Type Reset

31:0 Read LANE1 result, without altering any internal state (PEEK). RO 0x00000000

SIO: INTERP0_PEEK_FULL Register

Offset: 0x0a8

Table 57.

INTERP0_PEEK_FULL

Register

Bits Description Type Reset

31:0 Read FULL result, without altering any internal state (PEEK). RO 0x00000000

SIO: INTERP0_CTRL_LANE0 Register

Offset: 0x0ac

Description

Control register for lane 0

Table 58.

INTERP0_CTRL_LANE

0 Register

Bits Name Description Type Reset

31:26 Reserved. - - -

25 OVERF Set if either OVERF0 or OVERF1 is set. RO 0x0

24 OVERF1 Indicates if any masked-off MSBs in ACCUM1 are set. RO 0x0

23 OVERF0 Indicates if any masked-off MSBs in ACCUM0 are set. RO 0x0

22 Reserved. - - -

21 BLEND Only present on INTERP0 on each core. If BLEND mode is

enabled:

- LANE1 result is a linear interpolation between BASE0 and

BASE1, controlled

by the 8 LSBs of lane 1 shift and mask value (a fractional

number between

0 and 255/256ths)

- LANE0 result does not have BASE0 added (yields only

the 8 LSBs of lane 1 shift+mask value)

- FULL result does not have lane 1 shift+mask value added

(BASE2 + lane 0 shift+mask)

LANE1 SIGNED flag controls whether the interpolation is

signed or unsigned.

RW 0x0

20:19 FORCE_MSB ORed into bits 29:28 of the lane result presented to the

processor on the bus.

No effect on the internal 32-bit datapath. Handy for using

a lane to generate sequence

of pointers into flash or SRAM.

RW 0x0

18 ADD_RAW If 1, mask + shift is bypassed for LANE0 result. This does

not affect FULL result.

RW 0x0

17 CROSS_RESULT If 1, feed the opposite lane’s result into this lane’s

accumulator on POP.

RW 0x0

16 CROSS_INPUT If 1, feed the opposite lane’s accumulator into this lane’s

shift + mask hardware.

Takes effect even if ADD_RAW is set (the CROSS_INPUT

mux is before the shift+mask bypass)

RW 0x0

RP2040 Datasheet

2.3. Processor subsystem 54

Bits Name Description Type Reset

15 SIGNED If SIGNED is set, the shifted and masked accumulator

value is sign-extended to 32 bits

before adding to BASE0, and LANE0 PEEK/POP appear

extended to 32 bits when read by processor.

RW 0x0

14:10 MASK_MSB The most-significant bit allowed to pass by the mask

(inclusive)

Setting MSB < LSB may cause chip to turn inside-out

RW 0x00

9:5 MASK_LSB The least-significant bit allowed to pass by the mask

(inclusive)

RW 0x00

4:0 SHIFT Logical right-shift applied to accumulator before masking RW 0x00

SIO: INTERP0_CTRL_LANE1 Register

Offset: 0x0b0

Description

Control register for lane 1

Table 59.

INTERP0_CTRL_LANE

1 Register

Bits Name Description Type Reset

31:21 Reserved. - - -

20:19 FORCE_MSB ORed into bits 29:28 of the lane result presented to the

processor on the bus.

No effect on the internal 32-bit datapath. Handy for using

a lane to generate sequence

of pointers into flash or SRAM.

RW 0x0

18 ADD_RAW If 1, mask + shift is bypassed for LANE1 result. This does

not affect FULL result.

RW 0x0

17 CROSS_RESULT If 1, feed the opposite lane’s result into this lane’s

accumulator on POP.

RW 0x0

16 CROSS_INPUT If 1, feed the opposite lane’s accumulator into this lane’s

shift + mask hardware.

Takes effect even if ADD_RAW is set (the CROSS_INPUT

mux is before the shift+mask bypass)

RW 0x0

15 SIGNED If SIGNED is set, the shifted and masked accumulator

value is sign-extended to 32 bits

before adding to BASE1, and LANE1 PEEK/POP appear

extended to 32 bits when read by processor.

RW 0x0

14:10 MASK_MSB The most-significant bit allowed to pass by the mask

(inclusive)

Setting MSB < LSB may cause chip to turn inside-out

RW 0x00

9:5 MASK_LSB The least-significant bit allowed to pass by the mask

(inclusive)

RW 0x00

4:0 SHIFT Logical right-shift applied to accumulator before masking RW 0x00

SIO: INTERP0_ACCUM0_ADD Register

Offset: 0x0b4

RP2040 Datasheet

2.3. Processor subsystem 55

Table 60.

INTERP0_ACCUM0_AD

D Register

Bits Description Type Reset

31:24 Reserved. - -

23:0 Values written here are atomically added to ACCUM0

Reading yields lane 0’s raw shift and mask value (BASE0 not added).

RW 0x000000

SIO: INTERP0_ACCUM1_ADD Register

Offset: 0x0b8

Table 61.

INTERP0_ACCUM1_AD

D Register

Bits Description Type Reset

31:24 Reserved. - -

23:0 Values written here are atomically added to ACCUM1

Reading yields lane 1’s raw shift and mask value (BASE1 not added).

RW 0x000000

SIO: INTERP0_BASE_1AND0 Register

Offset: 0x0bc

Table 62.

INTERP0_BASE_1AND

0 Register

Bits Description Type Reset

31:0 On write, the lower 16 bits go to BASE0, upper bits to BASE1 simultaneously.

Each half is sign-extended to 32 bits if that lane’s SIGNED flag is set.

WO 0x00000000

SIO: INTERP1_ACCUM0 Register

Offset: 0x0c0

Table 63.

INTERP1_ACCUM0

Register

Bits Description Type Reset

31:0 Read/write access to accumulator 0 RW 0x00000000

SIO: INTERP1_ACCUM1 Register

Offset: 0x0c4

Table 64.

INTERP1_ACCUM1

Register

Bits Description Type Reset

31:0 Read/write access to accumulator 1 RW 0x00000000

SIO: INTERP1_BASE0 Register

Offset: 0x0c8

Table 65.

INTERP1_BASE0

Register

Bits Description Type Reset

31:0 Read/write access to BASE0 register. RW 0x00000000

SIO: INTERP1_BASE1 Register

Offset: 0x0cc

RP2040 Datasheet

2.3. Processor subsystem 56

Table 66.

INTERP1_BASE1

Register

Bits Description Type Reset

31:0 Read/write access to BASE1 register. RW 0x00000000

SIO: INTERP1_BASE2 Register

Offset: 0x0d0

Table 67.

INTERP1_BASE2

Register

Bits Description Type Reset

31:0 Read/write access to BASE2 register. RW 0x00000000

SIO: INTERP1_POP_LANE0 Register

Offset: 0x0d4

Table 68.

INTERP1_POP_LANE0

Register

Bits Description Type Reset

31:0 Read LANE0 result, and simultaneously write lane results to both

accumulators (POP).

RO 0x00000000

SIO: INTERP1_POP_LANE1 Register

Offset: 0x0d8

Table 69.

INTERP1_POP_LANE1

Register

Bits Description Type Reset

31:0 Read LANE1 result, and simultaneously write lane results to both

accumulators (POP).

RO 0x00000000

SIO: INTERP1_POP_FULL Register

Offset: 0x0dc

Table 70.

INTERP1_POP_FULL

Register

Bits Description Type Reset

31:0 Read FULL result, and simultaneously write lane results to both accumulators

(POP).

RO 0x00000000

SIO: INTERP1_PEEK_LANE0 Register

Offset: 0x0e0

Table 71.

INTERP1_PEEK_LANE

0 Register

Bits Description Type Reset

31:0 Read LANE0 result, without altering any internal state (PEEK). RO 0x00000000

SIO: INTERP1_PEEK_LANE1 Register

Offset: 0x0e4

Table 72.

INTERP1_PEEK_LANE

1 Register

Bits Description Type Reset

31:0 Read LANE1 result, without altering any internal state (PEEK). RO 0x00000000

SIO: INTERP1_PEEK_FULL Register

Offset: 0x0e8

RP2040 Datasheet

2.3. Processor subsystem 57

Table 73.

INTERP1_PEEK_FULL

Register

Bits Description Type Reset

31:0 Read FULL result, without altering any internal state (PEEK). RO 0x00000000

SIO: INTERP1_CTRL_LANE0 Register

Offset: 0x0ec

Description

Control register for lane 0

Table 74.

INTERP1_CTRL_LANE

0 Register

Bits Name Description Type Reset

31:26 Reserved. - - -

25 OVERF Set if either OVERF0 or OVERF1 is set. RO 0x0

24 OVERF1 Indicates if any masked-off MSBs in ACCUM1 are set. RO 0x0

23 OVERF0 Indicates if any masked-off MSBs in ACCUM0 are set. RO 0x0

22 CLAMP Only present on INTERP1 on each core. If CLAMP mode is

enabled:

- LANE0 result is shifted and masked ACCUM0, clamped

by a lower bound of

BASE0 and an upper bound of BASE1.

- Signedness of these comparisons is determined by

LANE0_CTRL_SIGNED

RW 0x0

21 Reserved. - - -

20:19 FORCE_MSB ORed into bits 29:28 of the lane result presented to the

processor on the bus.

No effect on the internal 32-bit datapath. Handy for using

a lane to generate sequence

of pointers into flash or SRAM.

RW 0x0

18 ADD_RAW If 1, mask + shift is bypassed for LANE0 result. This does

not affect FULL result.

RW 0x0

17 CROSS_RESULT If 1, feed the opposite lane’s result into this lane’s

accumulator on POP.

RW 0x0

16 CROSS_INPUT If 1, feed the opposite lane’s accumulator into this lane’s

shift + mask hardware.

Takes effect even if ADD_RAW is set (the CROSS_INPUT

mux is before the shift+mask bypass)

RW 0x0

15 SIGNED If SIGNED is set, the shifted and masked accumulator

value is sign-extended to 32 bits

before adding to BASE0, and LANE0 PEEK/POP appear

extended to 32 bits when read by processor.

RW 0x0

14:10 MASK_MSB The most-significant bit allowed to pass by the mask

(inclusive)

Setting MSB < LSB may cause chip to turn inside-out

RW 0x00

9:5 MASK_LSB The least-significant bit allowed to pass by the mask

(inclusive)

RW 0x00

4:0 SHIFT Logical right-shift applied to accumulator before masking RW 0x00

SIO: INTERP1_CTRL_LANE1 Register

RP2040 Datasheet

2.3. Processor subsystem 58

Offset: 0x0f0

Description

Control register for lane 1

Table 75.

INTERP1_CTRL_LANE

1 Register

Bits Name Description Type Reset

31:21 Reserved. - - -

20:19 FORCE_MSB ORed into bits 29:28 of the lane result presented to the

processor on the bus.

No effect on the internal 32-bit datapath. Handy for using

a lane to generate sequence

of pointers into flash or SRAM.

RW 0x0

18 ADD_RAW If 1, mask + shift is bypassed for LANE1 result. This does

not affect FULL result.

RW 0x0

17 CROSS_RESULT If 1, feed the opposite lane’s result into this lane’s

accumulator on POP.

RW 0x0

16 CROSS_INPUT If 1, feed the opposite lane’s accumulator into this lane’s

shift + mask hardware.

Takes effect even if ADD_RAW is set (the CROSS_INPUT

mux is before the shift+mask bypass)

RW 0x0

15 SIGNED If SIGNED is set, the shifted and masked accumulator

value is sign-extended to 32 bits

before adding to BASE1, and LANE1 PEEK/POP appear

extended to 32 bits when read by processor.

RW 0x0

14:10 MASK_MSB The most-significant bit allowed to pass by the mask

(inclusive)

Setting MSB < LSB may cause chip to turn inside-out

RW 0x00

9:5 MASK_LSB The least-significant bit allowed to pass by the mask

(inclusive)

RW 0x00

4:0 SHIFT Logical right-shift applied to accumulator before masking RW 0x00

SIO: INTERP1_ACCUM0_ADD Register

Offset: 0x0f4

Table 76.

INTERP1_ACCUM0_AD

D Register

Bits Description Type Reset

31:24 Reserved. - -

23:0 Values written here are atomically added to ACCUM0

Reading yields lane 0’s raw shift and mask value (BASE0 not added).

RW 0x000000

SIO: INTERP1_ACCUM1_ADD Register

Offset: 0x0f8

RP2040 Datasheet

2.3. Processor subsystem 59

Table 77.

INTERP1_ACCUM1_AD

D Register

Bits Description Type Reset

31:24 Reserved. - -

23:0 Values written here are atomically added to ACCUM1

Reading yields lane 1’s raw shift and mask value (BASE1 not added).

RW 0x000000

SIO: INTERP1_BASE_1AND0 Register

Offset: 0x0fc

Table 78.

INTERP1_BASE_1AND

0 Register

Bits Description Type Reset

31:0 On write, the lower 16 bits go to BASE0, upper bits to BASE1 simultaneously.

Each half is sign-extended to 32 bits if that lane’s SIGNED flag is set.

WO 0x00000000

SIO: SPINLOCK0, SPINLOCK1, …, SPINLOCK30, SPINLOCK31 Registers

Offsets: 0x100, 0x104, …, 0x178, 0x17c

Table 79. SPINLOCK0,

SPINLOCK1, …,

SPINLOCK30,

SPINLOCK31

Registers

Bits Description Type Reset

31:0 Reading from a spinlock address will:

- Return 0 if lock is already locked

- Otherwise return nonzero, and simultaneously claim the lock

Writing (any value) releases the lock.

If core 0 and core 1 attempt to claim the same lock simultaneously, core 0

wins.

The value returned on success is 0x1 << lock number.

RW 0x00000000

2.3.2. Interrupts

Each core is equipped with a standard ARM Nested Vectored Interrupt Controller (NVIC) which has 32 interrupt inputs.

Each NVIC has the same interrupts routed to it, with the exception of the GPIO interrupts: there is one GPIO interrupt per

bank, per core. These are completely independent, so e.g. core 0 can be interrupted by GPIO 0 in bank 0, and core 1 by

GPIO 1 in the same bank.

On RP2040, only the lower 26 IRQ signals are connected on the NVIC, and IRQs 26 to 31 are tied to zero (never firing).

The core can still be forced to enter the relevant interrupt handler by writing bits 26 to 31 in the NVIC ISPR register.

Table 80. Interrupts
IRQ Interrupt Source IRQ Interrupt Source IRQ Interrupt Source IRQ Interrupt Source IRQ Interrupt Source

0 TIMER_IRQ_0 6 XIP_IRQ 12 DMA_IRQ_1 18 SPI0_IRQ 24 I2C1_IRQ

1 TIMER_IRQ_1 7 PIO0_IRQ_0 13 IO_IRQ_BANK0 19 SPI1_IRQ 25 RTC_IRQ

2 TIMER_IRQ_2 8 PIO0_IRQ_1 14 IO_IRQ_QSPI 20 UART0_IRQ

3 TIMER_IRQ_3 9 PIO1_IRQ_0 15 SIO_IRQ_PROC0 21 UART1_IRQ

4 PWM_IRQ_WRAP 10 PIO1_IRQ_1 16 SIO_IRQ_PROC1 22 ADC_IRQ_FIFO

5 USBCTRL_IRQ 11 DMA_IRQ_0 17 CLOCKS_IRQ 23 I2C0_IRQ

RP2040 Datasheet

2.3. Processor subsystem 60

 NOTE

XIP_IRQ is from the SSI block that makes up part of the XIP block. It could be used in a configuration where code is

running from SRAM instead of flash. In this configuration, the XIP block could be used as a normal SSI peripheral.

Nested interrupts are supported in hardware: a lower-priority interrupt can be preempted by a higher-priority interrupt (or

another exception e.g. HardFault), and the lower-priority interrupt will resume once higher-priority exceptions have

completed. The priority order is determined by:

• First, the dynamic priority level configured per interrupt by the NVIC_IPR0-7 registers. The Cortex-M0+ implements

the two most significant bits of an 8-bit priority field, so four priority levels are available, and the numerically-lowest

level (level 0) is the highest priority.

• Second, for interrupts with the same dynamic priority level, the lower-numbered IRQ has higher priority (using the

IRQ numbers given in the table above).

Some care has gone into arranging the RP2040 interrupt table to give a sensible default priority ordering, but individual

interrupts can be raised or lowered in priority, using NVIC_IPR0 through NVIC_IPR7, to suit a particular use case.

The 26 system IRQ signals are masked (NMI mask) and then ORed together creating the NMI signal for the core. The

NMI mask for each core can be configured using PROC0_NMI_MASK and PROC1_NMI_MASK in the Syscfg register

block. Each of these registers has one bit for each system interrupt, and the each core’s NMI is asserted if a system

interrupt is asserted and the corresponding NMI mask bit is set for that core.

 CAUTION

If the watchdog is armed, and some bits are set on the core 1 NMI mask, the RESETS block (and hence Syscfg)

should be included in the watchdog reset list. Otherwise, following a watchdog event, core 1 NMI may be asserted

when the core enter the bootrom. It is safe for core 0 to take an NMI when entering the bootrom (the handler will

clear the NMI mask).

2.3.3. Event Signals

The Cortex-M0+ can enter a sleep state until an "event" (or interrupt) takes place, using the WFE instruction. It can also

generate events, using the SEV instruction. On RP2040 the event signals are cross-wired between the two processors, so

that an event sent by one processor will be received on the other.

 NOTE

The event flag is "sticky", so if both processors send an event (SEV) simultaneously, and then both go to sleep (WFE),

they will both wake immediately, rather than getting stuck in a sleep state.

While in a WFE (or WFI) sleep state, the processor can shut off its internal clock gates, consuming much less power. When

both processors are sleeping, and the DMA is inactive, RP2040 as a whole can enter a sleep state, disabling clocks on

unused infrastructure such as the busfabric, and waking automatically when one of the processors wakes. See Section

2.11.2.

2.3.4. Debug

The 2-wire Serial Wire Debug (SWD) port provides access to hardware and software debug features including:

• Loading firmware into SRAM or external flash memory

• Control of processor execution: run/halt, step, set breakpoints, other standard Arm debug functionality

• Access to processor architectural state

RP2040 Datasheet

2.3. Processor subsystem 61

• Access to memory and memory-mapped IO via the system bus

The SWD bus is exposed on two dedicated pins and is immediately available after power-on.

 NOTE

We recommend a max SWD frequency of 24MHz. This depends heavily on your setup. You may need to run much

slower (1MHz) depending on the quality and length of your cables.

Debug access is via independent DAPs (one per core) attached to a shared multidrop SWD bus (SWD v2). Each DAP will

only respond to debug commands if correctly addressed by a SWD TARGETSEL command; all others tristate their outputs.

Additionally, a Rescue DP (see Section 2.3.4.2) is available which is connected to system control features. Default

addresses of each debug port are given below:

• Core 0: 0x01002927

• Core 1: 0x11002927

• Rescue DP: 0xf1002927

The Instance IDs (top 4 bits of ID above) can be changed via a sysconfig register which may be useful in a multichip

application. However note that ID=0xf is reserved for the internal Rescue DP (see Section 2.3.4.2).

IO

Processors

Core0
DAP_0

DP-0 AP

Core1

SWD

Multidrop

arbiter

Rescue DP

SWD

SWCLK

SWDIO
DAP_1

DP-1 AP

sys_cfg.proc0_dap_instid

sys_cfg.proc1_dap_instidpam_restart

SWD

SWD

SWD

Figure 10. RP2040

Debugging

2.3.4.1. Software control of SWD pins

The SWD pins for Core 0 and Core 1 can be bit-banged via registers in syscfg (see DBGFORCE). This means that Core 1

could run a USB application that allows debug of Core 0, or similar.

2.3.4.2. Rescue DP

The Rescue DP (debug port) is available over the SWD bus and is only intended for use in the specific case where the

chip has locked up, for example if code has been programmed into flash which permanently halts the system clock: in

such a case, the normal debugger can not communicate with the processors to return the system to a working state, so

more drastic action is needed. A rescue is invoked by setting the CDBGPWRUPREQ bit in the Rescue DP’s CTRL/STAT

register.

This causes a hard reset of the chip (functionally similar to a power-on-reset), and sets a flag in the Chip Level Reset

block to indicate that a rescue reset took place. The bootrom checks this flag almost immediately in the initial boot

process (before watchdog, flash or USB boot), acknowledges by clearing the bit, then halts the processor. This leaves

the system in a safe state, with the system clock running, so that the debugger can reattach to the cores and load fresh

code.

For a practical example of using the Rescue DP, see the Hardware design with RP2040 book.

2.4. Cortex-M0+

RP2040 Datasheet

2.4. Cortex-M0+ 62

https://developer.arm.com/documentation/dgi0012/d/Implementation/Debug-and-system-power-up
https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040.pdf

ARM Documentation

Excerpted from the Cortex-M0+ Technical Reference Manual. Used with permission.

The ARM Cortex-M0+ processor is a very low gate count, highly energy efficient processor that is intended for

microcontroller and deeply embedded applications that require an area optimized, low-power processor.

2.4.1. Features

The ARM Cortex-M0+ processor features and benefits are:

• Tight integration of system peripherals reduces area and development costs.

• Thumb instruction set combines high code density with 32-bit performance.

• Support for single-cycle I/O access.

• Power control optimization of system components.

• Integrated sleep modes for low-power consumption.

• Fast code execution enables running the processor with a slower clock or increasing sleep mode time.

• Optimized code fetching for reduced flash and ROM power consumption.

• Hardware multiplier.

• Deterministic, high-performance interrupt handling for time-critical applications.

• Deterministic instruction cycle timing.

• Support for system level debug authentication.

• Serial Wire Debug reduces the number of pins required for debugging.

2.4.1.1. Interfaces

The interfaces included in the processor for external access include:

• External AHB-Lite interface to busfabric

• Debug Access Port (DAP)

• Single-cycle I/O Port to SIO peripherals

2.4.1.2. Configuration

Each processor is configured with the following features:

• Architectural clock gating (for power saving)

• Little Endian bus access

• Four Breakpoints

• Debug support (via 2-wire debug pins SWD/SWCLK)

• 32-bit instruction fetch (to match 32-bit data bus)

• IOPORT (for low latency access to local peripherals (see SIO)

• 26 interrupts

• 8 MPU regions

RP2040 Datasheet

2.4. Cortex-M0+ 63

https://developer.arm.com/documentation/ddi0484/latest

• All registers reset on powerup

• Fast multiplier (MULS 32×32 single cycle)

• SysTick timer

• Vector Table Offset Register (VTOR)

• 34 WIC (Wake-up Interrupt Controller) lines (32 IRQ and NMI, RXEV)

• DAP feature: Halt event support

• DAP feature: SerialWire debug interface (protocol 2 with multidrop support)

• DAP feature: Micro Trace Buffer (MTB) is not implemented

Architectural clock gating allows the processor core to support SLEEP and DEEPSLEEP power states by disabling the

clock to parts of the processor core. Note that power gating is not supported.

Each M0+ core has its own interrupt controller which can individually mask out interrupt sources as required. The same

interrupts are routed to both M0+ cores.

2.4.1.3. ARM architecture

The processor implements the ARMv6-M architecture profile. See the ARMv6-M Architecture Reference Manual, and for

further details refer to the ARM Cortex M0+ Technical Reference Manual.

2.4.2. Functional Description

2.4.2.1. Overview

The Cortex-M0+ processor is a configurable, multistage, 32-bit RISC processor. It has an AMBA AHB-Lite interface and

includes an NVIC component. It also has hardware debug, single-cycle I/O interfacing, and memory-protection

functionality. The processor can execute Thumb code and is compatible with other Cortex-M profile processors.

Figure 11 shows the functional blocks of the processor and surrounding blocks.

Cortex-M0+ subsystem

Clock
PMU MPUCortex M0+ Core

RESET CTRL

WIC DAP

Breakpoint and
watchpoint unit

Debugger
interfaceNVIC

AHB-Lite Master

Single cycle IO Port

Serial Wire Debug

Reset

Interrupts

Bus Interface

HCLK

FCLK

DCLK

Figure 11. Cortex M0+

Functional block

diagram

2.4.2.2. Features

The M0+ features:

• The ARMv6-M Thumb® instruction set.

• Thumb-2 technology.

• An ARMv6-M compliant 24-bit SysTick timer.

RP2040 Datasheet

2.4. Cortex-M0+ 64

https://developer.arm.com/documentation/ddi0419/latest/
https://developer.arm.com/documentation/ddi0484/latest/

• A 32-bit hardware multiplier. This is the standard single-cycle multiplier

• The ability to have deterministic, fixed-latency, interrupt handling.

• Load/store multiple instructions that can be abandoned and restarted to facilitate rapid interrupt handling.

• C Application Binary Interface compliant exception model. This is the ARMv6-M, C Application Binary Interface (C-

ABI) compliant exception model that enables the use of pure C functions as interrupt handlers.

• Low power sleep-mode entry using Wait For Interrupt (WFI), Wait For Event (WFE) instructions, or the return from

interrupt sleep-on-exit feature.

2.4.2.3. NVIC features

The Nested Vectored Interrupt Controller (NVIC) features are:

• 26 external interrupt inputs, each with four levels of priority.

• Dedicated Non-Maskable Interrupt (NMI) input (which can be driven from any standard interrupt source)

• Support for both level-sensitive and pulse-sensitive interrupt lines.

• Wake-up Interrupt Controller (WIC), providing ultra-low power sleep mode support.

• Relocatable vector table.

 NOTE

The NVIC supports hardware nesting of exceptions, e.g. an interrupt handler may itself be interrupted if a higher-

priority interrupt request arrives whilst the handler is running.

Further details available in Section 2.4.5.

2.4.2.4. Debug features

Debug features are:

• Four hardware breakpoints.

• Two watchpoints.

• Program Counter Sampling Register (PCSR) for non-intrusive code profiling.

• Single step and vector catch capabilities.

• Support for unlimited software breakpoints using BKPT instruction.

• Non-intrusive access to core peripherals and zero-waitstate system slaves through a compact bus matrix. A

debugger can access these devices, including memory, even when the processor is running.

• Full access to core registers when the processor is halted.

• CoreSight compliant debug access through a Debug Access Port (DAP) supporting Serial Wire debug connections.

2.4.2.4.1. Debug Access Port

The processor is implemented with a low gate count Debug Access Port (DAP). The low gate count Debug Access Port

(DAP) provides a Serial Wire debug-port, and connects to the processor slave port to provide full system-level debug

access. For more information on DAP, see the ADI v5.1 version of the ARM Debug Interface v5, Architecture

Specification

RP2040 Datasheet

2.4. Cortex-M0+ 65

2.4.2.5. MPU features

Memory Protection Unit (MPU) features are:

• Eight user-configurable memory regions.

• Eight sub-region disables per region.

• Execute never (XN) support.

• Default memory map support.

Further details available in Section 2.4.6.

2.4.2.6. AHB-Lite interface

Transactions on the AHB-Lite interface are always marked as non-sequential. Processor accesses and debug accesses

share the external interface to external AHB peripherals. The processor accesses take priority over debug accesses.

Any vendor-specific components can populate this bus.

 NOTE

Instructions are only fetched using the AHB-Lite interface. To optimize performance, the Cortex-M0+ processor

fetches ahead of the instruction it is executing. To minimize power consumption, the fetch ahead is limited to a

maximum of 32 bits.

2.4.2.7. Single-cycle I/O port

The processor implements a single-cycle I/O port that provides high speed access to tightly-coupled peripherals, such

as general-purpose-I/O (GPIO). The port is accessible both by loads and stores from either the processor or the

debugger. You cannot execute code from the I/O port.

2.4.2.8. Power Management Unit

Each processor has its own Power Management Unit (PMU) which allows power saving by turning off clocks to parts of

the processor core. There are no separate power domains on RP2040.

The PMU runs from the processor clock which is controlled from the chip level clocks block. The PMU can control the

following clock domains within the processor:

• A debug clock containing the processor debug resources and the rest of the DAP.

• A system clock containing the NVIC.

• A processor clock containing the core and associated interfaces

Control is limited to clock enable/disable. When enabled, all domains run at the same clock speed.

The PMU also interfaces with the WIC, to ensure that power-down and wake-up behaviours are transparent to software

and work with clocking and sleeping requirements. This includes SLEEP or DEEPSLEEP support as controlled in SCR

register.

2.4.2.8.1. Power Management

RP2040 ARM Cortex M0+ uses ARMv6-M which supports the use of Wait For Interrupt (WFI) and Wait For Event (WFE)

instructions as part of system power management:

WFI provides a mechanism for hardware support of entry to one or more sleep states. Hardware can suspend execution

RP2040 Datasheet

2.4. Cortex-M0+ 66

until a wakeup event occurs.

WFE provides a mechanism for software to suspend program execution until a wakeup condition occurs with minimal or

no impact on wakeup latency. Both WFI and WFE are hint instructions that might have no effect on program execution.

Normally, they are used in software idle loops that resume program execution only after an interrupt or event of interest

occurs.

NOTE

Code using WFE and WFI must handle any spurious wakeup events caused by a debug halt or other reasons.

Refer to the SDK and ARMv6-M guide for further information.

2.4.2.8.2. Wait For Event and Send Event

RP2040 can support software-based synchronization to system events using the Send-Event (SEV) and WFE hint

instructions. Software can:

• use the WFE instruction to indicate that it is able to suspend execution of a process or thread until an event occurs,

permitting hardware to enter a low power state.

• rely on a mechanism that is transparent to software and provides low latency wakeup.

The WFE mechanism relies on hardware and software working together to achieve energy saving. For example, stalling

execution of a processor until a device or another processor has set a flag:

• the hardware provides the mechanism to enter the WFE low-power state.

• software enters a polling loop to determine when the flag is set:

• the polling processor issues a WFE instruction as part of a polling loop if the flag is clear.

• an event is generated (hardware interrupt or Send-Event instruction from another processor) when the flag is set.

WFE wake up events

The following events are WFE wake up events:

• the execution of an SEV instruction on the other processor

• any exception entering the pending state if SEVONPEND in the System Control Register is set to 1.

• an asynchronous exception at a priority that preempts any currently active exceptions.

• a debug event with debug enabled.

The Event Register

The Event Register is a single bit register. When set, an Event Register indicates that an event has occurred, since the

register was last cleared, that might prevent the processor having to suspend operation on issuing a WFE instruction. The

following conditions apply to the Event Register:

• A reset clears the Event Register.

• Any WFE wakeup event, or the execution of an exception return instruction, sets the Event Register.

• A WFE instruction clears the Event Register.

• Software cannot read or write the value of the Event Register directly.

The Send-Event instruction

The Send-Event (SEV) instruction causes an event to be signalled to the other processor. The Send-Event instruction

generates a wakeup event.

The Wait For Event instruction

The action of the WFE instruction depends on the state of the Event Register:

RP2040 Datasheet

2.4. Cortex-M0+ 67

• If the Event Register is set, the instruction clears the register and returns immediately.

• If the Event Register is clear the processor can suspend execution and enter a low-power state. It can remain in

that state until the processor detects a WFE wakeup event or a reset. When the processor detects a WFE wakeup

event, the WFE instruction completes.

WFE wakeup events can occur before a WFE instruction is issued. Software using the WFE mechanism must tolerate

spurious wake up events, including multiple wakeups.

2.4.2.8.3. Wait For Interrupt

RP2040 supports Wait For Interrupt through the hint instruction, WFI.

When a processor issues a WFI instruction it can suspend execution and enter a low-power state. It can remain in that

state until the processor detects one of the following WFI wake up events:

• A reset.

• An asynchronous exception at a priority that, if PRIMASK.PM was set to 0, would preempt any currently active

exceptions.

Note

If PRIMASK.PM is set to 1, an asynchronous exception that has a higher group priority than any active exception

results in a WFI instruction exit. If the group priority of the exception is less than or equal to the execution group

priority, the exception is ignored.

• If debug is enabled, a debug event.

• A WFI wakeup event.

The WFI instruction completes when the hardware detects a WFI wake up event.

The processor recognizes WFI wake up events only after issuing the WFI instruction.

2.4.2.8.4. Wakeup Interrupt Controller

The Wakeup Interrupt Controller (WIC) is used to wake the processor from a DEEPSLEEP state as controlled by the SCR

register. In a DEEPSLEEP state clocks to the processor core and NVIC are not running. It can take a few cycles to wake

from a DEEPSLEEP state.

The WIC takes inputs from the receive event signal (from the other processor), 32 interrupts lines, and NMI.

For more power saving, RP2040 supports system level power saving modes as defined in Section 2.11 which also

includes code examples.

2.4.2.9. Reset Control

The Cortex M0+ Reset Control block controls the following resets:

• Debug reset

• M0+ core reset

• PMU reset

After power up, both processors are released from reset (see details in Section 2.13.2). This releases reset to Debug,

M0+ core and PMU.

Once running, resets can be triggered from the Debugger, NVIC (using AIRCR.SYSRESETREQ), or the RP2040 Power On State

Machine controller (see details in Section 2.13). The NVIC only resets the Cortex-M0+ processor core (not the Debug or

PMU), whereas the Power On State Machine controller can reset the processor subsystem which asserts all resets in

the subsystem (Debug, M0+ core, PMU).

RP2040 Datasheet

2.4. Cortex-M0+ 68

2.4.3. Programmer’s model

2.4.3.1. About the programmer’s model

The ARMv6-M Architecture Reference Manual provides a complete description of the programmer’s model. This chapter

gives an overview of the Cortex-M0+ programmer’s model that describes the implementation-defined options. It also

contains the ARMv6-M Thumb instructions it uses and their cycle counts for the processor. Additional details are in

following chapters

• Section 2.4.4 summarizes the system control features of the programmer’s model.

• Section 2.4.5 summarizes the NVIC features of the programmer’s model.

• Section 2.3.4 summarizes the Debug features of the programmer’s model.

2.4.3.2. Modes of operation and execution

See the ARMv6-M Architecture Reference Manual for information about the modes of operation and execution.

2.4.3.3. Instruction set summary

The processor implements the ARMv6-M Thumb instruction set, including a number of 32-bit instructions that use

Thumb-2 technology. The ARMv6-M instruction set comprises:

• All of the 16-bit Thumb instructions from ARMv7-M excluding CBZ, CBNZ and IT.

• The 32-bit Thumb instructions BL, DMB, DSB, ISB, MRS and MSR.

Table 81 shows the Cortex-M0+ instructions and their cycle counts. The cycle counts are based on a system with zero

wait-states.

Table 81. Cortex-M0+

instruction summary
Operation Description Assembler Cycles

Move 8-bit immediate MOVS Rd, #<imm> 1

Lo to Lo MOVS Rd, Rm 1

Any to Any MOV Rd, Rm 1

Any to PC MOV PC, Rm 2

Add 3-bit immediate ADDS Rd, Rn, #<imm> 1

All registers Lo ADDS Rd, Rn, Rm 1

Any to Any ADD Rd, Rd, Rm 1

Any to PC ADD PC, PC, Rm 2

8-bit immediate ADDS Rd, Rd, #<imm> 1

With carry ADCS Rd, Rd, Rm 1

Immediate to SP ADD SP, SP, #<imm> 1

Form address from SP ADD Rd, SP, #<imm> 1

Form address from PC ADR Rd, <label> 1

Subtract Lo and Lo SUBS Rd, Rn, Rm 1

3-bit immediate SUBS Rd, Rn, #<imm> 1

8-bit immediate SUBS Rd, Rd, #<imm> 1

RP2040 Datasheet

2.4. Cortex-M0+ 69

Operation Description Assembler Cycles

With carry SBCS Rd, Rd, Rm 1

Immediate from SP SUB SP, SP, #<imm> 1

Negate RSBS Rd, Rn, #0 1

Multiply Multiply MULS Rd, Rm, Rd 1

Compare Compare CMP Rn, Rm 1

Negative CMN Rn, Rm 1

Immediate CMP Rn, #<imm> 1

Logical AND ANDS Rd, Rd, Rm 1

Exclusive OR EORS Rd, Rd, Rm 1

OR ORRS Rd, Rd, Rm 1

Bit clear BICS Rd, Rd, Rm 1

Move NOT MVNS Rd, Rm 1

AND test TST Rn, Rm 1

Shift Logical shift left by immediate LSLS Rd, Rm, #<shift> 1

Logical shift left by register LSLS Rd, Rd, Rs 1

Logical shift right by immediate LSRS Rd, Rm, #<shift> 1

Logical shift right by register LSRS Rd, Rd, Rs 1

Arithmetic shift right ASRS Rd, Rm, #<shift> 1

Arithmetic shift right by register ASRS Rd, Rd, Rs 1

Rotate Rotate right by register RORS Rd, Rd, Rs 1

Load Word, immediate offset LDR Rd, [Rn, #<imm>] 2 or 1a

Halfword, immediate offset LDRH Rd, [Rn, #<imm>] 2 or 1a

Byte, immediate offset LDRB Rd, [Rn, #<imm>] 2 or 1a

Word, register offset LDR Rd, [Rn, Rm] 2 or 1a

Halfword, register offset LDRH Rd, [Rn, Rm] 2 or 1a

Signed halfword, register offset LDRSH Rd, [Rn, Rm] 2 or 1a

Byte, register offset LDRB Rd, [Rn, Rm] 2 or 1a

Signed byte, register offset LDRSB Rd, [Rn, Rm] 2 or 1a

PC-relative LDR Rd, <label> 2 or 1a

SP-relative LDR Rd, [SP, #<imm>] 2 or 1a

Multiple, excluding base LDM Rn!, {<loreglist>} 1+Nb

Multiple, including base LDM Rn, {<loreglist>} 1+Nb

Store Word, immediate offset STR Rd, [Rn, #<imm>] 2 or 1a

Halfword, immediate offset STRH Rd, [Rn, #<imm>] 2 or 1a

Byte, immediate offset STRB Rd, [Rn, #<imm>] 2 or 1a

Word, register offset STR Rd, [Rn, Rm] 2 or 1a

RP2040 Datasheet

2.4. Cortex-M0+ 70

Operation Description Assembler Cycles

Halfword, register offset STRH Rd, [Rn, Rm] 2 or 1a

Byte, register offset STRB Rd, [Rn, Rm] 2 or 1a

SP-relative STR Rd, [SP, #<imm>] 2 or 1a

Multiple STM Rn!, {<loreglist>} 1+Nb

Push Push PUSH {<loreglist>} 1+Nb

Push with link register PUSH {<loreglist>, LR} 1+Nc

Pop Pop POP {<loreglist>} 1+Nb

Pop and return POP {<loreglist>, PC} 3+Nc

Branch Conditional B<cc> <label> 1 or 2d

Unconditional B <label> 2

With link BL <label> 3

With exchange BX Rm 2

With link and exchange BLX Rm 2

Extend Signed halfword to word SXTH Rd, Rm 1

Signed byte to word SXTB Rd, Rm 1

Unsigned halfword UXTH Rd, Rm 1

Unsigned byte UXTB Rd, Rm 1

Reverse Bytes in word REV Rd, Rm 1

Bytes in both halfwords REV16 Rd, Rm 1

Signed bottom half word REVSH Rd, Rm 1

State change Supervisor Call SVC #<imm> - e

Disable interrupts CPSID i 1

Enable interrupts CPSIE i 1

Read special register MRS Rd, <specreg> 3

Write special register MSR <specreg>, Rn 3

Breakpoint BKPT #<imm> - e

Hint Send-Event SEV 1

Wait For Event WFE 2f

Wait For Interrupt WFI 2f

Yield YIELD 1f

No operation NOP 1

Barriers Instruction synchronization ISB 3

Data memory DMB 3

Data synchronization DSB 3

Table Notes

a 2 if to AHB interface or SCS, 1 if to single-cycle I/O port.

RP2040 Datasheet

2.4. Cortex-M0+ 71

b N is the number of elements in the list.
c N is the number of elements in the list including PC or LR.
d 2 if taken, 1 if not-taken.
e Cycle count depends on processor and debug configuration.
f Excludes time spent waiting for an interrupt or event.
g Executes as NOP.

See the ARMv6-M Architecture Reference Manual for more information about the ARMv6-M Thumb instructions.

2.4.3.4. Memory model

The processor contains a bus matrix that arbitrates the processor core and Debug Access Port (DAP) memory

accesses to both the external memory system and to the internal NVIC and debug components.

Priority is always given to the processor to ensure that any debug accesses are as non-intrusive as possible. For a zero

wait-state system, all debug accesses to system memory, NVIC, and debug resources are completely non-intrusive for

typical code execution.

The system memory map is ARMv6-M architecture compliant, and is common both to the debugger and processor

accesses. Transactions are routed as follows:

• All accesses below 0xd0000000 or above 0xefffffff appear as AHB-Lite transactions on the AHB-Lite master port of

the processor.

• Accesses in the range 0xd0000000 to 0xdfffffff are handled by the SIO.

• Accesses in the range 0xe0000000 to 0xefffffff are handled within the processor and do not appear on the AHB-Lite

master port of the processor.

The processor supports only word size accesses in the range 0xd0000000 - 0xefffffff.

Table 82 shows the code, data, and device suitability for each region of the default memory map. This is the memory

map used by implementations when the MPU is disabled. The attributes and permissions of all regions, except that

targeting the Cortex-M0+ NVIC and debug components, can be modified using an implemented MPU.

Table 82. M0+ Default

memory map usage
Address range Code Data Device

0xf0000000 - 0xffffffff No No Yes

0xe0000000 - 0xefffffff No No No a

0xa0000000 - 0xdfffffff No No Yes

0x60000000 - 0x9fffffff Yes Yes No

0x40000000 - 0x5fffffff No No Yes

0x20000000 - 0x3fffffff Yes Yes No

0x00000000 - 0x1fffffff Yes Yes No

a. Space reserved for Cortex-M0+ NVIC and debug components.

Note

Regions not marked as suitable for code behave as eXecute-Never (XN) and generate a HardFault exception if code

attempts to execute from this location.

See the ARMv6-M Architecture Reference Manual for more information about the memory model.

2.4.3.5. Processor core registers summary

Table 83 shows the processor core register set summary. Each of these registers is 32 bits wide.

RP2040 Datasheet

2.4. Cortex-M0+ 72

Table 83. M0+

processor core

register set summary

Name Description

R0-R12 R0-R12 are general-purpose registers for data operations.

MSP/PSP (R13) The Stack Pointer (SP) is register R13. In Thread mode,

the CONTROL register indicates the stack pointer to use,

Main Stack Pointer (MSP) or Process Stack Pointer (PSP).

LR (R14) The Link Register (LR) is register R14. It stores the return

information for subroutines, function calls, and

exceptions.

PC (R15) The Program Counter (PC) is register R15. It contains the

current program address.

PSR The Program Status Register (PSR) combines:

• Application Program Status Register (APSR).

• Interrupt Program Status Register (IPSR).

• Execution Program Status Register (EPSR).

These registers provide different views of the PSR.

PRIMASK The PRIMASK register prevents activation of all

exceptions with configurable priority.

CONTROL The CONTROL register controls the stack used, the code

privilege level, when the processor is in Thread mode.

Note

See the ARMv6-M Architecture Reference Manual for information about the processor core registers and their

addresses, access types, and reset values.

2.4.3.6. Exceptions

This section describes the exception model of the processor.

2.4.3.6.1. Exception handling

The processor implements advanced exception and interrupt handling, as described in the ARMv6-M Architecture

Reference Manual. To minimize interrupt latency, the processor abandons any load-multiple or store-multiple instruction

to take any pending interrupt. On return from the interrupt handler, the processor restarts the load-multiple or store-

multiple instruction from the beginning.

This means that software must not use load-multiple or store-multiple instructions when a device is accessed in a

memory region that is read-sensitive or sensitive to repeated writes. The software must not use these instructions in

any case where repeated reads or writes might cause inconsistent results or unwanted side-effects.

The processor implementation can ensure that a fixed number of cycles are required for the NVIC to detect an interrupt

signal and the processor fetch the first instruction of the associated interrupt handler. If this is done, the highest priority

interrupt is jitter-free. This will depend on where the interrupt handler is located and if another higher priority master is

accessing that memory. SRAM4 and SRAM5 are provided that may be allocated to interrupt handlers for each processor

so this is jitter-free.

To reduce interrupt latency and jitter, the Cortex-M0+ processor implements both interrupt late-arrival and interrupt tail-

chaining mechanisms, as defined by the ARMv6-M architecture. The worst case interrupt latency, for the highest priority

active interrupt in a zero wait-state system not using jitter suppression, is 15 cycles.

The processor exception model has the following implementation-defined behaviour in addition to the architecture

RP2040 Datasheet

2.4. Cortex-M0+ 73

specified behaviour:

• Exceptions on stacking from HardFault to NMI lockup at NMI priority.

• Exceptions on unstacking from NMI to HardFault lockup at HardFault priority.

2.4.4. System control

2.4.4.1. System control register summary

Table 84 gives the system control registers. Each of these registers is 32 bits wide.

Table 84. M0+ System

control registers
Name Description

SYST_CSR SysTick Control and Status Register

SYST_RVR SysTick Reload Value Register

SYST_CVR SysTick Current Value Register

SYST_CALIB SysTick Calibration value Register

CPUID See CPUID Register

ICSR Interrupt Control State Register

AIRCR Application Interrupt and Reset Control Register

CCR Configuration and Control Register

SHPR2 System Handler Priority Register

SHPR3 System Handler Priority Register

SHCSR System Handler Control and State Register

VTOR Vector table Offset Register

ACTLR Auxiliary Control Register

Note

• All system control registers are only accessible using word transfers. Any attempt to read or write a halfword

or byte is Unpredictable.

• See the List of Registers or ARMv6-M Architecture Reference Manual for more information about the system

control registers, and their addresses and access types, and reset values.

2.4.4.1.1. CPUID Register

The CPUID contains the part number, version, and implementation information that is specific to the processor.

 IMPORTANT

This standard internal Arm register contains information about the type of processor. It should not be confused with

CPUID (Section 2.3.1.1), an RP2040 SIO register which reads as 0 on core 0 and 1 on core 1.

2.4.5. NVIC

RP2040 Datasheet

2.4. Cortex-M0+ 74

2.4.5.1. About the NVIC

External interrupt signals connect to the Nested Vectored Interrupt Controller (NVIC), and the NVIC prioritizes the

interrupts. Software can set the priority of each interrupt. The NVIC and the Cortex-M0+ processor core are closely

coupled, providing low latency interrupt processing and efficient processing of late arriving interrupts.

 NOTE

"Nested" refers to the fact that interrupts can themselves be interrupted, by higher-priority interrupts. "Vectored"

refers to the hardware dispatching each interrupt to a distinct handler routine, specified by the vector table. Details

of nesting and vectoring behaviour are given in the ARMv6-M Architecture Reference Manual.

All NVIC registers are only accessible using word transfers. Any attempt to read or write a halfword or byte individually

is unpredictable.

NVIC registers are always little-endian.

Processor exception handling is described in Exceptions section.

2.4.5.1.1. SysTick timer

A 24-bit SysTick system timer, extends the functionality of both the processor and the NVIC and provides:

• A 24-bit system timer (SysTick).

• Additional configurable priority SysTick interrupt.

The SysTick timer uses a 1μs pulse as a clock enable. This is generated in the watchdog block as timer_tick. Accuracy

of SysTick timing depends upon accuracy of this timer_tick. The SysTick timer can also run from the system clock (see

SYST_CALIB).

See the ARMv6-M Architecture Reference Manual for more information.

2.4.5.1.2. Low power modes

The implementation includes a WIC. This enables the processor and NVIC to be put into a very low-power sleep mode

leaving the WIC to identify and prioritize interrupts.

The processor fully implements the Wait For Interrupt (WFI), Wait For Event (WFE) and the Send Event (SEV)

instructions. In addition, the processor also supports the use of SLEEPONEXIT, that causes the processor core to enter

sleep mode when it returns from an exception handler to Thread mode. See the ARMv6-M Architecture Reference

Manual for more information.

2.4.5.2. NVIC register summary

Table 85 shows the NVIC registers. Each of these registers is 32 bits wide.

Table 85. M0+ NVIC

registers
Name Description

NVIC_ISER Interrupt Set-Enable Register.

NVIC_ICER Interrupt Clear-Enable Register.

NVIC_ISPR Interrupt Set-Pending Register.

NVIC_ICPR Interrupt Clear-Pending Register.

NVIC_IPR0 - NVIC_IPR7 Interrupt Priority Registers.

RP2040 Datasheet

2.4. Cortex-M0+ 75

Note

See the List of Registers or ARMv6-M Architecture Reference Manual for more information about the NVIC registers

and their addresses, access types, and reset values.

2.4.6. MPU

2.4.6.1. About the MPU

The MPU is a component for memory protection which allows the processor to support the ARMv6 Protected Memory

System Architecture model. The MPU provides full support for:

• Eight unified protection regions.

• Overlapping protection regions, with ascending region priority:

◦ 7 = highest priority.

◦ 0 = lowest priority.

• Access permissions.

• Exporting memory attributes to the system.

MPU mismatches and permission violations invoke the HardFault handler. See the ARMv6-M Architecture Reference

Manual for more information.

You can use the MPU to:

• Enforce privilege rules.

• Separate processes.

• Manage memory attributes.

2.4.6.2. MPU register summary

Table 86 shows the MPU registers. Each of these registers is 32 bits wide.

Table 86. M0+ MPU

registers
Name Description

MPU_TYPE MPU Type Register.

MPU_CTRL MPU Control Register.

MPU_RNR MPU Region Number Register.

MPU_RBAR MPU Region Base Address Register.

MPU_RASR MPU Region Attribute and Size Register.

Note

• See the ARMv6-M Architecture Reference Manual for more information about the MPU registers and their

addresses, access types, and reset values.

• The MPU supports region sizes from 256-bytes to 4Gb, with 8-sub regions per region.

2.4.7. Debug

Basic debug functionality includes processor halt, single-step, processor core register access, Reset and HardFault

Vector Catch, unlimited software breakpoints, and full system memory access. See the ARMv6-M Architecture

RP2040 Datasheet

2.4. Cortex-M0+ 76

Reference Manual.

The debug features for this device are:

• A breakpoint unit supporting 4 hardware breakpoints.

• A watchpoint unit supporting 2 watchpoints.

2.4.8. List of Registers

The ARM Cortex-M0+ registers start at a base address of 0xe0000000 (defined as PPB_BASE in SDK).

Table 87. List of

M0PLUS registers
Offset Name Info

0xe010 SYST_CSR SysTick Control and Status Register

0xe014 SYST_RVR SysTick Reload Value Register

0xe018 SYST_CVR SysTick Current Value Register

0xe01c SYST_CALIB SysTick Calibration Value Register

0xe100 NVIC_ISER Interrupt Set-Enable Register

0xe180 NVIC_ICER Interrupt Clear-Enable Register

0xe200 NVIC_ISPR Interrupt Set-Pending Register

0xe280 NVIC_ICPR Interrupt Clear-Pending Register

0xe400 NVIC_IPR0 Interrupt Priority Register 0

0xe404 NVIC_IPR1 Interrupt Priority Register 1

0xe408 NVIC_IPR2 Interrupt Priority Register 2

0xe40c NVIC_IPR3 Interrupt Priority Register 3

0xe410 NVIC_IPR4 Interrupt Priority Register 4

0xe414 NVIC_IPR5 Interrupt Priority Register 5

0xe418 NVIC_IPR6 Interrupt Priority Register 6

0xe41c NVIC_IPR7 Interrupt Priority Register 7

0xed00 CPUID CPUID Base Register

0xed04 ICSR Interrupt Control and State Register

0xed08 VTOR Vector Table Offset Register

0xed0c AIRCR Application Interrupt and Reset Control Register

0xed10 SCR System Control Register

0xed14 CCR Configuration and Control Register

0xed1c SHPR2 System Handler Priority Register 2

0xed20 SHPR3 System Handler Priority Register 3

0xed24 SHCSR System Handler Control and State Register

0xed90 MPU_TYPE MPU Type Register

0xed94 MPU_CTRL MPU Control Register

0xed98 MPU_RNR MPU Region Number Register

0xed9c MPU_RBAR MPU Region Base Address Register

RP2040 Datasheet

2.4. Cortex-M0+ 77

Offset Name Info

0xeda0 MPU_RASR MPU Region Attribute and Size Register

M0PLUS: SYST_CSR Register

Offset: 0xe010

Description

Use the SysTick Control and Status Register to enable the SysTick features.

Table 88. SYST_CSR

Register
Bits Name Description Type Reset

31:17 Reserved. - - -

16 COUNTFLAG Returns 1 if timer counted to 0 since last time this was

read. Clears on read by application or debugger.

RO 0x0

15:3 Reserved. - - -

2 CLKSOURCE SysTick clock source. Always reads as one if SYST_CALIB

reports NOREF.

Selects the SysTick timer clock source:

0 = External reference clock.

1 = Processor clock.

RW 0x0

1 TICKINT Enables SysTick exception request:

0 = Counting down to zero does not assert the SysTick

exception request.

1 = Counting down to zero to asserts the SysTick

exception request.

RW 0x0

0 ENABLE Enable SysTick counter:

0 = Counter disabled.

1 = Counter enabled.

RW 0x0

M0PLUS: SYST_RVR Register

Offset: 0xe014

Description

Use the SysTick Reload Value Register to specify the start value to load into the current value register when the

counter reaches 0. It can be any value between 0 and 0x00FFFFFF. A start value of 0 is possible, but has no effect

because the SysTick interrupt and COUNTFLAG are activated when counting from 1 to 0. The reset value of this

register is UNKNOWN.

To generate a multi-shot timer with a period of N processor clock cycles, use a RELOAD value of N-1. For example,

if the SysTick interrupt is required every 100 clock pulses, set RELOAD to 99.

Table 89. SYST_RVR

Register
Bits Name Description Type Reset

31:24 Reserved. - - -

23:0 RELOAD Value to load into the SysTick Current Value Register

when the counter reaches 0.

RW 0x000000

M0PLUS: SYST_CVR Register

Offset: 0xe018

Description

Use the SysTick Current Value Register to find the current value in the register. The reset value of this register is

UNKNOWN.

RP2040 Datasheet

2.4. Cortex-M0+ 78

Table 90. SYST_CVR

Register
Bits Name Description Type Reset

31:24 Reserved. - - -

23:0 CURRENT Reads return the current value of the SysTick counter. This

register is write-clear. Writing to it with any value clears

the register to 0. Clearing this register also clears the

COUNTFLAG bit of the SysTick Control and Status

Register.

RW 0x000000

M0PLUS: SYST_CALIB Register

Offset: 0xe01c

Description

Use the SysTick Calibration Value Register to enable software to scale to any required speed using divide and

multiply.

Table 91. SYST_CALIB

Register
Bits Name Description Type Reset

31 NOREF If reads as 1, the Reference clock is not provided - the

CLKSOURCE bit of the SysTick Control and Status register

will be forced to 1 and cannot be cleared to 0.

RO 0x0

30 SKEW If reads as 1, the calibration value for 10ms is inexact (due

to clock frequency).

RO 0x0

29:24 Reserved. - - -

23:0 TENMS An optional Reload value to be used for 10ms (100Hz)

timing, subject to system clock skew errors. If the value

reads as 0, the calibration value is not known.

RO 0x000000

M0PLUS: NVIC_ISER Register

Offset: 0xe100

Description

Use the Interrupt Set-Enable Register to enable interrupts and determine which interrupts are currently enabled.

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an interrupt is not enabled,

asserting its interrupt signal changes the interrupt state to pending, but the NVIC never activates the interrupt,

regardless of its priority.

Table 92. NVIC_ISER

Register
Bits Name Description Type Reset

31:0 SETENA Interrupt set-enable bits.

Write:

0 = No effect.

1 = Enable interrupt.

Read:

0 = Interrupt disabled.

1 = Interrupt enabled.

RW 0x00000000

M0PLUS: NVIC_ICER Register

Offset: 0xe180

Description

Use the Interrupt Clear-Enable Registers to disable interrupts and determine which interrupts are currently enabled.

RP2040 Datasheet

2.4. Cortex-M0+ 79

Table 93. NVIC_ICER

Register
Bits Name Description Type Reset

31:0 CLRENA Interrupt clear-enable bits.

Write:

0 = No effect.

1 = Disable interrupt.

Read:

0 = Interrupt disabled.

1 = Interrupt enabled.

RW 0x00000000

M0PLUS: NVIC_ISPR Register

Offset: 0xe200

Description

The NVIC_ISPR forces interrupts into the pending state, and shows which interrupts are pending.

Table 94. NVIC_ISPR

Register
Bits Name Description Type Reset

31:0 SETPEND Interrupt set-pending bits.

Write:

0 = No effect.

1 = Changes interrupt state to pending.

Read:

0 = Interrupt is not pending.

1 = Interrupt is pending.

Note: Writing 1 to the NVIC_ISPR bit corresponding to:

An interrupt that is pending has no effect.

A disabled interrupt sets the state of that interrupt to

pending.

RW 0x00000000

M0PLUS: NVIC_ICPR Register

Offset: 0xe280

Description

Use the Interrupt Clear-Pending Register to clear pending interrupts and determine which interrupts are currently

pending.

Table 95. NVIC_ICPR

Register
Bits Name Description Type Reset

31:0 CLRPEND Interrupt clear-pending bits.

Write:

0 = No effect.

1 = Removes pending state and interrupt.

Read:

0 = Interrupt is not pending.

1 = Interrupt is pending.

RW 0x00000000

M0PLUS: NVIC_IPR0 Register

Offset: 0xe400

Description

Use the Interrupt Priority Registers to assign a priority from 0 to 3 to each of the available interrupts. 0 is the highest

priority, and 3 is the lowest.

Note: Writing 1 to an NVIC_ICPR bit does not affect the active state of the corresponding interrupt.

These registers are only word-accessible

RP2040 Datasheet

2.4. Cortex-M0+ 80

Table 96. NVIC_IPR0

Register
Bits Name Description Type Reset

31:30 IP_3 Priority of interrupt 3 RW 0x0

29:24 Reserved. - - -

23:22 IP_2 Priority of interrupt 2 RW 0x0

21:16 Reserved. - - -

15:14 IP_1 Priority of interrupt 1 RW 0x0

13:8 Reserved. - - -

7:6 IP_0 Priority of interrupt 0 RW 0x0

5:0 Reserved. - - -

M0PLUS: NVIC_IPR1 Register

Offset: 0xe404

Description

Use the Interrupt Priority Registers to assign a priority from 0 to 3 to each of the available interrupts. 0 is the highest

priority, and 3 is the lowest.

Table 97. NVIC_IPR1

Register
Bits Name Description Type Reset

31:30 IP_7 Priority of interrupt 7 RW 0x0

29:24 Reserved. - - -

23:22 IP_6 Priority of interrupt 6 RW 0x0

21:16 Reserved. - - -

15:14 IP_5 Priority of interrupt 5 RW 0x0

13:8 Reserved. - - -

7:6 IP_4 Priority of interrupt 4 RW 0x0

5:0 Reserved. - - -

M0PLUS: NVIC_IPR2 Register

Offset: 0xe408

Description

Use the Interrupt Priority Registers to assign a priority from 0 to 3 to each of the available interrupts. 0 is the highest

priority, and 3 is the lowest.

Table 98. NVIC_IPR2

Register
Bits Name Description Type Reset

31:30 IP_11 Priority of interrupt 11 RW 0x0

29:24 Reserved. - - -

23:22 IP_10 Priority of interrupt 10 RW 0x0

21:16 Reserved. - - -

15:14 IP_9 Priority of interrupt 9 RW 0x0

13:8 Reserved. - - -

RP2040 Datasheet

2.4. Cortex-M0+ 81

Bits Name Description Type Reset

7:6 IP_8 Priority of interrupt 8 RW 0x0

5:0 Reserved. - - -

M0PLUS: NVIC_IPR3 Register

Offset: 0xe40c

Description

Use the Interrupt Priority Registers to assign a priority from 0 to 3 to each of the available interrupts. 0 is the highest

priority, and 3 is the lowest.

Table 99. NVIC_IPR3

Register
Bits Name Description Type Reset

31:30 IP_15 Priority of interrupt 15 RW 0x0

29:24 Reserved. - - -

23:22 IP_14 Priority of interrupt 14 RW 0x0

21:16 Reserved. - - -

15:14 IP_13 Priority of interrupt 13 RW 0x0

13:8 Reserved. - - -

7:6 IP_12 Priority of interrupt 12 RW 0x0

5:0 Reserved. - - -

M0PLUS: NVIC_IPR4 Register

Offset: 0xe410

Description

Use the Interrupt Priority Registers to assign a priority from 0 to 3 to each of the available interrupts. 0 is the highest

priority, and 3 is the lowest.

Table 100. NVIC_IPR4

Register
Bits Name Description Type Reset

31:30 IP_19 Priority of interrupt 19 RW 0x0

29:24 Reserved. - - -

23:22 IP_18 Priority of interrupt 18 RW 0x0

21:16 Reserved. - - -

15:14 IP_17 Priority of interrupt 17 RW 0x0

13:8 Reserved. - - -

7:6 IP_16 Priority of interrupt 16 RW 0x0

5:0 Reserved. - - -

M0PLUS: NVIC_IPR5 Register

Offset: 0xe414

RP2040 Datasheet

2.4. Cortex-M0+ 82

Description

Use the Interrupt Priority Registers to assign a priority from 0 to 3 to each of the available interrupts. 0 is the highest

priority, and 3 is the lowest.

Table 101. NVIC_IPR5

Register
Bits Name Description Type Reset

31:30 IP_23 Priority of interrupt 23 RW 0x0

29:24 Reserved. - - -

23:22 IP_22 Priority of interrupt 22 RW 0x0

21:16 Reserved. - - -

15:14 IP_21 Priority of interrupt 21 RW 0x0

13:8 Reserved. - - -

7:6 IP_20 Priority of interrupt 20 RW 0x0

5:0 Reserved. - - -

M0PLUS: NVIC_IPR6 Register

Offset: 0xe418

Description

Use the Interrupt Priority Registers to assign a priority from 0 to 3 to each of the available interrupts. 0 is the highest

priority, and 3 is the lowest.

Table 102. NVIC_IPR6

Register
Bits Name Description Type Reset

31:30 IP_27 Priority of interrupt 27 RW 0x0

29:24 Reserved. - - -

23:22 IP_26 Priority of interrupt 26 RW 0x0

21:16 Reserved. - - -

15:14 IP_25 Priority of interrupt 25 RW 0x0

13:8 Reserved. - - -

7:6 IP_24 Priority of interrupt 24 RW 0x0

5:0 Reserved. - - -

M0PLUS: NVIC_IPR7 Register

Offset: 0xe41c

Description

Use the Interrupt Priority Registers to assign a priority from 0 to 3 to each of the available interrupts. 0 is the highest

priority, and 3 is the lowest.

Table 103. NVIC_IPR7

Register
Bits Name Description Type Reset

31:30 IP_31 Priority of interrupt 31 RW 0x0

29:24 Reserved. - - -

23:22 IP_30 Priority of interrupt 30 RW 0x0

21:16 Reserved. - - -

RP2040 Datasheet

2.4. Cortex-M0+ 83

Bits Name Description Type Reset

15:14 IP_29 Priority of interrupt 29 RW 0x0

13:8 Reserved. - - -

7:6 IP_28 Priority of interrupt 28 RW 0x0

5:0 Reserved. - - -

M0PLUS: CPUID Register

Offset: 0xed00

Description

Read the CPU ID Base Register to determine: the ID number of the processor core, the version number of the

processor core, the implementation details of the processor core.

Table 104. CPUID

Register
Bits Name Description Type Reset

31:24 IMPLEMENTER Implementor code: 0x41 = ARM RO 0x41

23:20 VARIANT Major revision number n in the rnpm revision status:

0x0 = Revision 0.

RO 0x0

19:16 ARCHITECTURE Constant that defines the architecture of the processor:

0xC = ARMv6-M architecture.

RO 0xc

15:4 PARTNO Number of processor within family: 0xC60 = Cortex-M0+ RO 0xc60

3:0 REVISION Minor revision number m in the rnpm revision status:

0x1 = Patch 1.

RO 0x1

M0PLUS: ICSR Register

Offset: 0xed04

Description

Use the Interrupt Control State Register to set a pending Non-Maskable Interrupt (NMI), set or clear a pending

PendSV, set or clear a pending SysTick, check for pending exceptions, check the vector number of the highest

priority pended exception, check the vector number of the active exception.

Table 105. ICSR

Register

RP2040 Datasheet

2.4. Cortex-M0+ 84

Bits Name Description Type Reset

31 NMIPENDSET Setting this bit will activate an NMI. Since NMI is the

highest priority exception, it will activate as soon as it is

registered.

NMI set-pending bit.

Write:

0 = No effect.

1 = Changes NMI exception state to pending.

Read:

0 = NMI exception is not pending.

1 = NMI exception is pending.

Because NMI is the highest-priority exception, normally

the processor enters the NMI

exception handler as soon as it detects a write of 1 to this

bit. Entering the handler then clears

this bit to 0. This means a read of this bit by the NMI

exception handler returns 1 only if the

NMI signal is reasserted while the processor is executing

that handler.

RW 0x0

30:29 Reserved. - - -

28 PENDSVSET PendSV set-pending bit.

Write:

0 = No effect.

1 = Changes PendSV exception state to pending.

Read:

0 = PendSV exception is not pending.

1 = PendSV exception is pending.

Writing 1 to this bit is the only way to set the PendSV

exception state to pending.

RW 0x0

27 PENDSVCLR PendSV clear-pending bit.

Write:

0 = No effect.

1 = Removes the pending state from the PendSV

exception.

RW 0x0

26 PENDSTSET SysTick exception set-pending bit.

Write:

0 = No effect.

1 = Changes SysTick exception state to pending.

Read:

0 = SysTick exception is not pending.

1 = SysTick exception is pending.

RW 0x0

25 PENDSTCLR SysTick exception clear-pending bit.

Write:

0 = No effect.

1 = Removes the pending state from the SysTick

exception.

This bit is WO. On a register read its value is Unknown.

RW 0x0

24 Reserved. - - -

RP2040 Datasheet

2.4. Cortex-M0+ 85

Bits Name Description Type Reset

23 ISRPREEMPT The system can only access this bit when the core is

halted. It indicates that a pending interrupt is to be taken

in the next running cycle. If C_MASKINTS is clear in the

Debug Halting Control and Status Register, the interrupt is

serviced.

RO 0x0

22 ISRPENDING External interrupt pending flag RO 0x0

21 Reserved. - - -

20:12 VECTPENDING Indicates the exception number for the highest priority

pending exception: 0 = no pending exceptions. Non zero =

The pending state includes the effect of memory-mapped

enable and mask registers. It does not include the

PRIMASK special-purpose register qualifier.

RO 0x000

11:9 Reserved. - - -

8:0 VECTACTIVE Active exception number field. Reset clears the

VECTACTIVE field.

RO 0x000

M0PLUS: VTOR Register

Offset: 0xed08

Description

The VTOR holds the vector table offset address.

Table 106. VTOR

Register
Bits Name Description Type Reset

31:8 TBLOFF Bits [31:8] of the indicate the vector table offset address. RW 0x000000

7:0 Reserved. - - -

M0PLUS: AIRCR Register

Offset: 0xed0c

Description

Use the Application Interrupt and Reset Control Register to: determine data endianness, clear all active state

information from debug halt mode, request a system reset.

Table 107. AIRCR

Register
Bits Name Description Type Reset

31:16 VECTKEY Register key:

Reads as Unknown

On writes, write 0x05FA to VECTKEY, otherwise the write

is ignored.

RW 0x0000

15 ENDIANESS Data endianness implemented:

0 = Little-endian.

RO 0x0

14:3 Reserved. - - -

RP2040 Datasheet

2.4. Cortex-M0+ 86

Bits Name Description Type Reset

2 SYSRESETREQ Writing 1 to this bit causes the SYSRESETREQ signal to

the outer system to be asserted to request a reset. The

intention is to force a large system reset of all major

components except for debug. The C_HALT bit in the

DHCSR is cleared as a result of the system reset

requested. The debugger does not lose contact with the

device.

RW 0x0

1 VECTCLRACTIVE Clears all active state information for fixed and

configurable exceptions. This bit: is self-clearing, can only

be set by the DAP when the core is halted. When set:

clears all active exception status of the processor, forces

a return to Thread mode, forces an IPSR of 0. A debugger

must re-initialize the stack.

RW 0x0

0 Reserved. - - -

M0PLUS: SCR Register

Offset: 0xed10

Description

System Control Register. Use the System Control Register for power-management functions: signal to the system

when the processor can enter a low power state, control how the processor enters and exits low power states.

Table 108. SCR

Register
Bits Name Description Type Reset

31:5 Reserved. - - -

4 SEVONPEND Send Event on Pending bit:

0 = Only enabled interrupts or events can wakeup the

processor, disabled interrupts are excluded.

1 = Enabled events and all interrupts, including disabled

interrupts, can wakeup the processor.

When an event or interrupt becomes pending, the event

signal wakes up the processor from WFE. If the

processor is not waiting for an event, the event is

registered and affects the next WFE.

The processor also wakes up on execution of an SEV

instruction or an external event.

RW 0x0

3 Reserved. - - -

2 SLEEPDEEP Controls whether the processor uses sleep or deep sleep

as its low power mode:

0 = Sleep.

1 = Deep sleep.

RW 0x0

1 SLEEPONEXIT Indicates sleep-on-exit when returning from Handler mode

to Thread mode:

0 = Do not sleep when returning to Thread mode.

1 = Enter sleep, or deep sleep, on return from an ISR to

Thread mode.

Setting this bit to 1 enables an interrupt driven application

to avoid returning to an empty main application.

RW 0x0

0 Reserved. - - -

RP2040 Datasheet

2.4. Cortex-M0+ 87

M0PLUS: CCR Register

Offset: 0xed14

Description

The Configuration and Control Register permanently enables stack alignment and causes unaligned accesses to

result in a Hard Fault.

Table 109. CCR

Register
Bits Name Description Type Reset

31:10 Reserved. - - -

9 STKALIGN Always reads as one, indicates 8-byte stack alignment on

exception entry. On exception entry, the processor uses

bit[9] of the stacked PSR to indicate the stack alignment.

On return from the exception it uses this stacked bit to

restore the correct stack alignment.

RO 0x0

8:4 Reserved. - - -

3 UNALIGN_TRP Always reads as one, indicates that all unaligned accesses

generate a HardFault.

RO 0x0

2:0 Reserved. - - -

M0PLUS: SHPR2 Register

Offset: 0xed1c

Description

System handlers are a special class of exception handler that can have their priority set to any of the priority levels.

Use the System Handler Priority Register 2 to set the priority of SVCall.

Table 110. SHPR2

Register
Bits Name Description Type Reset

31:30 PRI_11 Priority of system handler 11, SVCall RW 0x0

29:0 Reserved. - - -

M0PLUS: SHPR3 Register

Offset: 0xed20

Description

System handlers are a special class of exception handler that can have their priority set to any of the priority levels.

Use the System Handler Priority Register 3 to set the priority of PendSV and SysTick.

Table 111. SHPR3

Register
Bits Name Description Type Reset

31:30 PRI_15 Priority of system handler 15, SysTick RW 0x0

29:24 Reserved. - - -

23:22 PRI_14 Priority of system handler 14, PendSV RW 0x0

21:0 Reserved. - - -

M0PLUS: SHCSR Register

Offset: 0xed24

RP2040 Datasheet

2.4. Cortex-M0+ 88

Description

Use the System Handler Control and State Register to determine or clear the pending status of SVCall.

Table 112. SHCSR

Register
Bits Name Description Type Reset

31:16 Reserved. - - -

15 SVCALLPENDED Reads as 1 if SVCall is Pending. Write 1 to set pending

SVCall, write 0 to clear pending SVCall.

RW 0x0

14:0 Reserved. - - -

M0PLUS: MPU_TYPE Register

Offset: 0xed90

Description

Read the MPU Type Register to determine if the processor implements an MPU, and how many regions the MPU

supports.

Table 113. MPU_TYPE

Register
Bits Name Description Type Reset

31:24 Reserved. - - -

23:16 IREGION Instruction region. Reads as zero as ARMv6-M only

supports a unified MPU.

RO 0x00

15:8 DREGION Number of regions supported by the MPU. RO 0x08

7:1 Reserved. - - -

0 SEPARATE Indicates support for separate instruction and data

address maps. Reads as 0 as ARMv6-M only supports a

unified MPU.

RO 0x0

M0PLUS: MPU_CTRL Register

Offset: 0xed94

Description

Use the MPU Control Register to enable and disable the MPU, and to control whether the default memory map is

enabled as a background region for privileged accesses, and whether the MPU is enabled for HardFaults and NMIs.

Table 114. MPU_CTRL

Register
Bits Name Description Type Reset

31:3 Reserved. - - -

2 PRIVDEFENA Controls whether the default memory map is enabled as a

background region for privileged accesses. This bit is

ignored when ENABLE is clear.

0 = If the MPU is enabled, disables use of the default

memory map. Any memory access to a location not

covered by any enabled region causes a fault.

1 = If the MPU is enabled, enables use of the default

memory map as a background region for privileged

software accesses.

When enabled, the background region acts as if it is region

number -1. Any region that is defined and enabled has

priority over this default map.

RW 0x0

RP2040 Datasheet

2.4. Cortex-M0+ 89

Bits Name Description Type Reset

1 HFNMIENA Controls the use of the MPU for HardFaults and NMIs.

Setting this bit when ENABLE is clear results in

UNPREDICTABLE behaviour.

When the MPU is enabled:

0 = MPU is disabled during HardFault and NMI handlers,

regardless of the value of the ENABLE bit.

1 = the MPU is enabled during HardFault and NMI

handlers.

RW 0x0

0 ENABLE Enables the MPU. If the MPU is disabled, privileged and

unprivileged accesses use the default memory map.

0 = MPU disabled.

1 = MPU enabled.

RW 0x0

M0PLUS: MPU_RNR Register

Offset: 0xed98

Description

Use the MPU Region Number Register to select the region currently accessed by MPU_RBAR and MPU_RASR.

Table 115. MPU_RNR

Register
Bits Name Description Type Reset

31:4 Reserved. - - -

3:0 REGION Indicates the MPU region referenced by the MPU_RBAR

and MPU_RASR registers.

The MPU supports 8 memory regions, so the permitted

values of this field are 0-7.

RW 0x0

M0PLUS: MPU_RBAR Register

Offset: 0xed9c

Description

Read the MPU Region Base Address Register to determine the base address of the region identified by MPU_RNR.

Write to update the base address of said region or that of a specified region, with whose number MPU_RNR will also

be updated.

Table 116. MPU_RBAR

Register
Bits Name Description Type Reset

31:8 ADDR Base address of the region. RW 0x000000

7:5 Reserved. - - -

RP2040 Datasheet

2.4. Cortex-M0+ 90

Bits Name Description Type Reset

4 VALID On writes, indicates whether the write must update the

base address of the region identified by the REGION field,

updating the MPU_RNR to indicate this new region.

Write:

0 = MPU_RNR not changed, and the processor:

Updates the base address for the region specified in the

MPU_RNR.

Ignores the value of the REGION field.

1 = The processor:

Updates the value of the MPU_RNR to the value of the

REGION field.

Updates the base address for the region specified in the

REGION field.

Always reads as zero.

RW 0x0

3:0 REGION On writes, specifies the number of the region whose base

address to update provided VALID is set written as 1. On

reads, returns bits [3:0] of MPU_RNR.

RW 0x0

M0PLUS: MPU_RASR Register

Offset: 0xeda0

Description

Use the MPU Region Attribute and Size Register to define the size, access behaviour and memory type of the region

identified by MPU_RNR, and enable that region.

Table 117. MPU_RASR

Register
Bits Name Description Type Reset

31:16 ATTRS The MPU Region Attribute field. Use to define the region

attribute control.

28 = XN: Instruction access disable bit:

0 = Instruction fetches enabled.

1 = Instruction fetches disabled.

26:24 = AP: Access permission field

18 = S: Shareable bit

17 = C: Cacheable bit

16 = B: Bufferable bit

RW 0x0000

15:8 SRD Subregion Disable. For regions of 256 bytes or larger, each

bit of this field controls whether one of the eight equal

subregions is enabled.

RW 0x00

7:6 Reserved. - - -

5:1 SIZE Indicates the region size. Region size in bytes =

2^(SIZE+1). The minimum permitted value is 7 (b00111) =

256Bytes

RW 0x00

0 ENABLE Enables the region. RW 0x0

2.5. DMA

The RP2040 Direct Memory Access (DMA) controller has separate read and write master connections to the bus fabric,

and performs bulk data transfers on a processor’s behalf. This leaves processors free to attend to other tasks, or enter

low-power sleep states. The data throughput of the DMA is also significantly higher than one of RP2040’s processors.

RP2040 Datasheet

2.5. DMA 91

Figure 12. DMA

Architecture Overview.

The read master can

read data from some

address every clock

cycle. Likewise, the

write master can write

to another address.

The address generator

produces matched

pairs of read and write

addresses, which the

masters consume

through the address

FIFOs. Up to 12

transfer sequences

may be in progress

simultaneously,

supervised by

software via the

control and status

registers.

The DMA can perform one read access and one write access, up to 32 bits in size, every clock cycle. There are 12

independent channels, each which supervise a sequence of bus transfers, usually in one of the following scenarios:

• Memory-to-peripheral: a peripheral signals the DMA when it needs more data to transmit. The DMA reads data from

an array in RAM or flash, and writes to the peripheral’s data FIFO.

• Peripheral-to-memory: a peripheral signals the DMA when it has received data. The DMA reads this data from the

peripheral’s data FIFO, and writes it to an array in RAM.

• Memory-to-memory: the DMA transfers data between two buffers in RAM, as fast as possible.

Each channel has its own control and status registers (CSRs), with which software can program and monitor the

channel’s progress. When multiple channels are active at the same time, the DMA shares bandwidth evenly between the

channels, with round-robin over all channels which are currently requesting data transfers.

The transfer size can be either 32, 16, or 8 bits. This is configured once per channel: source transfer size and

destination transfer size are the same. The DMA performs standard byte lane replication on narrow writes, so byte data

is available in all 4 bytes of the databus, and halfword data in both halfwords.

Channels can be combined in varied ways for more sophisticated behaviour and greater autonomy. For example, one

channel can configure another, loading configuration data from a sequence of control blocks in memory, and the

second can then call back to the first via the CHAIN_TO option, when it needs to be reconfigured.

Making the DMA more autonomous means that much less processor supervision is required: overall this allows the

system to do more at once, or to dissipate less power.

2.5.1. Configuring Channels

Each channel has four control/status registers:

• READ_ADDR is a pointer to the next address to be read from

• WRITE_ADDR is a pointer to the next address to be written to

• TRANS_COUNT shows the number of transfers remaining in the current transfer sequence, and is used to program the

number of transfers in the next transfer sequence (see Section 2.5.1.2).

• CTRL is used to configure all other aspects of the channel’s behaviour, to enable/disable it, and to check for

completion.

These are live registers: they update continuously as the channel progresses.

2.5.1.1. Read and Write Addresses

READ_ADDR and WRITE_ADDR contain the address the channel will next read from, and write to, respectively. These registers

update automatically after each read/write access. They increment by 1, 2 or 4 bytes at a time, depending on the

transfer size configured in CTRL.

Software should generally program these registers with new start addresses each time a new transfer sequence starts.

If READ_ADDR and WRITE_ADDR are not reprogrammed, the DMA will use the current values as start addresses for the next

transfer. For example:

RP2040 Datasheet

2.5. DMA 92

• If the address does not increment (e.g. it is the address of a peripheral FIFO), and the next transfer sequence is

to/from that same address, there is no need to write to the register again.

• When transferring to/from a consecutive series of buffers in memory (e.g. scattering and gathering), an address

register will already have incremented to the start of the next buffer at the completion of a transfer.

By not programming all four CSRs for each transfer sequence, software can use shorter interrupt handlers, and more

compact control block formats when used with channel chaining (see register aliases in Section 2.5.2.1, chaining in

Section 2.5.2.2).

 CAUTION

READ_ADDR and WRITE_ADDR must always be aligned to the current transfer size, as specified in CTRL.DATA_SIZE. It is up to

software to ensure the initial values are correctly aligned.

2.5.1.2. Transfer Count

Reading from TRANS_COUNT yields the number of transfers remaining in the current transfer sequence. This value updates

continuously as the channel progresses. Writing to TRANS_COUNT sets the length of the next transfer sequence. Up to 232-1

transfers can be performed in one sequence.

Each time the channel starts a new transfer sequence, the most recent value written to TRANS_COUNT is copied to the live

transfer counter, which will then start to decrement again as the new transfer sequence makes progress. For debugging

purposes, the last value written can be read from the DBG_TCR (TRANS_COUNT reload value) register.

If the channel is triggered multiple times without intervening writes to TRANS_COUNT, it performs the same number of

transfers each time. For example, when chained to, one channel might load a fixed-size control block into another

channel’s CSRs. TRANS_COUNT would be programmed once by software, and then reload automatically every time.

Alternatively, TRANS_COUNT can be written with a new value before starting each transfer sequence. If TRANS_COUNT is the

channel trigger (see Section 2.5.2.1), the channel will start immediately, and the value just written will be used, not the

value currently in the reload register.

 NOTE

The TRANS_COUNT is the number of transfers to be performed. The total number of bytes transferred is TRANS_COUNT

times the size of each transfer in bytes, given by CTRL.DATA_SIZE.

2.5.1.3. Control/Status

The CTRL register has more, smaller fields than the other 3 registers, and full details of these are given in the CTRL register

listings. Among other things, CTRL is used to:

• Configure the size of this channel’s data transfers, via CTRL.DATA_SIZE. Reads and writes are the same size.

• Configure if and how READ_ADDR and WRITE_ADDR increment after each read or write, via CTRL.INCR_WRITE, CTRL.INCR_READ,

CTRL.RING_SEL, CTRL.RING_SIZE. Ring transfers are available, where one of the address pointers wraps at some power-

of-2 boundary.

• Select another channel (or none) to be triggered when this channel completes, via CTRL.CHAIN_TO.

• Select a peripheral data request (DREQ) signal to pace this channel’s transfers, via CTRL.TREQ_SEL.

• See when the channel is idle, via CTRL.BUSY.

• See if the channel has encountered a bus error, e.g. due to a faulty address being accessed, via CTRL.AHB_ERROR,

CTRL.READ_ERROR, or CTRL.WRITE_ERROR.

RP2040 Datasheet

2.5. DMA 93

2.5.2. Starting Channels

There are three ways to start a channel:

• Writing to a channel trigger register

• A chain trigger from another channel which has just completed, and has its CHAIN_TO field configured

• The MULTI_CHAN_TRIGGER register, which can start multiple channels at once

Each of these covers different use cases. For example, trigger registers are simple and efficient when configuring and

starting a channel in an interrupt service routine, and CHAIN_TO allows one channel to callback to another channel,

which can then reconfigure the first channel.

 NOTE

Triggering a channel which is already running has no effect.

2.5.2.1. Aliases and Triggers

Table 118. Control

register aliases. Each

channel has four

control/status

registers. Each

register can be

accessed at multiple

different addresses. In

each naturally-aligned

group of four, all four

registers appear, in

different orders.

Offset +0x0 +0x4 +0x8 +0xC (Trigger)

0x00 (Alias 0) READ_ADDR WRITE_ADDR TRANS_COUNT CTRL_TRIG

0x10 (Alias 1) CTRL READ_ADDR WRITE_ADDR TRANS_COUNT_TRIG

0x20 (Alias 2) CTRL TRANS_COUNT READ_ADDR WRITE_ADDR_TRIG

0x30 (Alias 3) CTRL WRITE_ADDR TRANS_COUNT READ_ADD_TRIG

The four CSRs are aliased multiple times in memory. Each alias — of which there are four — exposes the same four

physical registers, but in a different order. The final register in each alias (at offset +0xC, highlighted) is a trigger register.

Writing to the trigger register starts the channel.

Often, only alias 0 is used, and aliases 1-3 can be ignored. The channel is configured and started by writing READ_ADDR,

WRITE_ADDR, TRANS_COUNT and finally CTRL. Since CTRL is the trigger register in alias 0, this starts the channel.

The other aliases allow more compact control block lists when using one channel to configure another, and more

efficient reconfiguration and launch in interrupt handlers:

• Each CSR is a trigger register in one of the aliases:

◦ When gathering fixed-size buffers into a peripheral, the DMA channel can be configured and launched by

writing only READ_ADDR_TRIG.

◦ When scattering from a peripheral to fixed-size buffers, the channel can be configured and launched by

writing only WRITE_ADDR_TRIG.

• Useful combinations of registers appear as naturally-aligned tuples which contain a trigger register. In conjunction

with channel chaining and address wrapping, these implement compressed control block formats, e.g.:

◦ (WRITE_ADDR, TRANS_COUNT_TRIG) for peripheral scatter operations

◦ (TRANS_COUNT, READ_ADDR_TRIG) for peripheral gather operations, or calculating CRCs on a list of buffers

◦ (READ_ADDR, WRITE_ADDR_TRIG) for manipulating fixed-size buffers in memory

Trigger registers do not start the channel if:

• The channel is disabled via CTRL.EN. (If the trigger is CTRL, the just-written value of EN is used, not the value currently

in the CTRL register.)

• The channel is already running

RP2040 Datasheet

2.5. DMA 94

• The value 0 is written to the trigger register. (This is useful for ending control block chains. See null triggers,

Section 2.5.2.3)

2.5.2.2. Chaining

When a channel completes, it can name a different channel to immediately be triggered. This can be used as a callback

for the second channel to reconfigure and restart the first.

This feature is configured through the CHAIN_TO field in the channel CTRL register. This 4-bit value selects a channel that

will start when this one finishes. A channel can not chain to itself. Setting CHAIN_TO to a channel’s own index means no

chaining will take place.

Chain triggers behave the same as triggers from other sources, such as trigger registers. For example, they cause

TRANS_COUNT to reload, and they are ignored if the targeted channel is already running.

One application for CHAIN_TO is for a channel to request reconfiguration by another channel, from a sequence of control

blocks in memory. Channel A is configured to perform a wrapped transfer from memory to channel B’s control registers

(including a trigger register), and channel B is configured to chain back to channel A when it completes each transfer

sequence. This is shown more explicitly in the DMA control blocks example (Section 2.5.6.2).

Use of the register aliases (Section 2.5.2.1) enables compact formats for DMA control blocks: as little as one word in

some cases.

Another use of chaining is a "ping-pong" configuration, where two channels each trigger one another. The processor can

respond to the channel completion interrupts, and reconfigure each channel after it completes; however, the chained

channel, which has already been configured, starts immediately. In other words, channel configuration and channel

operation are pipelined. Performance can improve dramatically where many short transfer sequences are required.

The Section 2.5.6 goes into more detail on the possibilities of chain triggers, in the real world.

2.5.2.3. Null Triggers and Chain Interrupts

As mentioned in Section 2.5.2.1, writing all-zeroes to a trigger register does not start the channel. This is called a null

trigger, and it has two purposes:

• Cause a halt at the end of an array of control blocks, by appending an all-zeroes block

• Reduce the number of interrupts generated when control blocks are used

By default, a channel will generate an interrupt each time it finishes a transfer sequence, unless that channel’s IRQ is

masked in INTE0 or INTE1. The rate of interrupts can be excessive, particularly as processor attention is generally not

required while a sequence of control blocks are in progress; however, processor attention is required at the end of a

chain.

The channel CTRL register has a field called IRQ_QUIET. Its default value is 0. When this set to 1, channels generate an

interrupt when they receive a null trigger, and at no other time. The interrupt is generated by the channel which receives

the trigger.

2.5.3. Data Request (DREQ)

Peripherals produce or consume data at their own pace. If the DMA simply transferred data as fast as possible, loss or

corruption of data would ensue. DREQs are a communication channel between peripherals and the DMA, which enables

the DMA to pace transfers according to the needs of the peripheral.

The CTRL.TREQ_SEL (transfer request) field selects an external DREQ. It can also be used to select one of the internal

pacing timers, or select no TREQ at all (the transfer proceeds as fast as possible), e.g. for memory-to-memory transfers.

RP2040 Datasheet

2.5. DMA 95

2.5.3.1. System DREQ Table

There is a global assignment of DREQ numbers to peripheral DREQ channels.

Table 119. DREQs
DREQ DREQ Channel DREQ DREQ Channel DREQ DREQ Channel DREQ DREQ Channel

0 DREQ_PIO0_TX0 10 DREQ_PIO1_TX2 20 DREQ_UART0_TX 30 DREQ_PWM_WRAP6

1 DREQ_PIO0_TX1 11 DREQ_PIO1_TX3 21 DREQ_UART0_RX 31 DREQ_PWM_WRAP7

2 DREQ_PIO0_TX2 12 DREQ_PIO1_RX0 22 DREQ_UART1_TX 32 DREQ_I2C0_TX

3 DREQ_PIO0_TX3 13 DREQ_PIO1_RX1 23 DREQ_UART1_RX 33 DREQ_I2C0_RX

4 DREQ_PIO0_RX0 14 DREQ_PIO1_RX2 24 DREQ_PWM_WRAP0 34 DREQ_I2C1_TX

5 DREQ_PIO0_RX1 15 DREQ_PIO1_RX3 25 DREQ_PWM_WRAP1 35 DREQ_I2C1_RX

6 DREQ_PIO0_RX2 16 DREQ_SPI0_TX 26 DREQ_PWM_WRAP2 36 DREQ_ADC

7 DREQ_PIO0_RX3 17 DREQ_SPI0_RX 27 DREQ_PWM_WRAP3 37 DREQ_XIP_STREAM

8 DREQ_PIO1_TX0 18 DREQ_SPI1_TX 28 DREQ_PWM_WRAP4 38 DREQ_XIP_SSITX

9 DREQ_PIO1_TX1 19 DREQ_SPI1_RX 29 DREQ_PWM_WRAP5 39 DREQ_XIP_SSIRX

2.5.3.2. Credit-based DREQ Scheme

The RP2040 DMA is designed for systems where:

• The area and power cost of large peripheral data FIFOs is prohibitive

• The bandwidth demands of individual peripherals may be high, e.g. >50% bus injection rate for short periods

• Bus latency is low, but multiple masters may be competing for bus access

In addition, the DMA’s transfer FIFOs and dual-master structure permit multiple accesses to the same peripheral to be in

flight at once, to improve gross throughput. Choice of DREQ mechanism is therefore critical:

• The traditional "turn on the tap" method can cause overflow if multiple writes are backed up in the TDF. Some

systems solve this by overprovisioning peripheral FIFOs and setting the DREQ threshold below the full level, but

this wastes precious area and power

• The ARM-style single and burst handshake does not permit additional requests to be registered while the current

request is being served. This limits performance when FIFOs are very shallow.

The RP2040 DMA uses a credit-based DREQ mechanism. For each peripheral, the DMA attempts to keep as many

transfers in flight as the peripheral has capacity for. This enables full bus throughput (1 word per clock) through an 8-

deep peripheral FIFO with no possibility of overflow or underflow, in the absence of fabric latency or contention.

For each channel, the DMA maintains a counter. Each 1-clock pulse on the dreq signal will increment this counter

(saturating). When nonzero, the channel requests a transfer from the DMA’s internal arbiter, and the counter is

decremented when the transfer is issued to the address FIFOs. At this point the transfer is in flight, but has not yet

necessarily completed.

clk

1 1 20 0

dreq

chan count

chan issue

1

Figure 13. DREQ

counting

The effect is to upper bound the number of in-flight transfers based on the amount of room or data available in the

peripheral FIFO. In the steady state, this gives maximum throughput, but can’t underflow or underflow.

One caveat is that the user must not access a FIFO which is currently being serviced by the DMA. This causes the

RP2040 Datasheet

2.5. DMA 96

channel and peripheral to become desynchronised, and can cause corruption or loss of data.

Another caveat is that multiple channels should not be connected to the same DREQ.

2.5.4. Interrupts

Each channel can generate interrupts; these can be masked on a per-channel basis using the INTE0 or INTE1 registers.

There are two circumstances where a channel raises an interrupt request:

• On the completion of each transfer sequence, if CTRL.IRQ_QUIET is disabled

• On receiving a null trigger, if CTRL.IRQ_QUIET is enabled

The masked interrupt status is visible in the INTS registers; there is one bit for each channel. Interrupts are cleared by

writing a bit mask to INTS. One idiom for acknowledging interrupts is to read INTS and then write the same value back,

so only enabled interrupts are cleared.

The RP2040 DMA provides two system IRQs, with independent masking and status registers (e.g. INTE0, INTE1). Any

combination of channel interrupt requests can be routed to either system IRQ. For example:

• Some channels can be given a higher priority in the system interrupt controller, if they have particularly tight timing

requirements

• In multiprocessor systems, different channel interrupts can be routed independently to different cores

For debugging purposes, the INTF registers can force either IRQ to be asserted.

2.5.5. Additional Features

2.5.5.1. Pacing Timers

These allow transfer of data roughly once every n clk_sys clocks instead of using external peripheral DREQ to trigger

transfers. A fractional (X/Y) divider is used, and will generate a maximum of 1 request per clk_sys cycle.

There are 4 timers available in RP2040. Each DMA is able to select any of these in CTRL.TREQ_SEL.

2.5.5.2. CRC Calculation

The DMA can watch data from a given channel passing through the data FIFO, and calculate checksums based on this

data. This a purely passive affair: the data is not altered by this hardware, only observed.

The feature is controlled via the SNIFF_CTRL and SNIFF_DATA registers, and can be enabled/disabled per DMA transfer via

the CTRL.SNIFF_EN field.

As this hardware cannot place backpressure on the FIFO, it must keep up with the DMA’s maximum transfer rate of 32

bits per clock.

The supported checksums are:

• CRC-32, MSB-first and LSB-first

• CRC-16-CCITT, MSB-first and LSB-first

• Simple summation (add to 32-bit accumulator)

• Even parity

The result register is both readable and writable, so that the initial seed value can be set.

Bit/byte manipulations are available on the result which may aid specific use cases:

RP2040 Datasheet

2.5. DMA 97

• Bit inversion

• Bit reversal

• Byte swap

These manipulations do not affect the CRC calculation, just how the data is presented in the result register.

2.5.5.3. Channel Abort

It is possible for a channel to get into an irrecoverable state: e.g. if commanded to transfer more data than a peripheral

will ever request, it will never complete. Clearing the CTRL.EN bit merely pauses the channel, and does not solve the

problem. This should not occur under normal circumstances, but it is important that there is a mechanism to recover

without simply hard-resetting the entire DMA block.

The CHAN_ABORT register forces channels to complete early. There is one bit for each channel, and writing a 1

terminates that channel. This clears the transfer counter and forces the channel into an inactive state.

 CAUTION

Due to RP2040-E13, aborting a DMA channel that is making progress (i.e. not stalled on an inactive DREQ) may

cause a completion IRQ to assert. The channel interrupt enable should be cleared before performing the abort, and

the interrupt should be checked and cleared after the abort.

At the time an abort is triggered, a channel may have bus transfers currently in flight between the read and write master,

and these transfers cannot be revoked. The CTRL.BUSY flag stays high until these transfers complete, and the channel

reaches a safe state, which generally takes only a few cycles. The channel must not be restarted until its CTRL.BUSY flag

deasserts. Starting a new sequence of transfers whilst transfers from an old sequence are still in flight can lead to

unpredictable behaviour.

2.5.5.4. Debug

Debug registers are available for each DMA channel to show the dreq counter DBG_CTDREQ and next transfer count DBG_TCR.

These can also be used to reset a DMA channel if required.

2.5.6. Example Use Cases

2.5.6.1. Using Interrupts to Reconfigure a Channel

When a channel finishes a block of transfers, it becomes available for making more transfers. Software detects that the

channel is no longer busy, and reconfigures and restarts the channel. One approach is to poll the CTRL_BUSY bit until the

channel is done, but this loses one of the key advantages of the DMA, namely that it does not have to operate in

lockstep with a processor. By setting the correct bit in INTE0 or INTE1, we can instruct the DMA to raise one of its two

interrupt request lines when a given channel completes. Rather than repeatedly asking if a channel is done, we are told.

 NOTE

Having two system interrupt lines allows different channel completion interrupts to be routed to different cores, or to

preempt one another on the same core if one channel is more time-critical.

When the interrupt is asserted, the processor can be configured to drop whatever it is doing and call a user-specified

handler function. The handler can reconfigure and restart the channel. When the handler exits, the processor returns to

the interrupted code running in the foreground.

RP2040 Datasheet

2.5. DMA 98

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/dma/channel_irq/channel_irq.c Lines 35 - 52

35 void dma_handler() {
36 static int pwm_level = 0;
37 static uint32_t wavetable[N_PWM_LEVELS];
38 static bool first_run = true;
39 // Entry number `i` has `i` one bits and `(32 - i)` zero bits.
40 if (first_run) {
41 first_run = false;
42 for (int i = 0; i < N_PWM_LEVELS; ++i)
43 wavetable[i] = ~(~0u << i);
44 }
45
46 // Clear the interrupt request.
47 dma_hw->ints0 = 1u << dma_chan;
48 // Give the channel a new wave table entry to read from, and re-trigger it
49 dma_channel_set_read_addr(dma_chan, &wavetable[pwm_level], true);
50
51 pwm_level = (pwm_level + 1) % N_PWM_LEVELS;
52 }

In many cases, most of the configuration can be done the first time the channel is started, and only addresses and

transfer lengths need reprogramming in the DMA handler.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/dma/channel_irq/channel_irq.c Lines 54 - 94

54 int main() {
55 #ifndef PICO_DEFAULT_LED_PIN
56 #warning dma/channel_irq example requires a board with a regular LED
57 #else
58 // Set up a PIO state machine to serialise our bits
59 uint offset = pio_add_program(pio0, &pio_serialiser_program);
60 pio_serialiser_program_init(pio0, 0, offset, PICO_DEFAULT_LED_PIN, PIO_SERIAL_CLKDIV);
61
62 // Configure a channel to write the same word (32 bits) repeatedly to PIO0
63 // SM0's TX FIFO, paced by the data request signal from that peripheral.
64 dma_chan = dma_claim_unused_channel(true);
65 dma_channel_config c = dma_channel_get_default_config(dma_chan);
66 channel_config_set_transfer_data_size(&c, DMA_SIZE_32);
67 channel_config_set_read_increment(&c, false);
68 channel_config_set_dreq(&c, DREQ_PIO0_TX0);
69
70 dma_channel_configure(
71 dma_chan,
72 &c,
73 &pio0_hw->txf[0], // Write address (only need to set this once)
74 NULL, // Don't provide a read address yet
75 PWM_REPEAT_COUNT, // Write the same value many times, then halt and interrupt
76 false // Don't start yet
77);
78
79 // Tell the DMA to raise IRQ line 0 when the channel finishes a block
80 dma_channel_set_irq0_enabled(dma_chan, true);
81
82 // Configure the processor to run dma_handler() when DMA IRQ 0 is asserted
83 irq_set_exclusive_handler(DMA_IRQ_0, dma_handler);
84 irq_set_enabled(DMA_IRQ_0, true);
85
86 // Manually call the handler once, to trigger the first transfer
87 dma_handler();
88
89 // Everything else from this point is interrupt-driven. The processor has

RP2040 Datasheet

2.5. DMA 99

https://github.com/raspberrypi/pico-examples/blob/master/dma/channel_irq/channel_irq.c#L35-L52
https://github.com/raspberrypi/pico-examples/blob/master/dma/channel_irq/channel_irq.c#L54-L94

90 // time to sit and think about its early retirement -- maybe open a bakery?
91 while (true)
92 tight_loop_contents();
93 #endif
94 }

One disadvantage of this technique is that we don’t start to reconfigure the channel until some time after the channel

makes its last transfer. If there is heavy interrupt activity on the processor, this may be quite a long time, and therefore

quite a large gap in transfers, which is problematic if we need to sustain a high data throughput.

This is solved by using two channels, with their CHAIN_TO fields crossed over, so that channel A triggers channel B when it

completes, and vice versa. At any point in time, one of the channels is transferring data, and the other is either already

configured to start the next transfer immediately when the current one finishes, or it is in the process of being

reconfigured. When channel A completes, it immediately starts the cued-up transfer on channel B. At the same time, the

interrupt is fired, and the handler reconfigures channel A so that it is ready for when channel B completes.

2.5.6.2. DMA Control Blocks

Frequently, multiple smaller buffers must be gathered together and sent to the same peripheral. To address this use

case, the RP2040 DMA can execute a long and complex sequence of transfers without processor control. One channel

repeatedly reconfigures a second channel, and the second channel restarts the first each time it completes block of

transfers.

Because the first DMA channel is transferring data directly from memory to the second channel’s control registers, the

format of the control blocks in memory must match those registers. The last register written to, each time, will be one of

the trigger registers (Section 2.5.2.1) which will start the second channel on its programmed block of transfers. The

register aliases (Section 2.5.2.1) give some flexibility for the block layout, and more importantly allow some registers to

be omitted from the blocks, so they occupy less memory and can be loaded more quickly.

This example shows how multiple buffers can be gathered and transferred to the UART, by reprogramming TRANS_COUNT

and READ_ADDR_TRIG:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/dma/control_blocks/control_blocks.c

 1 /**
 2 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
 3 *
 4 * SPDX-License-Identifier: BSD-3-Clause
 5 */
 6
 7 // Use two DMA channels to make a programmed sequence of data transfers to the
 8 // UART (a data gather operation). One channel is responsible for transferring
 9 // the actual data, the other repeatedly reprograms that channel.
 10
 11 #include <stdio.h>
 12 #include "pico/stdlib.h"
 13 #include "hardware/dma.h"
 14 #include "hardware/structs/uart.h"
 15
 16 // These buffers will be DMA'd to the UART, one after the other.
 17
 18 const char word0[] = "Transferring ";
 19 const char word1[] = "one ";
 20 const char word2[] = "word ";
 21 const char word3[] = "at ";
 22 const char word4[] = "a ";
 23 const char word5[] = "time.\n";
 24
 25 // Note the order of the fields here: it's important that the length is before

RP2040 Datasheet

2.5. DMA 100

https://github.com/raspberrypi/pico-examples/blob/master/dma/control_blocks/control_blocks.c

 26 // the read address, because the control channel is going to write to the last
 27 // two registers in alias 3 on the data channel:
 28 // +0x0 +0x4 +0x8 +0xC (Trigger)
 29 // Alias 0: READ_ADDR WRITE_ADDR TRANS_COUNT CTRL
 30 // Alias 1: CTRL READ_ADDR WRITE_ADDR TRANS_COUNT
 31 // Alias 2: CTRL TRANS_COUNT READ_ADDR WRITE_ADDR
 32 // Alias 3: CTRL WRITE_ADDR TRANS_COUNT READ_ADDR
 33 //
 34 // This will program the transfer count and read address of the data channel,
 35 // and trigger it. Once the data channel completes, it will restart the
 36 // control channel (via CHAIN_TO) to load the next two words into its control
 37 // registers.
 38
 39 const struct {uint32_t len; const char *data;} control_blocks[] = {
 40 {count_of(word0) - 1, word0}, // Skip null terminator
 41 {count_of(word1) - 1, word1},
 42 {count_of(word2) - 1, word2},
 43 {count_of(word3) - 1, word3},
 44 {count_of(word4) - 1, word4},
 45 {count_of(word5) - 1, word5},
 46 {0, NULL} // Null trigger to end chain.
 47 };
 48
 49 int main() {
 50 #ifndef uart_default
 51 #warning dma/control_blocks example requires a UART
 52 #else
 53 stdio_init_all();
 54 puts("DMA control block example:");
 55
 56 // ctrl_chan loads control blocks into data_chan, which executes them.
 57 int ctrl_chan = dma_claim_unused_channel(true);
 58 int data_chan = dma_claim_unused_channel(true);
 59
 60 // The control channel transfers two words into the data channel's control
 61 // registers, then halts. The write address wraps on a two-word
 62 // (eight-byte) boundary, so that the control channel writes the same two
 63 // registers when it is next triggered.
 64
 65 dma_channel_config c = dma_channel_get_default_config(ctrl_chan);
 66 channel_config_set_transfer_data_size(&c, DMA_SIZE_32);
 67 channel_config_set_read_increment(&c, true);
 68 channel_config_set_write_increment(&c, true);
 69 channel_config_set_ring(&c, true, 3); // 1 << 3 byte boundary on write ptr
 70
 71 dma_channel_configure(
 72 ctrl_chan,
 73 &c,
 74 &dma_hw->ch[data_chan].al3_transfer_count, // Initial write address
 75 &control_blocks[0], // Initial read address
 76 2, // Halt after each control block
 77 false // Don't start yet
 78);
 79
 80 // The data channel is set up to write to the UART FIFO (paced by the
 81 // UART's TX data request signal) and then chain to the control channel
 82 // once it completes. The control channel programs a new read address and
 83 // data length, and retriggers the data channel.
 84
 85 c = dma_channel_get_default_config(data_chan);
 86 channel_config_set_transfer_data_size(&c, DMA_SIZE_8);
 87 channel_config_set_dreq(&c, uart_get_dreq(uart_default, true));
 88 // Trigger ctrl_chan when data_chan completes
 89 channel_config_set_chain_to(&c, ctrl_chan);

RP2040 Datasheet

2.5. DMA 101

 90 // Raise the IRQ flag when 0 is written to a trigger register (end of chain):
 91 channel_config_set_irq_quiet(&c, true);
 92
 93 dma_channel_configure(
 94 data_chan,
 95 &c,
 96 &uart_get_hw(uart_default)->dr,
 97 NULL, // Initial read address and transfer count are unimportant;
 98 0, // the control channel will reprogram them each time.
 99 false // Don't start yet.
100);
101
102 // Everything is ready to go. Tell the control channel to load the first
103 // control block. Everything is automatic from here.
104 dma_start_channel_mask(1u << ctrl_chan);
105
106 // The data channel will assert its IRQ flag when it gets a null trigger,
107 // indicating the end of the control block list. We're just going to wait
108 // for the IRQ flag instead of setting up an interrupt handler.
109 while (!(dma_hw->intr & 1u << data_chan))
110 tight_loop_contents();
111 dma_hw->ints0 = 1u << data_chan;
112
113 puts("DMA finished.");
114 #endif
115 }

2.5.7. List of Registers

The DMA registers start at a base address of 0x50000000 (defined as DMA_BASE in SDK).

Table 120. List of

DMA registers
Offset Name Info

0x000 CH0_READ_ADDR DMA Channel 0 Read Address pointer

0x004 CH0_WRITE_ADDR DMA Channel 0 Write Address pointer

0x008 CH0_TRANS_COUNT DMA Channel 0 Transfer Count

0x00c CH0_CTRL_TRIG DMA Channel 0 Control and Status

0x010 CH0_AL1_CTRL Alias for channel 0 CTRL register

0x014 CH0_AL1_READ_ADDR Alias for channel 0 READ_ADDR register

0x018 CH0_AL1_WRITE_ADDR Alias for channel 0 WRITE_ADDR register

0x01c CH0_AL1_TRANS_COUNT_TRIG Alias for channel 0 TRANS_COUNT register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x020 CH0_AL2_CTRL Alias for channel 0 CTRL register

0x024 CH0_AL2_TRANS_COUNT Alias for channel 0 TRANS_COUNT register

0x028 CH0_AL2_READ_ADDR Alias for channel 0 READ_ADDR register

0x02c CH0_AL2_WRITE_ADDR_TRIG Alias for channel 0 WRITE_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x030 CH0_AL3_CTRL Alias for channel 0 CTRL register

0x034 CH0_AL3_WRITE_ADDR Alias for channel 0 WRITE_ADDR register

RP2040 Datasheet

2.5. DMA 102

Offset Name Info

0x038 CH0_AL3_TRANS_COUNT Alias for channel 0 TRANS_COUNT register

0x03c CH0_AL3_READ_ADDR_TRIG Alias for channel 0 READ_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x040 CH1_READ_ADDR DMA Channel 1 Read Address pointer

0x044 CH1_WRITE_ADDR DMA Channel 1 Write Address pointer

0x048 CH1_TRANS_COUNT DMA Channel 1 Transfer Count

0x04c CH1_CTRL_TRIG DMA Channel 1 Control and Status

0x050 CH1_AL1_CTRL Alias for channel 1 CTRL register

0x054 CH1_AL1_READ_ADDR Alias for channel 1 READ_ADDR register

0x058 CH1_AL1_WRITE_ADDR Alias for channel 1 WRITE_ADDR register

0x05c CH1_AL1_TRANS_COUNT_TRIG Alias for channel 1 TRANS_COUNT register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x060 CH1_AL2_CTRL Alias for channel 1 CTRL register

0x064 CH1_AL2_TRANS_COUNT Alias for channel 1 TRANS_COUNT register

0x068 CH1_AL2_READ_ADDR Alias for channel 1 READ_ADDR register

0x06c CH1_AL2_WRITE_ADDR_TRIG Alias for channel 1 WRITE_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x070 CH1_AL3_CTRL Alias for channel 1 CTRL register

0x074 CH1_AL3_WRITE_ADDR Alias for channel 1 WRITE_ADDR register

0x078 CH1_AL3_TRANS_COUNT Alias for channel 1 TRANS_COUNT register

0x07c CH1_AL3_READ_ADDR_TRIG Alias for channel 1 READ_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x080 CH2_READ_ADDR DMA Channel 2 Read Address pointer

0x084 CH2_WRITE_ADDR DMA Channel 2 Write Address pointer

0x088 CH2_TRANS_COUNT DMA Channel 2 Transfer Count

0x08c CH2_CTRL_TRIG DMA Channel 2 Control and Status

0x090 CH2_AL1_CTRL Alias for channel 2 CTRL register

0x094 CH2_AL1_READ_ADDR Alias for channel 2 READ_ADDR register

0x098 CH2_AL1_WRITE_ADDR Alias for channel 2 WRITE_ADDR register

0x09c CH2_AL1_TRANS_COUNT_TRIG Alias for channel 2 TRANS_COUNT register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x0a0 CH2_AL2_CTRL Alias for channel 2 CTRL register

0x0a4 CH2_AL2_TRANS_COUNT Alias for channel 2 TRANS_COUNT register

0x0a8 CH2_AL2_READ_ADDR Alias for channel 2 READ_ADDR register

RP2040 Datasheet

2.5. DMA 103

Offset Name Info

0x0ac CH2_AL2_WRITE_ADDR_TRIG Alias for channel 2 WRITE_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x0b0 CH2_AL3_CTRL Alias for channel 2 CTRL register

0x0b4 CH2_AL3_WRITE_ADDR Alias for channel 2 WRITE_ADDR register

0x0b8 CH2_AL3_TRANS_COUNT Alias for channel 2 TRANS_COUNT register

0x0bc CH2_AL3_READ_ADDR_TRIG Alias for channel 2 READ_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x0c0 CH3_READ_ADDR DMA Channel 3 Read Address pointer

0x0c4 CH3_WRITE_ADDR DMA Channel 3 Write Address pointer

0x0c8 CH3_TRANS_COUNT DMA Channel 3 Transfer Count

0x0cc CH3_CTRL_TRIG DMA Channel 3 Control and Status

0x0d0 CH3_AL1_CTRL Alias for channel 3 CTRL register

0x0d4 CH3_AL1_READ_ADDR Alias for channel 3 READ_ADDR register

0x0d8 CH3_AL1_WRITE_ADDR Alias for channel 3 WRITE_ADDR register

0x0dc CH3_AL1_TRANS_COUNT_TRIG Alias for channel 3 TRANS_COUNT register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x0e0 CH3_AL2_CTRL Alias for channel 3 CTRL register

0x0e4 CH3_AL2_TRANS_COUNT Alias for channel 3 TRANS_COUNT register

0x0e8 CH3_AL2_READ_ADDR Alias for channel 3 READ_ADDR register

0x0ec CH3_AL2_WRITE_ADDR_TRIG Alias for channel 3 WRITE_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x0f0 CH3_AL3_CTRL Alias for channel 3 CTRL register

0x0f4 CH3_AL3_WRITE_ADDR Alias for channel 3 WRITE_ADDR register

0x0f8 CH3_AL3_TRANS_COUNT Alias for channel 3 TRANS_COUNT register

0x0fc CH3_AL3_READ_ADDR_TRIG Alias for channel 3 READ_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x100 CH4_READ_ADDR DMA Channel 4 Read Address pointer

0x104 CH4_WRITE_ADDR DMA Channel 4 Write Address pointer

0x108 CH4_TRANS_COUNT DMA Channel 4 Transfer Count

0x10c CH4_CTRL_TRIG DMA Channel 4 Control and Status

0x110 CH4_AL1_CTRL Alias for channel 4 CTRL register

0x114 CH4_AL1_READ_ADDR Alias for channel 4 READ_ADDR register

0x118 CH4_AL1_WRITE_ADDR Alias for channel 4 WRITE_ADDR register

RP2040 Datasheet

2.5. DMA 104

Offset Name Info

0x11c CH4_AL1_TRANS_COUNT_TRIG Alias for channel 4 TRANS_COUNT register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x120 CH4_AL2_CTRL Alias for channel 4 CTRL register

0x124 CH4_AL2_TRANS_COUNT Alias for channel 4 TRANS_COUNT register

0x128 CH4_AL2_READ_ADDR Alias for channel 4 READ_ADDR register

0x12c CH4_AL2_WRITE_ADDR_TRIG Alias for channel 4 WRITE_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x130 CH4_AL3_CTRL Alias for channel 4 CTRL register

0x134 CH4_AL3_WRITE_ADDR Alias for channel 4 WRITE_ADDR register

0x138 CH4_AL3_TRANS_COUNT Alias for channel 4 TRANS_COUNT register

0x13c CH4_AL3_READ_ADDR_TRIG Alias for channel 4 READ_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x140 CH5_READ_ADDR DMA Channel 5 Read Address pointer

0x144 CH5_WRITE_ADDR DMA Channel 5 Write Address pointer

0x148 CH5_TRANS_COUNT DMA Channel 5 Transfer Count

0x14c CH5_CTRL_TRIG DMA Channel 5 Control and Status

0x150 CH5_AL1_CTRL Alias for channel 5 CTRL register

0x154 CH5_AL1_READ_ADDR Alias for channel 5 READ_ADDR register

0x158 CH5_AL1_WRITE_ADDR Alias for channel 5 WRITE_ADDR register

0x15c CH5_AL1_TRANS_COUNT_TRIG Alias for channel 5 TRANS_COUNT register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x160 CH5_AL2_CTRL Alias for channel 5 CTRL register

0x164 CH5_AL2_TRANS_COUNT Alias for channel 5 TRANS_COUNT register

0x168 CH5_AL2_READ_ADDR Alias for channel 5 READ_ADDR register

0x16c CH5_AL2_WRITE_ADDR_TRIG Alias for channel 5 WRITE_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x170 CH5_AL3_CTRL Alias for channel 5 CTRL register

0x174 CH5_AL3_WRITE_ADDR Alias for channel 5 WRITE_ADDR register

0x178 CH5_AL3_TRANS_COUNT Alias for channel 5 TRANS_COUNT register

0x17c CH5_AL3_READ_ADDR_TRIG Alias for channel 5 READ_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x180 CH6_READ_ADDR DMA Channel 6 Read Address pointer

0x184 CH6_WRITE_ADDR DMA Channel 6 Write Address pointer

0x188 CH6_TRANS_COUNT DMA Channel 6 Transfer Count

RP2040 Datasheet

2.5. DMA 105

Offset Name Info

0x18c CH6_CTRL_TRIG DMA Channel 6 Control and Status

0x190 CH6_AL1_CTRL Alias for channel 6 CTRL register

0x194 CH6_AL1_READ_ADDR Alias for channel 6 READ_ADDR register

0x198 CH6_AL1_WRITE_ADDR Alias for channel 6 WRITE_ADDR register

0x19c CH6_AL1_TRANS_COUNT_TRIG Alias for channel 6 TRANS_COUNT register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x1a0 CH6_AL2_CTRL Alias for channel 6 CTRL register

0x1a4 CH6_AL2_TRANS_COUNT Alias for channel 6 TRANS_COUNT register

0x1a8 CH6_AL2_READ_ADDR Alias for channel 6 READ_ADDR register

0x1ac CH6_AL2_WRITE_ADDR_TRIG Alias for channel 6 WRITE_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x1b0 CH6_AL3_CTRL Alias for channel 6 CTRL register

0x1b4 CH6_AL3_WRITE_ADDR Alias for channel 6 WRITE_ADDR register

0x1b8 CH6_AL3_TRANS_COUNT Alias for channel 6 TRANS_COUNT register

0x1bc CH6_AL3_READ_ADDR_TRIG Alias for channel 6 READ_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x1c0 CH7_READ_ADDR DMA Channel 7 Read Address pointer

0x1c4 CH7_WRITE_ADDR DMA Channel 7 Write Address pointer

0x1c8 CH7_TRANS_COUNT DMA Channel 7 Transfer Count

0x1cc CH7_CTRL_TRIG DMA Channel 7 Control and Status

0x1d0 CH7_AL1_CTRL Alias for channel 7 CTRL register

0x1d4 CH7_AL1_READ_ADDR Alias for channel 7 READ_ADDR register

0x1d8 CH7_AL1_WRITE_ADDR Alias for channel 7 WRITE_ADDR register

0x1dc CH7_AL1_TRANS_COUNT_TRIG Alias for channel 7 TRANS_COUNT register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x1e0 CH7_AL2_CTRL Alias for channel 7 CTRL register

0x1e4 CH7_AL2_TRANS_COUNT Alias for channel 7 TRANS_COUNT register

0x1e8 CH7_AL2_READ_ADDR Alias for channel 7 READ_ADDR register

0x1ec CH7_AL2_WRITE_ADDR_TRIG Alias for channel 7 WRITE_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x1f0 CH7_AL3_CTRL Alias for channel 7 CTRL register

0x1f4 CH7_AL3_WRITE_ADDR Alias for channel 7 WRITE_ADDR register

0x1f8 CH7_AL3_TRANS_COUNT Alias for channel 7 TRANS_COUNT register

RP2040 Datasheet

2.5. DMA 106

Offset Name Info

0x1fc CH7_AL3_READ_ADDR_TRIG Alias for channel 7 READ_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x200 CH8_READ_ADDR DMA Channel 8 Read Address pointer

0x204 CH8_WRITE_ADDR DMA Channel 8 Write Address pointer

0x208 CH8_TRANS_COUNT DMA Channel 8 Transfer Count

0x20c CH8_CTRL_TRIG DMA Channel 8 Control and Status

0x210 CH8_AL1_CTRL Alias for channel 8 CTRL register

0x214 CH8_AL1_READ_ADDR Alias for channel 8 READ_ADDR register

0x218 CH8_AL1_WRITE_ADDR Alias for channel 8 WRITE_ADDR register

0x21c CH8_AL1_TRANS_COUNT_TRIG Alias for channel 8 TRANS_COUNT register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x220 CH8_AL2_CTRL Alias for channel 8 CTRL register

0x224 CH8_AL2_TRANS_COUNT Alias for channel 8 TRANS_COUNT register

0x228 CH8_AL2_READ_ADDR Alias for channel 8 READ_ADDR register

0x22c CH8_AL2_WRITE_ADDR_TRIG Alias for channel 8 WRITE_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x230 CH8_AL3_CTRL Alias for channel 8 CTRL register

0x234 CH8_AL3_WRITE_ADDR Alias for channel 8 WRITE_ADDR register

0x238 CH8_AL3_TRANS_COUNT Alias for channel 8 TRANS_COUNT register

0x23c CH8_AL3_READ_ADDR_TRIG Alias for channel 8 READ_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x240 CH9_READ_ADDR DMA Channel 9 Read Address pointer

0x244 CH9_WRITE_ADDR DMA Channel 9 Write Address pointer

0x248 CH9_TRANS_COUNT DMA Channel 9 Transfer Count

0x24c CH9_CTRL_TRIG DMA Channel 9 Control and Status

0x250 CH9_AL1_CTRL Alias for channel 9 CTRL register

0x254 CH9_AL1_READ_ADDR Alias for channel 9 READ_ADDR register

0x258 CH9_AL1_WRITE_ADDR Alias for channel 9 WRITE_ADDR register

0x25c CH9_AL1_TRANS_COUNT_TRIG Alias for channel 9 TRANS_COUNT register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x260 CH9_AL2_CTRL Alias for channel 9 CTRL register

0x264 CH9_AL2_TRANS_COUNT Alias for channel 9 TRANS_COUNT register

0x268 CH9_AL2_READ_ADDR Alias for channel 9 READ_ADDR register

RP2040 Datasheet

2.5. DMA 107

Offset Name Info

0x26c CH9_AL2_WRITE_ADDR_TRIG Alias for channel 9 WRITE_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x270 CH9_AL3_CTRL Alias for channel 9 CTRL register

0x274 CH9_AL3_WRITE_ADDR Alias for channel 9 WRITE_ADDR register

0x278 CH9_AL3_TRANS_COUNT Alias for channel 9 TRANS_COUNT register

0x27c CH9_AL3_READ_ADDR_TRIG Alias for channel 9 READ_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x280 CH10_READ_ADDR DMA Channel 10 Read Address pointer

0x284 CH10_WRITE_ADDR DMA Channel 10 Write Address pointer

0x288 CH10_TRANS_COUNT DMA Channel 10 Transfer Count

0x28c CH10_CTRL_TRIG DMA Channel 10 Control and Status

0x290 CH10_AL1_CTRL Alias for channel 10 CTRL register

0x294 CH10_AL1_READ_ADDR Alias for channel 10 READ_ADDR register

0x298 CH10_AL1_WRITE_ADDR Alias for channel 10 WRITE_ADDR register

0x29c CH10_AL1_TRANS_COUNT_TRIG Alias for channel 10 TRANS_COUNT register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x2a0 CH10_AL2_CTRL Alias for channel 10 CTRL register

0x2a4 CH10_AL2_TRANS_COUNT Alias for channel 10 TRANS_COUNT register

0x2a8 CH10_AL2_READ_ADDR Alias for channel 10 READ_ADDR register

0x2ac CH10_AL2_WRITE_ADDR_TRIG Alias for channel 10 WRITE_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x2b0 CH10_AL3_CTRL Alias for channel 10 CTRL register

0x2b4 CH10_AL3_WRITE_ADDR Alias for channel 10 WRITE_ADDR register

0x2b8 CH10_AL3_TRANS_COUNT Alias for channel 10 TRANS_COUNT register

0x2bc CH10_AL3_READ_ADDR_TRIG Alias for channel 10 READ_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x2c0 CH11_READ_ADDR DMA Channel 11 Read Address pointer

0x2c4 CH11_WRITE_ADDR DMA Channel 11 Write Address pointer

0x2c8 CH11_TRANS_COUNT DMA Channel 11 Transfer Count

0x2cc CH11_CTRL_TRIG DMA Channel 11 Control and Status

0x2d0 CH11_AL1_CTRL Alias for channel 11 CTRL register

0x2d4 CH11_AL1_READ_ADDR Alias for channel 11 READ_ADDR register

0x2d8 CH11_AL1_WRITE_ADDR Alias for channel 11 WRITE_ADDR register

RP2040 Datasheet

2.5. DMA 108

Offset Name Info

0x2dc CH11_AL1_TRANS_COUNT_TRIG Alias for channel 11 TRANS_COUNT register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x2e0 CH11_AL2_CTRL Alias for channel 11 CTRL register

0x2e4 CH11_AL2_TRANS_COUNT Alias for channel 11 TRANS_COUNT register

0x2e8 CH11_AL2_READ_ADDR Alias for channel 11 READ_ADDR register

0x2ec CH11_AL2_WRITE_ADDR_TRIG Alias for channel 11 WRITE_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x2f0 CH11_AL3_CTRL Alias for channel 11 CTRL register

0x2f4 CH11_AL3_WRITE_ADDR Alias for channel 11 WRITE_ADDR register

0x2f8 CH11_AL3_TRANS_COUNT Alias for channel 11 TRANS_COUNT register

0x2fc CH11_AL3_READ_ADDR_TRIG Alias for channel 11 READ_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

0x400 INTR Interrupt Status (raw)

0x404 INTE0 Interrupt Enables for IRQ 0

0x408 INTF0 Force Interrupts

0x40c INTS0 Interrupt Status for IRQ 0

0x414 INTE1 Interrupt Enables for IRQ 1

0x418 INTF1 Force Interrupts for IRQ 1

0x41c INTS1 Interrupt Status (masked) for IRQ 1

0x420 TIMER0 Pacing (X/Y) Fractional Timer

The pacing timer produces TREQ assertions at a rate set by

((X/Y) * sys_clk). This equation is evaluated every sys_clk cycles

and therefore can only generate TREQs at a rate of 1 per sys_clk

(i.e. permanent TREQ) or less.

0x424 TIMER1 Pacing (X/Y) Fractional Timer

The pacing timer produces TREQ assertions at a rate set by

((X/Y) * sys_clk). This equation is evaluated every sys_clk cycles

and therefore can only generate TREQs at a rate of 1 per sys_clk

(i.e. permanent TREQ) or less.

0x428 TIMER2 Pacing (X/Y) Fractional Timer

The pacing timer produces TREQ assertions at a rate set by

((X/Y) * sys_clk). This equation is evaluated every sys_clk cycles

and therefore can only generate TREQs at a rate of 1 per sys_clk

(i.e. permanent TREQ) or less.

0x42c TIMER3 Pacing (X/Y) Fractional Timer

The pacing timer produces TREQ assertions at a rate set by

((X/Y) * sys_clk). This equation is evaluated every sys_clk cycles

and therefore can only generate TREQs at a rate of 1 per sys_clk

(i.e. permanent TREQ) or less.

0x430 MULTI_CHAN_TRIGGER Trigger one or more channels simultaneously

RP2040 Datasheet

2.5. DMA 109

Offset Name Info

0x434 SNIFF_CTRL Sniffer Control

0x438 SNIFF_DATA Data accumulator for sniff hardware

0x440 FIFO_LEVELS Debug RAF, WAF, TDF levels

0x444 CHAN_ABORT Abort an in-progress transfer sequence on one or more channels

0x448 N_CHANNELS The number of channels this DMA instance is equipped with.

This DMA supports up to 16 hardware channels, but can be

configured with as few as one, to minimise silicon area.

0x800 CH0_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the

DMA expects it can perform on the peripheral without

overflow/underflow. Write any value: clears the counter, and

cause channel to re-initiate DREQ handshake.

0x804 CH0_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length

of the next transfer

0x840 CH1_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the

DMA expects it can perform on the peripheral without

overflow/underflow. Write any value: clears the counter, and

cause channel to re-initiate DREQ handshake.

0x844 CH1_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length

of the next transfer

0x880 CH2_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the

DMA expects it can perform on the peripheral without

overflow/underflow. Write any value: clears the counter, and

cause channel to re-initiate DREQ handshake.

0x884 CH2_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length

of the next transfer

0x8c0 CH3_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the

DMA expects it can perform on the peripheral without

overflow/underflow. Write any value: clears the counter, and

cause channel to re-initiate DREQ handshake.

0x8c4 CH3_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length

of the next transfer

0x900 CH4_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the

DMA expects it can perform on the peripheral without

overflow/underflow. Write any value: clears the counter, and

cause channel to re-initiate DREQ handshake.

0x904 CH4_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length

of the next transfer

0x940 CH5_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the

DMA expects it can perform on the peripheral without

overflow/underflow. Write any value: clears the counter, and

cause channel to re-initiate DREQ handshake.

0x944 CH5_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length

of the next transfer

RP2040 Datasheet

2.5. DMA 110

Offset Name Info

0x980 CH6_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the

DMA expects it can perform on the peripheral without

overflow/underflow. Write any value: clears the counter, and

cause channel to re-initiate DREQ handshake.

0x984 CH6_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length

of the next transfer

0x9c0 CH7_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the

DMA expects it can perform on the peripheral without

overflow/underflow. Write any value: clears the counter, and

cause channel to re-initiate DREQ handshake.

0x9c4 CH7_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length

of the next transfer

0xa00 CH8_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the

DMA expects it can perform on the peripheral without

overflow/underflow. Write any value: clears the counter, and

cause channel to re-initiate DREQ handshake.

0xa04 CH8_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length

of the next transfer

0xa40 CH9_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the

DMA expects it can perform on the peripheral without

overflow/underflow. Write any value: clears the counter, and

cause channel to re-initiate DREQ handshake.

0xa44 CH9_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length

of the next transfer

0xa80 CH10_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the

DMA expects it can perform on the peripheral without

overflow/underflow. Write any value: clears the counter, and

cause channel to re-initiate DREQ handshake.

0xa84 CH10_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length

of the next transfer

0xac0 CH11_DBG_CTDREQ Read: get channel DREQ counter (i.e. how many accesses the

DMA expects it can perform on the peripheral without

overflow/underflow. Write any value: clears the counter, and

cause channel to re-initiate DREQ handshake.

0xac4 CH11_DBG_TCR Read to get channel TRANS_COUNT reload value, i.e. the length

of the next transfer

DMA: CH0_READ_ADDR, CH1_READ_ADDR, …, CH10_READ_ADDR,

CH11_READ_ADDR Registers

Offsets: 0x000, 0x040, …, 0x280, 0x2c0

Description

DMA Channel N Read Address pointer

RP2040 Datasheet

2.5. DMA 111

Table 121.

CH0_READ_ADDR,

CH1_READ_ADDR, …,

CH10_READ_ADDR,

CH11_READ_ADDR

Registers

Bits Description Type Reset

31:0 This register updates automatically each time a read completes. The current

value is the next address to be read by this channel.

RW 0x00000000

DMA: CH0_WRITE_ADDR, CH1_WRITE_ADDR, …, CH10_WRITE_ADDR,

CH11_WRITE_ADDR Registers

Offsets: 0x004, 0x044, …, 0x284, 0x2c4

Description

DMA Channel N Write Address pointer

Table 122.

CH0_WRITE_ADDR,

CH1_WRITE_ADDR, …,

CH10_WRITE_ADDR,

CH11_WRITE_ADDR

Registers

Bits Description Type Reset

31:0 This register updates automatically each time a write completes. The current

value is the next address to be written by this channel.

RW 0x00000000

DMA: CH0_TRANS_COUNT, CH1_TRANS_COUNT, …, CH10_TRANS_COUNT,

CH11_TRANS_COUNT Registers

Offsets: 0x008, 0x048, …, 0x288, 0x2c8

Description

DMA Channel N Transfer Count

Table 123.

CH0_TRANS_COUNT,

CH1_TRANS_COUNT,

…,

CH10_TRANS_COUNT,

CH11_TRANS_COUNT

Registers

Bits Description Type Reset

31:0 Program the number of bus transfers a channel will perform before halting.

Note that, if transfers are larger than one byte in size, this is not equal to the

number of bytes transferred (see CTRL_DATA_SIZE).

When the channel is active, reading this register shows the number of

transfers remaining, updating automatically each time a write transfer

completes.

Writing this register sets the RELOAD value for the transfer counter. Each time

this channel is triggered, the RELOAD value is copied into the live transfer

counter. The channel can be started multiple times, and will perform the same

number of transfers each time, as programmed by most recent write.

The RELOAD value can be observed at CHx_DBG_TCR. If TRANS_COUNT is

used as a trigger, the written value is used immediately as the length of the

new transfer sequence, as well as being written to RELOAD.

RW 0x00000000

DMA: CH0_CTRL_TRIG, CH1_CTRL_TRIG, …, CH10_CTRL_TRIG,

CH11_CTRL_TRIG Registers

Offsets: 0x00c, 0x04c, …, 0x28c, 0x2cc

Description

DMA Channel N Control and Status

Table 124.

CH0_CTRL_TRIG,

CH1_CTRL_TRIG, …,

CH10_CTRL_TRIG,

CH11_CTRL_TRIG

Registers

Bits Name Description Type Reset

31 AHB_ERROR Logical OR of the READ_ERROR and WRITE_ERROR flags.

The channel halts when it encounters any bus error, and

always raises its channel IRQ flag.

RO 0x0

RP2040 Datasheet

2.5. DMA 112

Bits Name Description Type Reset

30 READ_ERROR If 1, the channel received a read bus error. Write one to

clear.

READ_ADDR shows the approximate address where the

bus error was encountered (will not be earlier, or more

than 3 transfers later)

WC 0x0

29 WRITE_ERROR If 1, the channel received a write bus error. Write one to

clear.

WRITE_ADDR shows the approximate address where the

bus error was encountered (will not be earlier, or more

than 5 transfers later)

WC 0x0

28:25 Reserved. - - -

24 BUSY This flag goes high when the channel starts a new transfer

sequence, and low when the last transfer of that sequence

completes. Clearing EN while BUSY is high pauses the

channel, and BUSY will stay high while paused.

To terminate a sequence early (and clear the BUSY flag),

see CHAN_ABORT.

RO 0x0

23 SNIFF_EN If 1, this channel’s data transfers are visible to the sniff

hardware, and each transfer will advance the state of the

checksum. This only applies if the sniff hardware is

enabled, and has this channel selected.

This allows checksum to be enabled or disabled on a per-

control- block basis.

RW 0x0

22 BSWAP Apply byte-swap transformation to DMA data.

For byte data, this has no effect. For halfword data, the

two bytes of each halfword are swapped. For word data,

the four bytes of each word are swapped to reverse order.

RW 0x0

21 IRQ_QUIET In QUIET mode, the channel does not generate IRQs at the

end of every transfer block. Instead, an IRQ is raised when

NULL is written to a trigger register, indicating the end of a

control block chain.

This reduces the number of interrupts to be serviced by

the CPU when transferring a DMA chain of many small

control blocks.

RW 0x0

20:15 TREQ_SEL Select a Transfer Request signal.

The channel uses the transfer request signal to pace its

data transfer rate. Sources for TREQ signals are internal

(TIMERS) or external (DREQ, a Data Request from the

system).

0x0 to 0x3a → select DREQ n as TREQ

0x3b → Select Timer 0 as TREQ

0x3c → Select Timer 1 as TREQ

0x3d → Select Timer 2 as TREQ (Optional)

0x3e → Select Timer 3 as TREQ (Optional)

0x3f → Permanent request, for unpaced transfers.

RW 0x00

RP2040 Datasheet

2.5. DMA 113

Bits Name Description Type Reset

14:11 CHAIN_TO When this channel completes, it will trigger the channel

indicated by CHAIN_TO. Disable by setting CHAIN_TO =

(this channel).

RW 0x0

10 RING_SEL Select whether RING_SIZE applies to read or write

addresses.

If 0, read addresses are wrapped on a (1 << RING_SIZE)

boundary. If 1, write addresses are wrapped.

RW 0x0

9:6 RING_SIZE Size of address wrap region. If 0, don’t wrap. For values n

> 0, only the lower n bits of the address will change. This

wraps the address on a (1 << n) byte boundary, facilitating

access to naturally-aligned ring buffers.

Ring sizes between 2 and 32768 bytes are possible. This

can apply to either read or write addresses, based on

value of RING_SEL.

0x0 → RING_NONE

RW 0x0

5 INCR_WRITE If 1, the write address increments with each transfer. If 0,

each write is directed to the same, initial address.

Generally this should be disabled for memory-to-peripheral

transfers.

RW 0x0

4 INCR_READ If 1, the read address increments with each transfer. If 0,

each read is directed to the same, initial address.

Generally this should be disabled for peripheral-to-memory

transfers.

RW 0x0

3:2 DATA_SIZE Set the size of each bus transfer (byte/halfword/word).

READ_ADDR and WRITE_ADDR advance by this amount

(1/2/4 bytes) with each transfer.

0x0 → SIZE_BYTE

0x1 → SIZE_HALFWORD

0x2 → SIZE_WORD

RW 0x0

1 HIGH_PRIORITY HIGH_PRIORITY gives a channel preferential treatment in

issue scheduling: in each scheduling round, all high

priority channels are considered first, and then only a

single low priority channel, before returning to the high

priority channels.

This only affects the order in which the DMA schedules

channels. The DMA’s bus priority is not changed. If the

DMA is not saturated then a low priority channel will see

no loss of throughput.

RW 0x0

0 EN DMA Channel Enable.

When 1, the channel will respond to triggering events,

which will cause it to become BUSY and start transferring

data. When 0, the channel will ignore triggers, stop issuing

transfers, and pause the current transfer sequence (i.e.

BUSY will remain high if already high)

RW 0x0

DMA: CH0_AL1_CTRL, CH1_AL1_CTRL, …, CH10_AL1_CTRL, CH11_AL1_CTRL

RP2040 Datasheet

2.5. DMA 114

Registers

Offsets: 0x010, 0x050, …, 0x290, 0x2d0

Table 125.

CH0_AL1_CTRL,

CH1_AL1_CTRL, …,

CH10_AL1_CTRL,

CH11_AL1_CTRL

Registers

Bits Description Type Reset

31:0 Alias for channel N CTRL register RW -

DMA: CH0_AL1_READ_ADDR, CH1_AL1_READ_ADDR, …,

CH10_AL1_READ_ADDR, CH11_AL1_READ_ADDR Registers

Offsets: 0x014, 0x054, …, 0x294, 0x2d4

Table 126.

CH0_AL1_READ_ADDR

,

CH1_AL1_READ_ADDR

, …,

CH10_AL1_READ_ADD

R,

CH11_AL1_READ_ADD

R Registers

Bits Description Type Reset

31:0 Alias for channel N READ_ADDR register RW -

DMA: CH0_AL1_WRITE_ADDR, CH1_AL1_WRITE_ADDR, …,

CH10_AL1_WRITE_ADDR, CH11_AL1_WRITE_ADDR Registers

Offsets: 0x018, 0x058, …, 0x298, 0x2d8

Table 127.

CH0_AL1_WRITE_ADD

R,

CH1_AL1_WRITE_ADD

R, …,

CH10_AL1_WRITE_AD

DR,

CH11_AL1_WRITE_AD

DR Registers

Bits Description Type Reset

31:0 Alias for channel N WRITE_ADDR register RW -

DMA: CH0_AL1_TRANS_COUNT_TRIG, CH1_AL1_TRANS_COUNT_TRIG, …,

CH10_AL1_TRANS_COUNT_TRIG, CH11_AL1_TRANS_COUNT_TRIG Registers

Offsets: 0x01c, 0x05c, …, 0x29c, 0x2dc

Table 128.

CH0_AL1_TRANS_COU

NT_TRIG,

CH1_AL1_TRANS_COU

NT_TRIG, …,

CH10_AL1_TRANS_CO

UNT_TRIG,

CH11_AL1_TRANS_CO

UNT_TRIG Registers

Bits Description Type Reset

31:0 Alias for channel N TRANS_COUNT register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

RW -

DMA: CH0_AL2_CTRL, CH1_AL2_CTRL, …, CH10_AL2_CTRL, CH11_AL2_CTRL

Registers

Offsets: 0x020, 0x060, …, 0x2a0, 0x2e0

Table 129.

CH0_AL2_CTRL,

CH1_AL2_CTRL, …,

CH10_AL2_CTRL,

CH11_AL2_CTRL

Registers

Bits Description Type Reset

31:0 Alias for channel N CTRL register RW -

DMA: CH0_AL2_TRANS_COUNT, CH1_AL2_TRANS_COUNT, …,

CH10_AL2_TRANS_COUNT, CH11_AL2_TRANS_COUNT Registers

Offsets: 0x024, 0x064, …, 0x2a4, 0x2e4

Table 130.

CH0_AL2_TRANS_COU

NT,

CH1_AL2_TRANS_COU

NT, …,

CH10_AL2_TRANS_CO

UNT,

CH11_AL2_TRANS_CO

UNT Registers

Bits Description Type Reset

31:0 Alias for channel N TRANS_COUNT register RW -

DMA: CH0_AL2_READ_ADDR, CH1_AL2_READ_ADDR, …,

CH10_AL2_READ_ADDR, CH11_AL2_READ_ADDR Registers

Offsets: 0x028, 0x068, …, 0x2a8, 0x2e8

RP2040 Datasheet

2.5. DMA 115

Table 131.

CH0_AL2_READ_ADDR

,

CH1_AL2_READ_ADDR

, …,

CH10_AL2_READ_ADD

R,

CH11_AL2_READ_ADD

R Registers

Bits Description Type Reset

31:0 Alias for channel N READ_ADDR register RW -

DMA: CH0_AL2_WRITE_ADDR_TRIG, CH1_AL2_WRITE_ADDR_TRIG, …,

CH10_AL2_WRITE_ADDR_TRIG, CH11_AL2_WRITE_ADDR_TRIG Registers

Offsets: 0x02c, 0x06c, …, 0x2ac, 0x2ec

Table 132.

CH0_AL2_WRITE_ADD

R_TRIG,

CH1_AL2_WRITE_ADD

R_TRIG, …,

CH10_AL2_WRITE_AD

DR_TRIG,

CH11_AL2_WRITE_AD

DR_TRIG Registers

Bits Description Type Reset

31:0 Alias for channel N WRITE_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

RW -

DMA: CH0_AL3_CTRL, CH1_AL3_CTRL, …, CH10_AL3_CTRL, CH11_AL3_CTRL

Registers

Offsets: 0x030, 0x070, …, 0x2b0, 0x2f0

Table 133.

CH0_AL3_CTRL,

CH1_AL3_CTRL, …,

CH10_AL3_CTRL,

CH11_AL3_CTRL

Registers

Bits Description Type Reset

31:0 Alias for channel N CTRL register RW -

DMA: CH0_AL3_WRITE_ADDR, CH1_AL3_WRITE_ADDR, …,

CH10_AL3_WRITE_ADDR, CH11_AL3_WRITE_ADDR Registers

Offsets: 0x034, 0x074, …, 0x2b4, 0x2f4

Table 134.

CH0_AL3_WRITE_ADD

R,

CH1_AL3_WRITE_ADD

R, …,

CH10_AL3_WRITE_AD

DR,

CH11_AL3_WRITE_AD

DR Registers

Bits Description Type Reset

31:0 Alias for channel N WRITE_ADDR register RW -

DMA: CH0_AL3_TRANS_COUNT, CH1_AL3_TRANS_COUNT, …,

CH10_AL3_TRANS_COUNT, CH11_AL3_TRANS_COUNT Registers

Offsets: 0x038, 0x078, …, 0x2b8, 0x2f8

Table 135.

CH0_AL3_TRANS_COU

NT,

CH1_AL3_TRANS_COU

NT, …,

CH10_AL3_TRANS_CO

UNT,

CH11_AL3_TRANS_CO

UNT Registers

Bits Description Type Reset

31:0 Alias for channel N TRANS_COUNT register RW -

DMA: CH0_AL3_READ_ADDR_TRIG, CH1_AL3_READ_ADDR_TRIG, …,

CH10_AL3_READ_ADDR_TRIG, CH11_AL3_READ_ADDR_TRIG Registers

Offsets: 0x03c, 0x07c, …, 0x2bc, 0x2fc

Table 136.

CH0_AL3_READ_ADDR

_TRIG,

CH1_AL3_READ_ADDR

_TRIG, …,

CH10_AL3_READ_ADD

R_TRIG,

CH11_AL3_READ_ADD

R_TRIG Registers

Bits Description Type Reset

31:0 Alias for channel N READ_ADDR register

This is a trigger register (0xc). Writing a nonzero value will

reload the channel counter and start the channel.

RW -

DMA: INTR Register

Offset: 0x400

Description

Interrupt Status (raw)

RP2040 Datasheet

2.5. DMA 116

Table 137. INTR

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Raw interrupt status for DMA Channels 0..15. Bit n corresponds to channel n.

Ignores any masking or forcing. Channel interrupts can be cleared by writing a

bit mask to INTR, INTS0 or INTS1.

Channel interrupts can be routed to either of two system-level IRQs based on

INTE0 and INTE1.

This can be used vector different channel interrupts to different ISRs: this

might be done to allow NVIC IRQ preemption for more time-critical channels,

or to spread IRQ load across different cores.

It is also valid to ignore this behaviour and just use INTE0/INTS0/IRQ 0.

WC 0x0000

DMA: INTE0 Register

Offset: 0x404

Description

Interrupt Enables for IRQ 0

Table 138. INTE0

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Set bit n to pass interrupts from channel n to DMA IRQ 0. RW 0x0000

DMA: INTF0 Register

Offset: 0x408

Description

Force Interrupts

Table 139. INTF0

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Write 1s to force the corresponding bits in INTE0. The interrupt remains

asserted until INTF0 is cleared.

RW 0x0000

DMA: INTS0 Register

Offset: 0x40c

Description

Interrupt Status for IRQ 0

RP2040 Datasheet

2.5. DMA 117

Table 140. INTS0

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Indicates active channel interrupt requests which are currently causing IRQ 0

to be asserted.

Channel interrupts can be cleared by writing a bit mask here.

WC 0x0000

DMA: INTE1 Register

Offset: 0x414

Description

Interrupt Enables for IRQ 1

Table 141. INTE1

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Set bit n to pass interrupts from channel n to DMA IRQ 1. RW 0x0000

DMA: INTF1 Register

Offset: 0x418

Description

Force Interrupts for IRQ 1

Table 142. INTF1

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Write 1s to force the corresponding bits in INTE0. The interrupt remains

asserted until INTF0 is cleared.

RW 0x0000

DMA: INTS1 Register

Offset: 0x41c

Description

Interrupt Status (masked) for IRQ 1

Table 143. INTS1

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Indicates active channel interrupt requests which are currently causing IRQ 1

to be asserted.

Channel interrupts can be cleared by writing a bit mask here.

WC 0x0000

DMA: TIMER0, TIMER1, TIMER2, TIMER3 Registers

Offsets: 0x420, 0x424, 0x428, 0x42c

Description

Pacing (X/Y) Fractional Timer

The pacing timer produces TREQ assertions at a rate set by ((X/Y) * sys_clk). This equation is evaluated every

sys_clk cycles and therefore can only generate TREQs at a rate of 1 per sys_clk (i.e. permanent TREQ) or less.

Table 144. TIMER0,

TIMER1, TIMER2,

TIMER3 Registers

RP2040 Datasheet

2.5. DMA 118

Bits Name Description Type Reset

31:16 X Pacing Timer Dividend. Specifies the X value for the (X/Y)

fractional timer.

RW 0x0000

15:0 Y Pacing Timer Divisor. Specifies the Y value for the (X/Y)

fractional timer.

RW 0x0000

DMA: MULTI_CHAN_TRIGGER Register

Offset: 0x430

Description

Trigger one or more channels simultaneously

Table 145.

MULTI_CHAN_TRIGGE

R Register

Bits Description Type Reset

31:16 Reserved. - -

15:0 Each bit in this register corresponds to a DMA channel. Writing a 1 to the

relevant bit is the same as writing to that channel’s trigger register; the

channel will start if it is currently enabled and not already busy.

SC 0x0000

DMA: SNIFF_CTRL Register

Offset: 0x434

Description

Sniffer Control

Table 146.

SNIFF_CTRL Register
Bits Name Description Type Reset

31:12 Reserved. - - -

11 OUT_INV If set, the result appears inverted (bitwise complement)

when read. This does not affect the way the checksum is

calculated; the result is transformed on-the-fly between

the result register and the bus.

RW 0x0

10 OUT_REV If set, the result appears bit-reversed when read. This does

not affect the way the checksum is calculated; the result

is transformed on-the-fly between the result register and

the bus.

RW 0x0

9 BSWAP Locally perform a byte reverse on the sniffed data, before

feeding into checksum.

Note that the sniff hardware is downstream of the DMA

channel byteswap performed in the read master: if

channel CTRL_BSWAP and SNIFF_CTRL_BSWAP are both

enabled, their effects cancel from the sniffer’s point of

view.

RW 0x0

RP2040 Datasheet

2.5. DMA 119

Bits Name Description Type Reset

8:5 CALC 0x0 → Calculate a CRC-32 (IEEE802.3 polynomial)

0x1 → Calculate a CRC-32 (IEEE802.3 polynomial) with bit

reversed data

0x2 → Calculate a CRC-16-CCITT

0x3 → Calculate a CRC-16-CCITT with bit reversed data

0xe → XOR reduction over all data. == 1 if the total 1

population count is odd.

0xf → Calculate a simple 32-bit checksum (addition with a

32 bit accumulator)

RW 0x0

4:1 DMACH DMA channel for Sniffer to observe RW 0x0

0 EN Enable sniffer RW 0x0

DMA: SNIFF_DATA Register

Offset: 0x438

Description

Data accumulator for sniff hardware

Table 147.

SNIFF_DATA Register
Bits Description Type Reset

31:0 Write an initial seed value here before starting a DMA transfer on the channel

indicated by SNIFF_CTRL_DMACH. The hardware will update this register each

time it observes a read from the indicated channel. Once the channel

completes, the final result can be read from this register.

RW 0x00000000

DMA: FIFO_LEVELS Register

Offset: 0x440

Description

Debug RAF, WAF, TDF levels

Table 148.

FIFO_LEVELS Register
Bits Name Description Type Reset

31:24 Reserved. - - -

23:16 RAF_LVL Current Read-Address-FIFO fill level RO 0x00

15:8 WAF_LVL Current Write-Address-FIFO fill level RO 0x00

7:0 TDF_LVL Current Transfer-Data-FIFO fill level RO 0x00

DMA: CHAN_ABORT Register

Offset: 0x444

Description

Abort an in-progress transfer sequence on one or more channels

Table 149.

CHAN_ABORT

Register

Bits Description Type Reset

31:16 Reserved. - -

RP2040 Datasheet

2.5. DMA 120

Bits Description Type Reset

15:0 Each bit corresponds to a channel. Writing a 1 aborts whatever transfer

sequence is in progress on that channel. The bit will remain high until any in-

flight transfers have been flushed through the address and data FIFOs.

After writing, this register must be polled until it returns all-zero. Until this

point, it is unsafe to restart the channel.

SC 0x0000

DMA: N_CHANNELS Register

Offset: 0x448

Table 150.

N_CHANNELS Register
Bits Description Type Reset

31:5 Reserved. - -

4:0 The number of channels this DMA instance is equipped with. This DMA

supports up to 16 hardware channels, but can be configured with as few as

one, to minimise silicon area.

RO -

DMA: CH0_DBG_CTDREQ, CH1_DBG_CTDREQ, …, CH10_DBG_CTDREQ,

CH11_DBG_CTDREQ Registers

Offsets: 0x800, 0x840, …, 0xa80, 0xac0

Table 151.

CH0_DBG_CTDREQ,

CH1_DBG_CTDREQ, …,

CH10_DBG_CTDREQ,

CH11_DBG_CTDREQ

Registers

Bits Description Type Reset

31:6 Reserved. - -

5:0 Read: get channel DREQ counter (i.e. how many accesses the DMA expects it

can perform on the peripheral without overflow/underflow. Write any value:

clears the counter, and cause channel to re-initiate DREQ handshake.

WC 0x00

DMA: CH0_DBG_TCR, CH1_DBG_TCR, …, CH10_DBG_TCR, CH11_DBG_TCR

Registers

Offsets: 0x804, 0x844, …, 0xa84, 0xac4

Table 152.

CH0_DBG_TCR,

CH1_DBG_TCR, …,

CH10_DBG_TCR,

CH11_DBG_TCR

Registers

Bits Description Type Reset

31:0 Read to get channel TRANS_COUNT reload value, i.e. the length of the next

transfer

RO 0x00000000

2.6. Memory

RP2040 has embedded ROM and SRAM, and access to external Flash via a QSPI interface. Details of internal memory

are given below.

2.6.1. ROM

A 16kB read-only memory (ROM) is at address 0x00000000. The ROM contents are fixed at the time the silicon is

manufactured. It contains:

• Initial startup routine

RP2040 Datasheet

2.6. Memory 121

• Flash boot sequence

• Flash programming routines

• USB mass storage device with UF2 support

• Utility libraries such as fast floating point

The boot sequence of the chip is defined in Section 2.8.1, and the ROM contents is described in more detail in Section

2.8. The full source code for the RP2040 bootrom is available at:

pico-bootrom

The ROM offers single-cycle read-only bus access, and is on a dedicated AHB-Lite arbiter, so it can be accessed

simultaneously with other memory devices. Attempting to write to the ROM has no effect (no bus fault is generated).

2.6.2. SRAM

There is a total of 264kB of on-chip SRAM. Physically this is partitioned into six banks, as this vastly improves memory

bandwidth for multiple masters, but software may treat it as a single 264kB memory region. There are no restrictions on

what is stored in each bank: processor code, data buffers, or a mixture. There are four 16k x 32-bit banks (64kB each)

and two 1k x 32-bit banks (4kB each).

 IMPORTANT

Banking is a physical partitioning of SRAM which improves performance by allowing multiple simultaneous

accesses. Logically there is a single 264kB contiguous memory.

Each SRAM bank is accessed via a dedicated AHB-Lite arbiter. This means different bus masters can access different

SRAM banks in parallel, so up to four 32-bit SRAM accesses can take place every system clock cycle (one per master).

SRAM is mapped to system addresses starting at 0x20000000. The first 256kB address region is word-striped across the

four larger banks, which provides a significant memory parallelism benefits for most use cases.

Consecutive words in the system address space are routed to different RAM banks as shown in Table 153.

Table 153. SRAM

bank0/1/2/3 striped

mapping.

System address SRAM Bank SRAM word address

0x20000000 Bank 0 0

0x20000004 Bank 1 0

0x20000008 Bank 2 0

0x2000000c Bank 3 0

0x20000010 Bank 0 1

0x20000014 Bank 1 1

0x20000018 Bank 2 1

0x2000001c Bank 3 1

0x20000020 Bank 0 2

0x20000024 Bank 1 2

0x20000028 Bank 2 2

0x2000002c Bank 3 2

etc

The next two 4kB regions (starting at 0x20040000 and 0x20041000) are mapped directly to the smaller, 4kB memory banks.

Software may choose to use these for per-core purposes, e.g. stack and frequently-executed code, guaranteeing that

RP2040 Datasheet

2.6. Memory 122

https://github.com/raspberrypi/pico-bootrom

the processors never stall on these accesses. However, like all SRAM on RP2040, these banks have single-cycle access

from all masters providing no other masters are accessing the bank in the same cycle, so it is reasonable to treat

memory as a single 264kB device.

The four 64kB banks are also available at a non-striped mirror. The four 64kB regions starting at 0x21000000, 0x21010000,

0x21020000, 0x21030000 are each mapped directly to one of the four 64kB SRAM banks. Software can explicitly allocate

data and code across the physical memory banks, for improved memory performance in exceptionally demanding

cases. This is often unnecessary, as memory striping usually provides sufficient parallelism with less software

complexity.

The non-striped mirror starts at an offset of +16MB above the base of SRAM, as this is the maximum offset that allows

ARMv6M subroutine calls between the smaller banks and the non-striped larger banks.

2.6.2.1. Other On-chip Memory

Besides the 264kB main memory, there are two other dedicated RAM blocks that may be used in some circumstances:

• If flash XIP caching is disabled, the cache becomes available as a 16kB memory starting at 0x15000000

• If the USB is not used, the USB data DPRAM can be used as a 4kB memory starting at 0x50100000

This gives a total of 284kB of on-chip SRAM. There are no restrictions on how these memories are used, e.g. it is

possible to execute code from the USB data RAM if you choose.

2.6.3. Flash

External Flash is accessed via the QSPI interface using the execute-in-place (XIP) hardware. This allows an external

flash memory to be addressed and accessed by the system as though it were internal memory. Bus reads to a 16MB

memory window starting at 0x10000000 are translated into a serial flash transfer, and the result is returned to the master

that initiated the read. This process is transparent to the master, so a processor can execute code from the external

flash without first copying the code to internal memory, hence "execute in place". An internal cache remembers the

contents of recently-accessed flash locations, which accelerates the average bandwidth and latency of the interface.

Once correctly configured by RP2040’s bootrom and the flash second stage, the XIP hardware is largely transparent,

and software can treat flash as a large read-only memory. However, it does provide a number of additional features to

serve more demanding software use cases.

RP2040 Datasheet

2.6. Memory 123

Figure 14. Flash

execute-in-place (XIP)

subsystem. System

accesses via the main

AHB-Lite slave are

decoded to determine

if they are XIP

accesses, direct

accesses to the SSI

e.g. for configuration,

or accesses to various

other hardware and

control registers in the

XIP subsystem. XIP

accesses are first

looked up in the

cache, to accelerate

accesses to recently-

used data. If the data

is not found in the

cache, an external

serial access is

generated via the SSI,

and the resulting data

is stored in the cache

and forwarded on to

the system bus.

 NOTE

The serial flash interface is configured by the flash second stage when using the SDK to run at an integer divider of

the system clock. All the included second stage boot implementations support a PICO_FLASH_SPI_CLKDIV setting (e.g.

defaulted to 4 in https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/boot_stage2/

boot2_w25q080.S to make the default interface speed 125/4 = 31.25MHz). This divider can be overridden by

specifying PICO_FLASH_SPI_CLKDIV in the particular board config header used with the SDK.

2.6.3.1. XIP Cache

The cache is 16kB, two way set-associative, 1 cycle hit. It is internal to the XIP subsystem, and only affects accesses to

XIP flash, so software does not have to consider cache coherence, unless performing flash programming operations. It

caches reads from a 24-bit flash address space, which is mirrored multiple times in the RP2040 address space, each

alias having different caching behaviour. The eight MSBs of the system address are used for segment decode, leaving

24 bits for flash addressing, so the maximum supported flash size (for XIP operation) is 16MB. The available mirrors

are:

• 0x10… XIP access, cacheable, allocating - Normal cache operation

• 0x11… XIP access, cacheable, non-allocating - Check for hit, don’t update cache on miss

• 0x12… XIP access, non-cacheable, allocating - Don’t check for hit, always update cache

• 0x13… XIP access, non-cacheable, non-allocating - Bypass cache completely

• 0x15… Use XIP cache as SRAM bank, mirrored across entire segment

If the cache is disabled, via the CTRL.EN register bit, then all four of the XIP aliases (0x10 to 0x13) will bypass the cache,

and access the flash directly. This has a significant impact on XIP code execution performance.

Access to the 0x15… segment produces a bus error unless the cache is disabled by clearing CTRL.EN. Once the cache is

disabled, this region behaves as an additional 16kB SRAM bank. Reads and writes are one cycle, but there is a wait state

on consecutive write-read sequences, i.e. there is no write forwarding buffer.

2.6.3.2. Cache Flushing and Maintenance

The FLUSH register allows the entire cache contents to be flushed. This is necessary if software has reprogrammed the

flash contents, and needs to clear out stale data and code, without performing a reboot. Cache flushes are triggered

either manually by writing 1 to FLUSH, or automatically when the XIP block is brought out of reset. The flush is

implemented by zeroing the cache tag memory using an internal counter, which takes just over 1024 clock cycles (16kB

RP2040 Datasheet

2.6. Memory 124

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/boot_stage2/boot2_w25q080.S
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/boot_stage2/boot2_w25q080.S

total size / 8 bytes per line / 2 ways per set).

Flushing the cache whilst accessing flash data (perhaps initiating the flush on one core whilst another core may be

executing code from flash) is a safe operation, but any master accessing flash data while the flush is in progress will be

stalled until completion.

 CAUTION

The cache-as-SRAM alias (0x15…) must not be written whilst a cache flush is in progress. Before writing for the first

time, if a cache flush has recently been initiated (e.g. via a watchdog reset), a dummy read from FLUSH is

recommended to ensure the cache flush has completed. Writing to cache-as-SRAM whilst a flush is in progress can

corrupt the data memory contents.

A complete cache flush dramatically slows subsequent code execution, until the cache "warms up" again. There is an

alternative, which allows cache contents corresponding to only a certain address range to be invalidated. A write to the

0x10… mirror will look up the addressed location in the cache, and delete any matching entry found. Writing to all word-

aligned locations in an address range (e.g. a flash sector that has just been erased and reprogrammed) therefore

eliminates the possibility of stale cached data in this range, without suffering the effects of a complete cache flush.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/flash/cache_perfctr/flash_cache_perfctr.c Lines 30 - 55

30 // Flush cache to make sure we miss the first time we access test_data
31 xip_ctrl_hw->flush = 1;
32 while (!(xip_ctrl_hw->stat & XIP_STAT_FLUSH_READY_BITS))
33 tight_loop_contents();
34
35 // Clear counters (write any value to clear)
36 xip_ctrl_hw->ctr_acc = 1;
37 xip_ctrl_hw->ctr_hit = 1;
38
39 (void) *test_data_ptr;
40 check(xip_ctrl_hw->ctr_hit == 0 && xip_ctrl_hw->ctr_acc == 1,
41 "First access to data should miss");
42
43 (void) *test_data_ptr;
44 check(xip_ctrl_hw->ctr_hit == 1 && xip_ctrl_hw->ctr_acc == 2,
45 "Second access to data should hit");
46
47 // Write to invalidate individual cache lines (64 bits)
48 // Writes must be directed to the cacheable, allocatable alias (address 0x10.._....)
49 *test_data_ptr = 0;
50 (void) *test_data_ptr;
51 check(xip_ctrl_hw->ctr_hit == 1 && xip_ctrl_hw->ctr_acc == 3,
52 "Should miss after invalidation");
53 (void) *test_data_ptr;
54 check(xip_ctrl_hw->ctr_hit == 2 && xip_ctrl_hw->ctr_acc == 4,
55 "Second access after invalidation should hit again");

2.6.3.3. SSI

The execute-in-place functionality is provided by the SSI interface, documented in Section 4.10. It supports 1, 2 or 4-bit

SPI flash interfaces (SPI, DSPI and QSPI), and can insert either an instruction prefix or mode continuation bits on each

XIP access. This includes the possibility of issuing a standard 03h serial flash read command for each access, allowing

virtually any serial flash device to be used. The maximum SPI clock frequency is half the system clock frequency.

The SSI can also be used as a standard FIFO-based SPI master, with DMA support. This mode is used by the bootrom to

extract the second stage bootloader from external flash (see Section 2.8.1). The bus interposer allows an atomic set,

clear or XOR operation to be posted to SSI control registers, in the same manner as other memory-mapped IO on

RP2040 Datasheet

2.6. Memory 125

https://github.com/raspberrypi/pico-examples/blob/master/flash/cache_perfctr/flash_cache_perfctr.c#L30-L55

RP2040. This is described in more detail in Section 2.1.2.

2.6.3.4. Flash Streaming and Auxiliary Bus Slave

As the flash is generally much larger than SRAM, it’s often useful to stream chunks of data into memory from flash. It’s

convenient to have the DMA stream this data in the background while software in the foreground is doing other things,

and it’s even more convenient if code can continue to execute from flash whilst this takes place.

This doesn’t interact well with standard XIP operation, because of the lengthy bus stalls forced on the DMA whilst the

SSI is performing serial transfers. These stalls are tolerable for a processor, because an in-order processor tends to

have nothing better to do while waiting for an instruction fetch to retire, and because typical code execution tends to

have much higher cache hit rates than bulk streaming of infrequently accessed data. In contrast, stalling the DMA

prevents any other active DMA channels from making progress during this time, which slows overall DMA throughput.

The STREAM_ADDR and STREAM_CTR registers are used to program a linear sequence of flash reads, which the XIP subsystem

will perform in the background in a best-effort fashion. To minimise impact on code being executed from flash whilst

the stream is ongoing, the streaming hardware has lower priority access to the SSI than regular XIP accesses, and there

is a brief cooldown (seven cycles) between the last XIP cache miss and resuming streaming. This helps to avoid

increase in initial access latency on XIP cache miss.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/flash/xip_stream/flash_xip_stream.c Lines 45 - 48

45 while (!(xip_ctrl_hw->stat & XIP_STAT_FIFO_EMPTY))
46 (void) xip_ctrl_hw->stream_fifo;
47 xip_ctrl_hw->stream_addr = (uint32_t) &random_test_data[0];
48 xip_ctrl_hw->stream_ctr = count_of(random_test_data);

The streamed data is pushed to a small FIFO, which generates DREQ signals, telling the DMA to collect the streamed

data. As the DMA does not initiate a read until after the data has been read from flash, the DMA is not stalled when

accessing the data.

Although this scheme ensures that the data is ready in the streaming FIFO once the DREQ is asserted, the DMA can still

be stalled if another master is currently stalled on the XIP slave, e.g. due to a cache miss. This is solved by the auxiliary

bus slave, which is a simple bus interface providing access only to the streaming FIFO. This slave is exposed on the

FASTPERI arbiter, which services only native AHB-Lite peripherals which don’t generate wait states, so the DMA will never

experience stalls when accessing the FIFO at this address, assuming it has high bus priority.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/flash/xip_stream/flash_xip_stream.c Lines 58 - 70

58 const uint dma_chan = 0;
59 dma_channel_config cfg = dma_channel_get_default_config(dma_chan);
60 channel_config_set_read_increment(&cfg, false);
61 channel_config_set_write_increment(&cfg, true);
62 channel_config_set_dreq(&cfg, DREQ_XIP_STREAM);
63 dma_channel_configure(
64 dma_chan,
65 &cfg,
66 (void *) buf, // Write addr
67 (const void *) XIP_AUX_BASE, // Read addr
68 count_of(random_test_data), // Transfer count
69 true // Start immediately!
70);

RP2040 Datasheet

2.6. Memory 126

https://github.com/raspberrypi/pico-examples/blob/master/flash/xip_stream/flash_xip_stream.c#L45-L48
https://github.com/raspberrypi/pico-examples/blob/master/flash/xip_stream/flash_xip_stream.c#L58-L70

2.6.3.5. Performance Counters

The XIP subsystem provides two performance counters. These are 32 bits in size, saturate upon reaching 0xffffffff,

and are cleared by writing any value. They count:

1. The total number of XIP accesses, to any alias

2. The number of XIP accesses which resulted in a cache hit

For common use cases, this allows the cache hit rate to be profiled.

2.6.3.6. List of XIP Registers

The XIP registers start at a base address of 0x14000000 (defined as XIP_CTRL_BASE in SDK).

Table 154. List of XIP

registers
Offset Name Info

0x00 CTRL Cache control

0x04 FLUSH Cache Flush control

0x08 STAT Cache Status

0x0c CTR_HIT Cache Hit counter

0x10 CTR_ACC Cache Access counter

0x14 STREAM_ADDR FIFO stream address

0x18 STREAM_CTR FIFO stream control

0x1c STREAM_FIFO FIFO stream data

XIP: CTRL Register

Offset: 0x00

Description

Cache control

Table 155. CTRL

Register
Bits Name Description Type Reset

31:4 Reserved. - - -

3 POWER_DOWN When 1, the cache memories are powered down. They

retain state,

but can not be accessed. This reduces static power

dissipation.

Writing 1 to this bit forces CTRL_EN to 0, i.e. the cache

cannot

be enabled when powered down.

Cache-as-SRAM accesses will produce a bus error

response when

the cache is powered down.

RW 0x0

2 Reserved. - - -

RP2040 Datasheet

2.6. Memory 127

Bits Name Description Type Reset

1 ERR_BADWRITE When 1, writes to any alias other than 0x0 (caching,

allocating)

will produce a bus fault. When 0, these writes are silently

ignored.

In either case, writes to the 0x0 alias will deallocate on tag

match,

as usual.

RW 0x1

0 EN When 1, enable the cache. When the cache is disabled, all

XIP accesses

will go straight to the flash, without querying the cache.

When enabled,

cacheable XIP accesses will query the cache, and the

flash will

not be accessed if the tag matches and the valid bit is set.

If the cache is enabled, cache-as-SRAM accesses have no

effect on the

cache data RAM, and will produce a bus error response.

RW 0x1

XIP: FLUSH Register

Offset: 0x04

Description

Cache Flush control

Table 156. FLUSH

Register
Bits Description Type Reset

31:1 Reserved. - -

0 Write 1 to flush the cache. This clears the tag memory, but

the data memory retains its contents. (This means cache-as-SRAM

contents is not affected by flush or reset.)

Reading will hold the bus (stall the processor) until the flush

completes. Alternatively STAT can be polled until completion.

SC 0x0

XIP: STAT Register

Offset: 0x08

Description

Cache Status

Table 157. STAT

Register
Bits Name Description Type Reset

31:3 Reserved. - - -

2 FIFO_FULL When 1, indicates the XIP streaming FIFO is completely

full.

The streaming FIFO is 2 entries deep, so the full and

empty

flag allow its level to be ascertained.

RO 0x0

1 FIFO_EMPTY When 1, indicates the XIP streaming FIFO is completely

empty.

RO 0x1

RP2040 Datasheet

2.6. Memory 128

Bits Name Description Type Reset

0 FLUSH_READY Reads as 0 while a cache flush is in progress, and 1

otherwise.

The cache is flushed whenever the XIP block is reset, and

also

when requested via the FLUSH register.

RO 0x0

XIP: CTR_HIT Register

Offset: 0x0c

Description

Cache Hit counter

Table 158. CTR_HIT

Register
Bits Description Type Reset

31:0 A 32 bit saturating counter that increments upon each cache hit,

i.e. when an XIP access is serviced directly from cached data.

Write any value to clear.

WC 0x00000000

XIP: CTR_ACC Register

Offset: 0x10

Description

Cache Access counter

Table 159. CTR_ACC

Register
Bits Description Type Reset

31:0 A 32 bit saturating counter that increments upon each XIP access,

whether the cache is hit or not. This includes noncacheable accesses.

Write any value to clear.

WC 0x00000000

XIP: STREAM_ADDR Register

Offset: 0x14

Description

FIFO stream address

Table 160.

STREAM_ADDR

Register

Bits Description Type Reset

31:2 The address of the next word to be streamed from flash to the streaming

FIFO.

Increments automatically after each flash access.

Write the initial access address here before starting a streaming read.

RW 0x00000000

1:0 Reserved. - -

XIP: STREAM_CTR Register

Offset: 0x18

Description

FIFO stream control

Table 161.

STREAM_CTR Register
Bits Description Type Reset

31:22 Reserved. - -

RP2040 Datasheet

2.6. Memory 129

Bits Description Type Reset

21:0 Write a nonzero value to start a streaming read. This will then

progress in the background, using flash idle cycles to transfer

a linear data block from flash to the streaming FIFO.

Decrements automatically (1 at a time) as the stream

progresses, and halts on reaching 0.

Write 0 to halt an in-progress stream, and discard any in-flight

read, so that a new stream can immediately be started (after

draining the FIFO and reinitialising STREAM_ADDR)

RW 0x000000

XIP: STREAM_FIFO Register

Offset: 0x1c

Description

FIFO stream data

Table 162.

STREAM_FIFO

Register

Bits Description Type Reset

31:0 Streamed data is buffered here, for retrieval by the system DMA.

This FIFO can also be accessed via the XIP_AUX slave, to avoid exposing

the DMA to bus stalls caused by other XIP traffic.

RF 0x00000000

2.7. Boot Sequence

Several components of the RP2040 work together to get to a point where the processors are out of reset and able to run

the bootrom (Section 2.8). The bootrom is software that is built into the chip, performing the "processor controlled" part

of the boot sequence. We will refer to the steps before the processor is running as the "hardware controlled" boot

sequence.

The hardware controlled boot sequence is as follows:

• Power is applied to the chip and the RUN pin is high. (If RUN is low then the chip will be held in reset.)

• The On-Chip Voltage Regulator (Section 2.10) waits until the digital core supply (DVDD) is stable

• The Power-On State Machine (Section 2.13) is started. To summarise the sequence:

◦ The Ring Oscillator (Section 2.17) is started, providing a clock source to the clock generators. clk_sys and

clk_ref are now running at a relatively low frequency (typically 6.5MHz).

◦ The reset controller (Section 2.14), the execute-in-place hardware (Section 2.6.3), memories (Section 2.6.2

and Section 2.6.1), Bus Fabric (Section 2.1), and Processor Subsystem (Section 2.3) are taken out of reset.

◦ Processor core 0 and core 1 begin to execute the bootrom (Section 2.8).

2.8. Bootrom

The Bootrom size is limited to 16kB. It contains:

• Processor core 0 initial boot sequence.

• Processor core 1 low power wait and launch protocol.

• USB MSC class-compliant bootloader with UF2 support for downloading code/data to FLASH or RAM.

• USB PICOBOOT bootloader interface for advanced management.

RP2040 Datasheet

2.7. Boot Sequence 130

https://github.com/Microsoft/uf2

• Routines for programming and manipulating the external flash.

• Fast floating point library.

• Fast bit counting / manipulation functions.

• Fast memory fill / copy functions.

Bootrom Source Code

The full source for the RP2040 bootrom can be found at https://github.com/raspberrypi/pico-bootrom.

This includes versions 1, 2 and 3 of the bootrom, which correspond to the B0, B1 and B2 silicon

revisions, respectively.

2.8.1. Processor Controlled Boot Sequence

A flow diagram of the boot sequence is given in Figure 15.

Figure 15. RP2040

Boot Sequence

After the hardware controlled boot sequence described in Section 2.7, the processor controlled boot sequence starts:

• Reset to both processors released: both enter ROM at same location

• Processors check SIO.CPUID

◦ Processor 1 goes to sleep (WFE with SCR.SLEEPDEEP enabled) and remains asleep until woken by user code,

via the mailbox

◦ Processor 0 continues executing from ROM

• If power up event was from Rescue DP, clear this flag and halt immediately

◦ The debug host (which initiated the rescue) will provide further instruction.

• If watchdog scratch registers set to indicate pre-loaded code exists in SRAM, jump to that code

RP2040 Datasheet

2.8. Bootrom 131

https://github.com/raspberrypi/pico-bootrom

• Check if SPI CS pin is tied low ("bootrom button"), and skip flash boot if so.

• Set up IO muxing, pad controls on QSPI pins, and initialise Synopsys SSI for standard SPI mode

• Issue XIP exit sequence, in case flash is still in an XIP mode and has not been power-cycled

• Copy 256 bytes from SPI to internal SRAM (SRAM5) and check for valid CRC32 checksum

• If checksum passes, assume what we have loaded is a valid flash second stage

• Start executing the loaded code from SRAM (SRAM5)

• If no valid image found in SPI after 0.5 seconds of attempting to boot, drop to USB device boot

• USB device boot: appear as a USB Mass Storage Device

◦ Can program the SPI flash, or load directly into SRAM and run, by dragging and dropping an image in UF2

format.

◦ Also supports an extended PICOBOOT interface

2.8.1.1. Watchdog Boot

Watchdog boot allows users to install their own boot handler, and divert control away from the main boot sequence on

non-POR/BOR resets. It also simplifies running code over the JTAG test interface. It recognises the following values

written to the watchdog’s upper scratch registers:

• Scratch 4: magic number 0xb007c0d3

• Scratch 5: Entry point XORed with magic -0xb007c0d3 (0x4ff83f2d)

• Scratch 6: Stack pointer

• Scratch 7: Entry point

If either of the magic numbers mismatch, watchdog boot does not take place. If the numbers match, the Bootrom

zeroes scratch 4 before transferring control, so that the behaviour does not persist over subsequent reboots.

2.8.1.2. Flash Boot Sequence

One of the main challenges of a warm flash boot is forcing the external flash from XIP mode to a mode where it will

accept standard SPI commands. There is no standard method to discontinue XIP on an unknown flash. The Bootrom

provides a best-effort sequence with broad compatibility, which is as follows:

• CSn=1, IO[3:0]=4’b0000 (via pull-downs to avoid contention), issue ×32 clocks

• CSn=0, IO[3:0]=4’b1111 (via pull-ups to avoid contention), issue ×32 clocks

• CSn=1

• CSn=0, MOSI=1’b1 (driven low-Z, all other IOs Hi-Z), issue ×16 clocks

This is designed to miss the XIP continuation codes on Cypress, Micron and Winbond parts. If the device is already in

SPI mode, it interprets this sequence as two FFh NOP instructions, which should be ignored.

As this is best effort only, there may be some devices which obstinately remain in XIP mode. There are then two

options:

• Use a less efficient XIP mode where each transfer has an SPI instruction prefix, so the flash device remains

communicative in SPI mode.

• Boot code installs a compatible XIP exit sequence in SRAM, and configures the watchdog such that a warm boot

will jump straight into this sequence, foregoing our canned sequence.

After issuing the XIP exit sequence, the Bootrom attempts to read in the second stage from flash using standard 03h

serial read commands, which are near-universally supported. Since the Bootrom is immutable, it aims for compatibility

RP2040 Datasheet

2.8. Bootrom 132

rather than performance.

2.8.1.3. Flash Second Stage

The flash second stage must configure the SSI and the external flash for the best possible execute-in-place

performance. This includes interface width, SCK frequency, SPI instruction prefix and an XIP continuation code for

address-data only modes. Generally some operation can be performed on the external flash so that it does not require

an instruction prefix on each access, and will simply respond to addresses with data.

Until the SSI is correctly configured for the attached flash device, it is not possible to access flash via the XIP address

window. Additionally, the Synopsys SSI can not be reconfigured at all without first disabling it. Therefore the second

stage must be copied from flash to SRAM by the bootrom, and executed in SRAM.

Alternatively, the second stage can simply shadow an image from external flash into SRAM, and not configure execute-

in-place.

This is the only job of the second stage. All other chip setup (e.g. PLLs, Voltage Regulator) can be performed by

platform initialisation code executed over the XIP interface, once the second stage has run.

2.8.1.3.1. Checksum

The last four bytes of the image loaded from flash (which we hope is a valid flash second stage) are a CRC32 checksum

of the first 252 bytes. The parameters of the checksum are:

• Polynomial: 0x04c11db7

• Input reflection: no

• Output reflection: no

• Initial value: 0xffffffff

• Final XOR: 0x00000000

• Checksum value appears as little-endian integer at end of image

The Bootrom makes 128 attempts of approximately 4ms each for a total of approximately 0.5 seconds before giving up

and dropping into USB code to load and checksum the second stage with varying SPI parameters. If it sees a checksum

pass it will immediately jump into the 252-byte payload which contains the flash second stage.

2.8.2. Launching Code On Processor Core 1

As described in the introduction to Section 2.8.1, after reset, processor core 1 "sleeps (WFE with SCR.SLEEPDEEP

enabled) and remains asleep until woken by user code, via the mailbox".

If you are using the SDK then you can simply use the multicore_launch_core1 function to launch code on processor core 1.

However this section describes the procedure to launch code on processor core 1 yourself.

The procedure to start running on processor core 1 involves both cores moving in lockstep through a state machine

coordinated by passing messages over the inter-processor FIFOs. This state machine is designed to be robust enough

to cope with a recently reset processor core 1 which may be anywhere in its boot code, up to and including going to

sleep. As result, the procedure may be performed at any point after processor core 1 has been reset (either by system

reset, or explicitly resetting just processor core 1).

The following C code is the simplest way to describe the procedure:

 // values to be sent in order over the FIFO from core 0 to core 1
 //
 // vector_table is value for VTOR register

RP2040 Datasheet

2.8. Bootrom 133

 // sp is initial stack pointer (SP)
 // entry is the initial program counter (PC) (don't forget to set the thumb bit!)
 const uint32_t cmd_sequence[] =
 {0, 0, 1, (uintptr_t) vector_table, (uintptr_t) sp, (uintptr_t) entry};

 uint seq = 0;
 do {
 uint cmd = cmd_sequence[seq];
 // always drain the READ FIFO (from core 1) before sending a 0
 if (!cmd) {
 // discard data from read FIFO until empty
 multicore_fifo_drain();
 // execute a SEV as core 1 may be waiting for FIFO space
 __sev();
 }
 // write 32 bit value to write FIFO
 multicore_fifo_push_blocking(cmd);
 // read 32 bit value from read FIFO once available
 uint32_t response = multicore_fifo_pop_blocking();
 // move to next state on correct response (echo-d value) otherwise start over
 seq = cmd == response ? seq + 1 : 0;
 } while (seq < count_of(cmd_sequence));

2.8.3. Bootrom Contents

Some of the bootrom is dedicated to the implementation of the boot sequence and USB boot interfaces. There is also

code in the bootrom useful to user programs. Table 163 shows the fixed memory layout of the first handful of words in

the Bootrom which are instrumental in locating other content within the bootrom.

Table 163. Bootrom

contents at fixed (well

known) addresses

Address Contents Description

0x00000000 32-bit pointer Initial boot stack pointer

0x00000004 32-bit pointer Pointer to boot reset handler function

0x00000008 32-bit pointer Pointer to boot NMI handler function

0x0000000c 32-bit pointer Pointer to boot Hard fault handler function

0x00000010 'M', 'u', 0x01 Magic

0x00000013 byte Bootrom version

0x00000014 16-bit pointer Pointer to a public function lookup table (rom_func_table)

0x00000016 16-bit pointer Pointer to a public data lookup table (rom_data_table)

0x00000018 16-bit pointer Pointer to a helper function (rom_table_lookup())

2.8.3.1. Bootrom Functions

The Bootrom contains a number of public functions that provide useful RP2040 functionality that might be needed in

the absence of any other code on the device, as well as highly optimized versions of certain key functionality that would

otherwise have to take up space in most user binaries.

These functions are normally made available to the user by the SDK, however a lower level method is provided to locate

them (their locations may change with each Bootrom release) and call them directly.

Assuming the three bytes starting at address 0x00000010 are ('M', 'u', 0x01) then the three halfwords starting at offset

0x00000014 are valid.

RP2040 Datasheet

2.8. Bootrom 134

These three values can be used to dynamically locate other functions or data within the Bootrom. The version byte at

offset 0x00000013 is informational and should not be used to infer the exact location of any functions.

The following code from the SDK shows how the three 16-bit pointers are used to lookup other functions or data.

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_bootrom/bootrom.c Lines 11 - 19

11 void *rom_func_lookup(uint32_t code) {
12 return rom_func_lookup_inline(code);
13 }
14
15 void *rom_data_lookup(uint32_t code) {
16 rom_table_lookup_fn rom_table_lookup = (rom_table_lookup_fn) rom_hword_as_ptr(0x18);
17 uint16_t *data_table = (uint16_t *) rom_hword_as_ptr(0x16);
18 return rom_table_lookup(data_table, code);
19 }

The code parameter correspond to the CODE values in the tables below, and is calculated as follows:

uint32_t rom_table_code(char c1, char c2) {
 return (c2 << 8) | c1;
}

2.8.3.1.1. Fast Bit Counting / Manipulation Functions

These are optimized versions of common bit counting / manipulation functions.

In general you do not need to call these methods directly as the SDK pico_bit_ops library replaces the corresponding

standard compiler library functions by default so that the standard functions such as __builtin_popcount or __clzdi2 uses

the corresponding Bootrom implementations automatically (see pico_bit_ops for more details).

These functions have changed in speed slightly between version 1 (V1) of the bootrom and version 2 (V2).

Table 164. Fast Bit

Counting /

Manipulation

Functions.

CODE Cycles Avg

V1

Cycles Avg

V2/V3

Description

'P','3' 18 20 uint32_t _popcount32(uint32_t value)

Return a count of the number of 1 bits in value.

'R','3' 21 22 uint32_t _reverse32(uint32_t value)

Return the bits of value in the reverse order.

'L','3' 13 9.6 uint32_t _clz32(uint32_t value)

Return the number of consecutive high order 0 bits of value. If value is zero, returns

32.

'T','3' 12 11 uint32_t _ctz32(uint32_t value)

Return the number of consecutive low order 0 bits of value. If value is zero, returns

32.

2.8.3.1.2. Fast Bulk Memory Fill / Copy Functions

These are highly optimized bulk memory fill and copy functions commonly provided by most language runtimes.

In general you do not need to call these methods directly as the SDK pico_mem_ops library replaces the corresponding

standard ARM EABI functions by default so that the standard C library functions e.g. memcpy or memset use the Bootrom

RP2040 Datasheet

2.8. Bootrom 135

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_bootrom/bootrom.c#L11-L19
https://www.raspberrypi.com/documentation/pico-sdk/runtime.html#pico_bit_ops

implementations automatically (see pico_mem_ops for more details).

Table 165. Optimized

Bulk Memory Fill /

Copy Functions

CODE Description

'M','S' uint8_t *_memset(uint8_t *ptr, uint8_t c, uint32_t n)

Sets n bytes start at ptr to the value c and returns ptr.

'S','4' uint32_t *_memset4(uint32_t *ptr, uint8_t c, uint32_t n)

Sets n bytes start at ptr to the value c and returns ptr. Note this is a slightly more efficient variant of

_memset that may only be used if ptr is word aligned.

'M','C' uint8_t *_memcpy(uint8_t *dest, uint8_t *src, uint32_t n)

Copies n bytes starting at src to dest and returns dest. The results are undefined if the regions overlap.

'C','4' uint8_t *_memcpy44(uint32_t *dest, uint32_t *src, uint32_t n)

Copies n bytes starting at src to dest and returns dest. The results are undefined if the regions overlap.

Note this is a slightly more efficient variant of _memcpy that may only be used if dest and src are word

aligned.

2.8.3.1.3. Flash Access Functions

These are low level flash helper functions.

Table 166. Flash

Access Functions
CODE Description

'I','F' void _connect_internal_flash(void)

Restore all QSPI pad controls to their default state, and connect the SSI to the QSPI pads

'E','X' void _flash_exit_xip(void)

First set up the SSI for serial-mode operations, then issue the fixed XIP exit sequence described in

Section 2.8.1.2. Note that the bootrom code uses the IO forcing logic to drive the CS pin, which must be

cleared before returning the SSI to XIP mode (e.g. by a call to _flash_flush_cache). This function

configures the SSI with a fixed SCK clock divisor of /6.

'R','E' void _flash_range_erase(uint32_t addr, size_t count, uint32_t block_size, uint8_t block_cmd)

Erase a count bytes, starting at addr (offset from start of flash). Optionally, pass a block erase command

e.g. D8h block erase, and the size of the block erased by this command — this function will use the larger

block erase where possible, for much higher erase speed. addr must be aligned to a 4096-byte sector, and

count must be a multiple of 4096 bytes.

'R','P' void flash_range_program(uint32_t addr, const uint8_t *data, size_t count)

Program data to a range of flash addresses starting at addr (offset from the start of flash) and count bytes

in size. addr must be aligned to a 256-byte boundary, and count must be a multiple of 256.

'F','C' void _flash_flush_cache(void)

Flush and enable the XIP cache. Also clears the IO forcing on QSPI CSn, so that the SSI can drive the

flash chip select as normal.

'C','X' void _flash_enter_cmd_xip(void)

Configure the SSI to generate a standard 03h serial read command, with 24 address bits, upon each XIP

access. This is a very slow XIP configuration, but is very widely supported. The debugger calls this

function after performing a flash erase/programming operation, so that the freshly-programmed code

and data is visible to the debug host, without having to know exactly what kind of flash device is

connected.

A typical call sequence for erasing a flash sector from user code would be:

RP2040 Datasheet

2.8. Bootrom 136

https://www.raspberrypi.com/documentation/pico-sdk/runtime.html#pico_mem_ops

• _connect_internal_flash

• _flash_exit_xip

• _flash_range_erase(addr, 1 << 12, 1 << 16, 0xd8)

• _flash_flush_cache

• Either a call to _flash_enter_cmd_xip or call into a flash second stage that was previously copied out into SRAM

Note that, in between the first and last calls in this sequence, the SSI is not in a state where it can handle XIP accesses,

so the code that calls the intervening functions must be located in SRAM. The SDK hardware_flash library hides these

details.

2.8.3.1.4. Debugging Support Functions

These two methods simplify the task of calling code on the device and then returning control to the debugger.

Table 167. Debugging

Support Functions
CODE Description

'D','T' _debug_trampoline

Simple debugger trampoline for break-on-return.

This methods helps the debugger call ROM routines without setting hardware breakpoints. The function

address is passed in r7 and args are passed through r0 … r3 as per ABI.

This method does not return but executes a BKPT #0 at the end.

'D','E' _debug_trampoline_end

This is the address of the final BKPT #0 instruction of debug_trampoline. This can be compared with the

program counter to detect completion of the debug_trampoline call.

2.8.3.1.5. Miscellaneous Functions

These remaining functions don’t fit in other categories and are exposed in the SDK via the pico_bootrom library (see

pico_bootrom).

Table 168.

Miscellaneous

Functions

CODE Description

'U','B' void _reset_to_usb_boot(uint32_t gpio_activity_pin_mask, uint32_t disable_interface_mask)

Resets the RP2040 and uses the watchdog facility to re-start in BOOTSEL mode:

• gpio_activity_pin_mask is provided to enable an "activity light" via GPIO attached LED for the USB

Mass Storage Device:

◦ 0 No pins are used as per a cold boot.

◦ Otherwise a single bit set indicating which GPIO pin should be set to output and raised

whenever there is mass storage activity from the host.

• disable_interface_mask may be used to control the exposed USB interfaces:

◦ 0 To enable both interfaces (as per a cold boot)

◦ 1 To disable the USB Mass Storage Interface (see Section 2.8.4)

◦ 2 To disable the USB PICOBOOT Interface (see Section 2.8.5)

RP2040 Datasheet

2.8. Bootrom 137

https://www.raspberrypi.com/documentation/pico-sdk/runtime.html#pico_bootrom

'W','V' _wait_for_vector

This is the method that is entered by core 1 on reset to wait to be launched by core 0. There are few

cases where you should call this method (resetting core 1 is much better). This method does not return

and should only ever be called on core 1.

'E','C' deprecated

Do not use this function which may not be present.

2.8.3.2. Fast Floating Point Library

The Bootrom contains an optimized single-precision floating point implementation. Additionally V2 onwards also

contain an optimized double-precision float point implementation. The function pointers for each precision are kept in a

table structure found via the rom_data_lookup table (see Section 2.8.3.3).

2.8.3.2.1. Implementation Details

There is always a trade-off between speed and size. Whilst the overall goal for the floating-point routines is to achieve

good performance within a small footprint, the emphasis is more on improved performance for the basic operations

(add, subtract, multiply, divide and square root) and more on reduced footprint for the scientific functions (trigonometric

functions, logarithms and exponentials).

The IEEE single- and double-precision data formats are used throughout, but in the interests of reducing code size, input

denormals are treated as zero, input NaNs are treated as infinities, output denormals are flushed to zero, and output

NaNs are rendered as infinities. Only the round-to-nearest, even-on-tie rounding mode is supported. Traps are not

supported.

The five basic operations return results that are always correctly rounded.

The scientific functions always return results within 1 ULP (unit in last place) of the exact result. In many cases results

are better.

The scientific functions are calculated using internal fixed-point representations so accuracy (as measured in ULP error

rather than in absolute terms) is poorer in situations where converting the result back to floating point entails a large

normalising shift. This occurs, for example, when calculating the sine of a value near a multiple of pi, the cosine of a

value near an odd multiple of pi/2, or the logarithm of a value near 1. Accuracy of the tangent function is also poorer

when the result is very large. Although covering these cases is possible, it would add considerably to the code footprint,

and there are few types of program where accuracy in these situations is essential.

The sine, cosine and tangent functions also only operate correctly over a limited range: -128 < x < +128 for single-

precision arguments x and -1024 < x < +1024 for double-precision x. This is to avoid the need to (at least in effect) store

the value of pi to high precision within the code, and hence saves code space. Accurate range reduction over a wider

range of arguments can be done externally to the library if required, but again there are few situations where this would

be needed.

 NOTE

The SDK cos/sin functions perform this range reduction, so accept the full range of arguments, though are slower

for inputs outside of these ranges.

2.8.3.2.2. Functions

These functions follow the standard ARM EABI for passing floating point values.

You do not need to call these methods directly as the SDK pico_float and pico_double libraries used by default replace

the ARM EABI Float functions such that C/C++ level code (or indirectly code in languages such as MicroPython that are

implemented in C) use these Bootrom functions automatically for the corresponding floating point operations.

RP2040 Datasheet

2.8. Bootrom 138

https://www.raspberrypi.com/documentation/pico-sdk/runtime.html#pico_float
https://www.raspberrypi.com/documentation/pico-sdk/runtime.html#pico_double

Some of these functions do not behave exactly the same as some of the corresponding C library functions. For that

reason if you are using the SDK it is strongly advised that you simply use the regular math.h functions or those in

pico/float.h or pico/double.h and not try to call into the bootrom directly.

Note that double-precision floating point support is not present in version 1 (V1) of the bootrom, but the above

mentioned pico_double library in the SDK will take care of pulling in any extra code needed for V1.

 NOTE

For more information on using floating point in the SDK, and real world timings (noting also that some conversion

functions are re-implemented in the SDK to be faster) see floating point support.

Table 169. Single-

precision Floating

Point Function Table.

Timings are average

time in us over

random (worst case)

input. Functions with

timing of N/A are not

present in that ROM

version, and the

function pointer

should be considered

invalid. The functions

(and table entries)

from offset 0x54

onwards are only

present in the V2

ROM.

Offset V1 Cycles

(Avg)

V2/V3

Cycles

(Avg)

Description

Functions common to all versions of the bootrom

0x00 71 71 float _fadd(float a, float b)

Return a + b

0x04 74 74 float _fsub(float a, float b)

Return a - b

0x08 69 58 float _fmul(float a, float b)

Return a * b

0x0c 71 71 float _fdiv(float a, float b)

Return a / b

0x10 N/A N/A deprecated

Do not use this function

0x14 N/A N/A deprecated

Do not use this function

0x18 63 63 float _fsqrt(float v)

Return or -Infinity if v is negative. (Note V1 returns +Infinity in this case)

0x1c 37 40 int _float2int(float v)

Convert a float to a signed integer, rounding towards -Infinity, and clamping the

result to lie within the range -0x80000000 to 0x7FFFFFFF

0x20 36 39 int _float2fix(float v, int n)

Convert a float to a signed fixed point integer representation where n specifies the

position of the binary point in the resulting fixed point representation - e.g.

_float2fix(0.5f, 16) == 0x8000. This method rounds towards -Infinity, and clamps

the resulting integer to lie within the range -0x80000000 to 0x7FFFFFFF

0x24 38 39 uint _float2uint(float v)

Convert a float to an unsigned integer, rounding towards -Infinity, and clamping

the result to lie within the range 0x00000000 to 0xFFFFFFFF

RP2040 Datasheet

2.8. Bootrom 139

https://www.raspberrypi.com/documentation/pico-sdk/runtime.html#pico_double
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf#section_floating_point

0x28 38 38 uint _float2ufix(float v, int n)

Convert a float to an unsigned fixed point integer representation where n specifies

the position of the binary point in the resulting fixed point representation, e.g.

_float2ufix(0.5f, 16) == 0x8000. This method rounds towards -Infinity, and clamps

the resulting integer to lie within the range 0x00000000 to 0xFFFFFFFF

0x2c 55 55 float _int2float(int v)

Convert a signed integer to the nearest float value, rounding to even on tie

0x30 53 53 float _fix2float(int32_t v, int n)

Convert a signed fixed point integer representation to the nearest float value,

rounding to even on tie. n specifies the position of the binary point in fixed point,

so

0x34 54 54 float _uint2float(uint32_t v)

Convert an unsigned integer to the nearest float value, rounding to even on tie

0x38 52 52 float _ufix2float(uint32_t v, int n)

Convert an unsigned fixed point integer representation to the nearest float value,

rounding to even on tie. n specifies the position of the binary point in fixed point,

so

0x3c 603 587 float _fcos(float angle)

Return the cosine of angle. angle is in radians, and must be in the range -128 to

128

0x40 593 577 float _fsin(float angle)

Return the sine of angle. angle is in radians, and must be in the range -128 to 128

0x44 669 653 float _ftan(float angle)

Return the tangent of angle. angle is in radians, and must be in the range -128 to

128

0x48 N/A N/A deprecated

Do not use this function

0x4c 542 524 float _fexp(float v)

Return the exponential value of v, i.e. so

0x50 810 789 float _fln(float v)

Return the natural logarithm of v. If return -Infinity

Functions (and table entries) present in the V2/V3 bootrom only

0x54 N/A 25 int _fcmp(float a, float b)

Compares two floating point numbers, returning:

• 0 if a == b

• -1 if a < b

• 1 if a > b

0x58 N/A 667 float _fatan2(float y, float x)

Computes the arc tangent of y/x using the signs of arguments to determine the

correct quadrant

RP2040 Datasheet

2.8. Bootrom 140

0x5c N/A 62 float _int642float(int64_t v)

Convert a signed 64-bit integer to the nearest float value, rounding to even on tie

0x60 N/A 60 float _fix642float(int64_t v, int n)

Convert a signed fixed point 64-bit integer representation to the nearest float

value, rounding to even on tie. n specifies the position of the binary point in fixed

point, so

0x64 N/A 58 float _uint642float(uint64_t v)

Convert an unsigned 64-bit integer to the nearest float value, rounding to even on

tie

0x68 N/A 57 float _ufix642float(uint64_t v, int n)

Convert an unsigned fixed point 64-bit integer representation to the nearest float

value, rounding to even on tie. n specifies the position of the binary point in fixed

point, so

0x6c N/A 54 _float2int64

Convert a float to a signed 64-bit integer, rounding towards -Infinity, and clamping

the result to lie within the range -0x8000000000000000 to 0x7FFFFFFFFFFFFFFF

0x70 N/A 53 _float2fix64

Convert a float to a signed fixed point 64-bit integer representation where n

specifies the position of the binary point in the resulting fixed point representation

- e.g. _float2fix(0.5f, 16) == 0x8000. This method rounds towards -Infinity, and

clamps the resulting integer to lie within the range -0x8000000000000000 to

0x7FFFFFFFFFFFFFFF

0x74 N/A 42 _float2uint64

Convert a float to an unsigned 64-bit integer, rounding towards -Infinity, and

clamping the result to lie within the range 0x0000000000000000 to 0xFFFFFFFFFFFFFFFF

0x78 N/A 41 _float2ufix64

Convert a float to an unsigned fixed point 64-bit integer representation where n

specifies the position of the binary point in the resulting fixed point representation,

e.g. _float2ufix(0.5f, 16) == 0x8000. This method rounds towards -Infinity, and

clamps the resulting integer to lie within the range 0x0000000000000000 to

0xFFFFFFFFFFFFFFFF

0x7c N/A 15 double _float2double(float v)

Converts a float to a double

Function present in the V3 bootrom only

0x48

(uses
previously
deprecated

slot)

577 (V3
only)

float (,float) _fsincos(float angle)

Calculates the sine and cosine of angle. angle is in radians, and must be in the

range -128 to 128. The sine value is returned in register r0 (and is thus the official

function return value), the cosine value is returned in register r1. This method is

considerably faster than calling _fsin and _fcos separately.

Note that the V2/V3 bootroms contains an equivalent table of functions for double-precision floating point operations.

The offsets are the same, however where there was now float there is double (and vice versa for the float<>double

conversion)

RP2040 Datasheet

2.8. Bootrom 141

Table 170. Double-

precision Floating

Point Function Table.

Timings are average

time in us over

random (worst case)

input. Functions with

timing of N/A are not

present in that ROM

version, and the

function pointer

should be considered

invalid. The functions

(and table entries)

from offset 0x54

onwards are only

present in the V2 and

V3 ROMs.

Offset Cycles

(Avg)*

Description

0x00 91 double _dadd(double a, double b)

Return a + b

0x04 95 double _dsub(double a, double b)

Return a - b

0x08 155 double _dmul(double a, double b)

Return a * b

0x0c 183 double _ddiv(double a, double b)

Return a / b

0x10 N/A deprecated

Do not use this function

0x14 N/A deprecated

Do not use this function

0x18 169 double _dsqrt(double v)

Return or -Infinity if v is negative.

0x1c 75 int _double2int(double v)

Convert a double to a signed integer, rounding towards -Infinity, and clamping the result to

lie within the range -0x80000000 to 0x7FFFFFFF

0x20 74 int _double2fix(double v, int n)

Convert a double to a signed fixed point integer representation where n specifies the

position of the binary point in the resulting fixed point representation - e.g. _double2fix(0.5f,

16) == 0x8000. This method rounds towards -Infinity, and clamps the resulting integer to lie

within the range -0x80000000 to 0x7FFFFFFF

0x24 63 uint _double2uint(double v)

Convert a double to an unsigned integer, rounding towards -Infinity, and clamping the result

to lie within the range 0x00000000 to 0xFFFFFFFF

0x28 62 uint _double2ufix(double v, int n)

Convert a double to an unsigned fixed point integer representation where n specifies the

position of the binary point in the resulting fixed point representation, e.g. _double2ufix(0.5f,

16) == 0x8000. This method rounds towards -Infinity, and clamps the resulting integer to lie

within the range 0x00000000 to 0xFFFFFFFF

0x2c 69 double _int2double(int v)

Convert a signed integer to the nearest double value, rounding to even on tie

0x30 68 double _fix2double(int32_t v, int n)

Convert a signed fixed point integer representation to the nearest double value, rounding to

even on tie. n specifies the position of the binary point in fixed point, so

0x34 64 double _uint2double(uint32_t v)

Convert an unsigned integer to the nearest double value, rounding to even on tie

RP2040 Datasheet

2.8. Bootrom 142

Offset Cycles

(Avg)*

Description

0x38 62 double _ufix2double(uint32_t v, int n)

Convert an unsigned fixed point integer representation to the nearest double value,

rounding to even on tie. n specifies the position of the binary point in fixed point, so

0x3c 1617 double _dcos(double angle)

Return the cosine of angle. angle is in radians, and must be in the range -1024 to 1024

0x40 1618 double _dsin(double angle)

Return the sine of angle. angle is in radians, and must be in the range -1024 to 1024

0x44 1891 double _dtan(double angle)

Return the tangent of angle. angle is in radians, and must be in the range -1024 to 1024

0x48 N/A deprecated

Do not use this function

0x4c 804 double _dexp(double v)

Return the exponential value of v, i.e. so

0x50 428 double _dln(double v)

Return the natural logarithm of v. If return -Infinity

0x54 39 int _dcmp(double a, double b)

Compares two floating point numbers, returning:

• 0 if a == b

• -1 if a < b

• 1 if a > b

0x58 2168 double _datan2(double y, double x)

Computes the arc tangent of y/x using the signs of arguments to determine the correct

quadrant

0x5c 55 double _int642double(int64_t v)

Convert a signed 64-bit integer to the nearest double value, rounding to even on tie

0x60 56 double _dix642double(int64_t v, int n)

Convert a signed fixed point 64-bit integer representation to the nearest double value,

rounding to even on tie. n specifies the position of the binary point in fixed point, so

0x64 50 double _uint642double(uint64_t v)

Convert an unsigned 64-bit integer to the nearest double value, rounding to even on tie

0x68 49 double _ufix642double(uint64_t v, int n)

Convert an unsigned fixed point 64-bit integer representation to the nearest double value,

rounding to even on tie. n specifies the position of the binary point in fixed point, so

0x6c 64 _double2int64

Convert a double to a signed 64-bit integer, rounding towards -Infinity, and clamping the

result to lie within the range -0x8000000000000000 to 0x7FFFFFFFFFFFFFFF

RP2040 Datasheet

2.8. Bootrom 143

Offset Cycles

(Avg)*

Description

0x70 63 _double2fix64

Convert a double to a signed fixed point 64-bit integer representation where n specifies the

position of the binary point in the resulting fixed point representation - e.g. _double2fix(0.5f,

16) == 0x8000. This method rounds towards -Infinity, and clamps the resulting integer to lie

within the range -0x8000000000000000 to 0x7FFFFFFFFFFFFFFF

0x74 53 _double2uint64

Convert a double to an unsigned 64-bit integer, rounding towards -Infinity, and clamping the

result to lie within the range 0x0000000000000000 to 0xFFFFFFFFFFFFFFFF

0x78 52 _double2ufix64

Convert a double to an unsigned fixed point 64-bit integer representation where n specifies

the position of the binary point in the resulting fixed point representation, e.g.

_double2ufix(0.5f, 16) == 0x8000. This method rounds towards -Infinity, and clamps the

resulting integer to lie within the range 0x0000000000000000 to 0xFFFFFFFFFFFFFFFF

0x7c 23 float _double2float(double v)

Converts a double to a float

Function present in the V3 bootrom only

0x48

(uses
previously
deprecated

slot)

1718

(V3 only)

double (,double) _sincos(double angle)

Calculates the sine and cosine of angle. angle is in radians, and must be in the range -1024

to 1024. The sine value is returned in registers r0/r1 (and is thus the official return value),

the cosine value is returned in registers r2/r3. This method is considerably faster than

calling _sin and _cos separately.

2.8.3.3. Bootrom Data

The Bootrom data table (rom_data_table) contains the following pointers.

Table 171. Bootrom

data pointers
CODE Value (16-bit pointer) Description

'C','R' const char *copyright_string

The Raspberry Pi Trading Ltd copyright string.

'G','R' const uint32_t *git_revision

The 8 most significant hex digits of the Bootrom git revision.

'F','S' fplib_start

The start address of the floating point library code and data. This and fplib_end along with the individual

function pointers in soft_float_table can be used to copy the floating point implementation into RAM if

desired.

'S','F' soft_float_table

See Table 169 for the contents of this table.

'F','E' fplib_end

The end address of the floating point library code and data.

RP2040 Datasheet

2.8. Bootrom 144

'S','D' soft_double_table

This entry is only present in the V2 bootrom. See Table 170 for the contents of this table.

'P','8' deprecated. This entry is not present in the V2 bootrom; do not use it.

'R','8' deprecated. This entry is not present in the V2 bootrom; do not use it.

'L','8' deprecated. This entry is not present in the V2 bootrom; do not use it.

'T','8' deprecated. This entry is not present in the V2 bootrom; do not use it.

2.8.4. USB Mass Storage Interface

The Bootrom provides a standard USB bootloader that makes a writeable drive available for copying code to the

RP2040 using UF2 files (see Section 2.8.4.2).

A UF2 file copied to the drive is downloaded and written to Flash or RAM, and the device is automatically rebooted,

making it trivial to download and run code on the RP2040 using only a USB connection.

2.8.4.1. The RPI-RP2 Drive

The RP2040 appears as a standard 128MB flash drive named RPI-RP2 formatted as a single partition with FAT16. There

are only ever two actual files visible on the drive specified.

• INFO_UF2.TXT - contains a string description of the UF2 bootloader and version.

• INDEX.HTM - redirects to information about the RP2040 device.

Any type of files may be written to the USB drive from the host, however in general these are not stored, and only appear

to be so because of caching on the host side.

When a UF2 file is written to the device however, the special contents are recognized and data is written to specified

locations in RAM or Flash. On the completed download of an entire valid UF2 file, the RP2040 automatically reboots to

run the newly downloaded code.

 NOTE

The INDEX.HTM file is currently redirected to https://www.raspberrypi.com/documentation/microcontrollers/

2.8.4.2. UF2 Format Details

There are requirements on a UF2 file to be valid to download to the RP2040. It is important that you always use valid

UF2 files (as for example generated by https://github.com/raspberrypi/pico-sdk/blob/master/tools/elf2uf2/main.cpp),

as invalid files may be partially written and then silently fail. Note that on some operating systems you may receive a

disk write error on failure, but this is not guaranteed.

• All data destined for the device must be in a UF2 block with familyID present and set to 0xe48bff56, and a payload_size

of 256.

• All data must be destined for (and fit entirely within) the following memory ranges (depending on the type of binary

being downloaded which is determined by the address of the first UF2 block encountered):

a. A regular flash binary

▪ 0x10000000-0x11000000 Flash: All blocks must be targeted at 256 byte alignments. Writes beyond the end of

physical flash will wrap back to the beginning of flash.

b. A RAM only binary

RP2040 Datasheet

2.8. Bootrom 145

https://www.raspberrypi.com/documentation/microcontrollers/
https://github.com/raspberrypi/pico-sdk/blob/master/tools/elf2uf2/main.cpp

▪ 0x20000000-0x20042000 Main RAM: Blocks can be positioned with byte alignment.

▪ 0x15000000-0x15004000 Flash Cache: (since flash is not being targeted, the Flash Cache is available for use

as RAM with same properties as Main RAM).

 NOTE

Traditionally UF2 has only been used to write to Flash, but this is more a limitation of using the metadata-free

.BIN file as the source to generate the UF2 file. RP2040 takes full advantage of the inherent flexibility of UF2 to

support the full range of binaries in the richer .ELF format produced by the build to be used as the source for the

UF2 file.

• The numBlocks must specify a total size of the binary that fits in the regions specified above

• A change of numBlocks or the binary type (determined by UF2 block target address) will discard the current transfer

in progress.

• All data must be in blocks without the UF2_FLAG_NOT_MAIN_FLASH marking which relates to content to be ignored rather

than Flash vs RAM.

The flash is always erased a 4kB sector at a time, so including data for only a subset of the 256-byte pages within a

sector in a flash-binary UF2 will leave the remaining 256-byte pages of the sector erased but undefined. The RP2040

bootrom will accept UF2 binaries with such partially-filled sectors, however due to a bug (RP2040-E14) such binaries

may not be written correctly if there is any partially-filled sector other than at the end. Most flash binaries are 4kB

aligned and contiguous, and therefore it is usually only the last sector that is partially-filled. If you need to write non-

aligned or non-contiguous UF2s to flash, then you should make sure to include a full 4kB worth of data for every sector

in flash that will be written other than the last. This is handled for you automatically by the elf2uf2 tool in the SDK

version 1.3.1 onwards, which explicitly adds zero-filled pages to the appropriate partially-filled sectors.

A binary is considered "downloaded" when each of the numBlocks blocks has been seen at least once in the course of a

single valid transfer. The data for a block is only written the first time in case of the host resending duplicate blocks.

After downloading a regular flash binary, a reset is performed after which the flash binary second stage (at address

0x10000000 - the start of flash) will be entered (if valid) via the bootrom.

A downloaded RAM only binary is entered by watchdog reset into the start of the binary, which is calculated as the

lowest address of a downloaded block (with Main RAM considered lower than Flash Cache if both are present).

Finally it is possible for host software to temporarily disable UF2 writes via the PICOBOOT interface to prevent

interference with operations being performed via that interface (see below), in which case any UF2 file write in progress

will be aborted.

2.8.5. USB PICOBOOT Interface

The PICOBOOT interface is a low level USB protocol for interacting with the RP2040 while it is in BOOTSEL mode. This

interface may be used concurrently with the USB Mass Storage Interface.

It provides for flexible reading from and writing to RAM or Flash, rebooting, executing code on the device and a handful

of other management functions.

Constants and structures related to the interface can be found in the SDK header https://github.com/raspberrypi/pico-

sdk/blob/master/src/common/boot_picoboot/include/boot/picoboot.h

2.8.5.1. Identifying The Device

A RP2040 device is recognized by the Vendor ID and Product ID in its device descriptor (shown in Table 172).

RP2040 Datasheet

2.8. Bootrom 146

https://github.com/raspberrypi/pico-sdk/blob/master/src/common/boot_picoboot/include/boot/picoboot.h
https://github.com/raspberrypi/pico-sdk/blob/master/src/common/boot_picoboot/include/boot/picoboot.h

Table 172. RP2040

Boot Device

Descriptor

Field Value

bLength 18

bDescriptorType 1

bcdUSB 1.10

bDeviceClass 0

bDeviceSubClass 0

bDeviceProtocol 0

bMaxPacketSize0 64

idVendor 0x2e8a

idProduct 0x0003

bcdDevice 1.00

iManufacturer 1

iProduct 2

iSerial 3

bNumConfigurations 1

2.8.5.2. Identifying The Interface

The PICOBOOT interface is recognized by the "Vendor Specific" Interface Class and the zero Interface Sub Class and

Interface Protocol (shown in Table 173). Note that you should not rely on the interface number, as that is dependent on

whether the device is also exposing the Mass Storage Interface. Note also that the device equally may not be exposing

the PICOBOOT interface at all, so you should not assume it is present.

Table 173. PICOBOOT

Interface Descriptor
Field Value

bLength 9

bDescriptorType 4

bInterfaceNumber varies

bAlternateSetting 0

bNumEndpoints 2

bInterfaceClass 0xff (vendor specific)

bInterfaceSubClass 0

bInterfaceProtocol 0

iInterface 0

2.8.5.3. Identifying The Endpoints

The PICOBOOT interface provides a single BULK OUT and a single BULK IN endpoint. These can be identified by their

direction and type. You should not rely on endpoint numbers.

RP2040 Datasheet

2.8. Bootrom 147

2.8.5.4. PICOBOOT Commands

The two bulk endpoints are used for sending commands and retrieved successful command results. All commands are

exactly 32 bytes (see Table 174) and sent to the BULK OUT endpoint.

Table 174. PICOBOOT

Command Definition
Offset Name Description

0x00 dMagic The value 0x431fd10b

0x04 dToken A user provided token to identify this request by

0x08 bCmdId The ID of the command. Note that the top bit indicates data transfer direction

(0x80 = IN)

0x09 bCmdSize Number of bytes of valid data in the args field

0x0a reserved 0x0000

0x0c dTransferLength The number of bytes the host expects to send or receive over the bulk channel

0x10 args 16 bytes of command specific data padded with zeros

If a command sent is invalid or not recognized, the bulk endpoints will be stalled. Further information will be available

via the GET_COMMAND_STATUS request (see Section 2.8.5.5.2).

Following the initial 32 byte packet, if dTranferLength is non-zero, then that many bytes are transferred over the bulk

pipe and the command is completed with an empty packet in the opposite direction. If dTransferLength is zero then

command success is indicated by an empty IN packet.

The following commands are supported (note common fields dMagic, dToken, reserved are omitted for clarity)

2.8.5.4.1. EXCLUSIVE_ACCESS (0x01)

Claim or release exclusive access for writing to the RP2040 over USB (versus the Mass Storage Interface)

Table 175. PICOBOOT

Exclusive access

command structure

Offset Name Value / Description

0x08 bCmdId 0x01 (EXCLUSIVE_ACCESS)

0x09 bCmdSize 0x01

0x0c dTransferLength 0x00000000

0x10 bExclusive NOT_EXCLUSIVE (0) No restriction on USB Mass Storage operation

EXCLUSIVE (1) Disable USB Mass Storage writes (the host should

see them as write protect failures, but in any case

any active UF2 download will be aborted)

EXCLUSIVE_AND_EJECT

(2)

Lock the USB Mass Storage Interface out by

marking the drive media as not present (ejecting

the drive)

2.8.5.4.2. REBOOT (0x02)

Reboots the RP2040 out of BOOTSEL mode. Note that BOOTSEL mode might be re-entered if rebooting to flash and no

valid second stage bootloader is found.

Table 176. PICOBOOT

Reboot access

command structure

Offset Name Value / Description

0x08 bCmdId 0x02 (REBOOT)

0x09 bCmdSize 0x0c

RP2040 Datasheet

2.8. Bootrom 148

0x0c dTransferLength 0x00000000

0x10 dPC The address to start executing from. Valid values are:

0x00000000 Reboot via the standard

Flash boot mechanism

RAM address Reboot via watchdog and

start executing at the

specified address in RAM

0x14 dSP Initial stack pointer post reboot (only used if booting into

RAM)

0x18 dDelayMS Number of milliseconds to delay prior to reboot

2.8.5.4.3. FLASH_ERASE (0x03)

Erases a contiguous range of flash sectors.

Table 177. PICOBOOT

Flash erase command

structure

Offset Name Value / Description

0x08 bCmdId 0x03 (FLASH_ERASE)

0x09 bCmdSize 0x08

0x0c dTransferLength 0x00000000

0x10 dAddr The address in flash to erase, starting at this location. This must be sector

(4kB) aligned

0x14 dSize The number of bytes to erase. This must an exact multiple number of sectors

(4kB)

2.8.5.4.4. READ (0x84)

Read a contiguous memory (Flash or RAM or ROM) range from the RP2040

Table 178. PICOBOOT

Read memory

command (Flash,

RAM, ROM) structure

Offset Name Value / Description

0x08 bCmdId 0x84 (READ)

0x09 bCmdSize 0x08

0x0c dTransferLength Must be the same as dSize

0x10 dAddr The address to read from. May be in Flash or RAM or ROM

0x14 dSize The number of bytes to read

2.8.5.4.5. WRITE (0x05)

Writes a contiguous memory range of memory (Flash or RAM) on the RP2040.

Table 179. PICOBOOT

Write memory

command (Flash,

RAM) structure

Offset Name Value / Description

0x08 bCmdId 0x05 (WRITE)

0x09 bCmdSize 0x08

0x0c dTransferLength Must be the same as dSize

RP2040 Datasheet

2.8. Bootrom 149

Offset Name Value / Description

0x10 dAddr The address to write from. May be in Flash or RAM, however must be page

(256 byte) aligned if in Flash. Note the flash must be erased first or the results

are undefined.

0x14 dSize The number of bytes to write. If writing to flash and the size is not an exact

multiple of pages (256 bytes) then the last page is zero-filled to the end.

2.8.5.4.6. EXIT_XIP (0x06)

Exit Flash XIP mode. This first initialises the SSI for serial transfers, and then issues the XIP exit sequence given in

Section 2.8.1.2, to attempt to make the flash responsive to standard serial SPI commands. The SSI is configured with a

fixed clock divisor of /6, so the USB bootloader will drive SCLK at 8MHz.

Table 180. PICOBOOT

Exit Execute in place

(XIP) command

structure

Offset Name Value / Description

0x08 bCmdId 0x06 (EXIT_XIP)

0x09 bCmdSize 0x00

0x0c dTransferLength 0x00000000

2.8.5.4.7. ENTER_XIP (0x07)

Enter Flash XIP mode. This configures the SSI to issue a standard 03h serial read command, with 24 address clocks and

32 data clocks, for every XIP access. This is a slow but very widely supported way to read flash. The intent of this

function is to make flash easily accessible (i.e. just access addresses in the 0x10…… segment) without having to know

the details of exactly what kind of flash is connected. This mode is suitable for executing code from flash, but is much

slower than e.g. QSPI XIP access.

Table 181. PICOBOOT

Enter Execute in place

(XIP) command

Offset Name Value / Description

0x08 bCmdId 0x07 (ENTER_XIP)

0x09 bCmdSize 0x00

0x0c dTransferLength 0x00000000

2.8.5.4.8. EXEC (0x08)

Executes a function on the device. This function takes no arguments and returns no results, so it must communicate via

RAM. Execution of this method will block any other commands as well as Mass Storage Interface UF2 writes, so should

only be used in exclusive mode and with extreme care (and it should save and restore registers as per the ARM EABI).

This method is called from a regular (non-IRQ) context, and has a very limited stack, so the function should use its own.

Table 182. PICOBOOT

Execute function on

device command

structure

Offset Name Value / Description

0x08 bCmdId 0x08 (EXEC)

0x09 bCmdSize 0x04

0x0c dTransferLength 0x00000000

0x10 dAddr Function address to execute at (a thumb bit will be added for you since you

will have forgotten).

RP2040 Datasheet

2.8. Bootrom 150

2.8.5.4.9. VECTORIZE_FLASH (0x09)

Requests that the vector table of flash access functions used internally by the Mass Storage and PICOBOOT interfaces

be copied into RAM, such that the method implementations can be replaced with custom versions (For example, if the

board uses flash that does not support standard commands)

Table 183. PICOBOOT

Vectorise flash

command structure

Offset Name Value / Description

0x08 bCmdId 0x09 (VECTORIZE_FLASH)

0x09 bCmdSize 0x04

0x0c dTransferLength 0x00000000

0x10 dAddr Pointer to where to place vector table in RAM

Flash function vector table

struct {
 uint32_t size; // 28
 uint32_t (*do_flash_enter_cmd_xip)();
 uint32_t (*do_flash_exit_xip)();
 uint32_t (*do_flash_erase_sector)();
 uint32_t (*do_flash_erase_range)(uint32_t addr, uint32_t size);
 uint32_t (*do_flash_page_program)(uint32_t addr, uint8_t *data);
 uint32_t (*do_flash_page_read)(uint32_t addr, uint8_t *data);
};

These methods have the same signature and arguments as the corresponding flash access functions in the bootrom

(see Section 2.8.3.1.3).

Note that the host must subsequently update the RAM copy of this table via an EXEC command running on the RP2040

as any write to RAM from the host via a PICOBOOT WRITE that overlaps this (now active in RAM) vector table will cause a

reset to the use of the default ROM Flash function vector table.

2.8.5.5. Control Requests

The following requests are sent to the interface via the default control pipe.

2.8.5.5.1. INTERFACE_RESET (0x41)

The host sends this control request to reset the PICOBOOT interface. This command:

• Clears the HALT condition (if set) on each of the bulk endpoints

• Aborts any in-process PICOBOOT or Mass Storage transfer and any flash write (this method is the only way to kill a

stuck flash transfer).

• Clears the previous command result

• Removes EXCLUSIVE_ACCESS and remounts the Mass Storage drive if it was ejected due to exclusivity.

Table 184. PICOBOOT

Reset PICOBOOT

interface control

bmRequestType bRequest wValue wIndex wLength Data

01000001b 01000001b 0000h Interface 0000h none

This command responds with an empty packet on success.

RP2040 Datasheet

2.8. Bootrom 151

2.8.5.5.2. GET_COMMAND_STATUS (0x42)

Retrieve the status of the last command (which may be a command still in progress). Successful completion of a

PICOBOOT Protocol Command is acknowledged over the bulk pipe, however if the operation is still in progress or has

failed (stalling the bulk pipe), then this method can be used to determine the operation’s status.

Table 185. PICOBOOT

Get last command

status control

bmRequestType bRequest wValue wIndex wLength Data

11000001b 01000010b 0000h Interface 0000h none

The command responds with the following 16 byte response

Table 186. PICOBOOT

Get last command

status control

response

Offset Name Description

0x00 dToken The user token specified with the command

0x04 dStatusCode OK (0) The command completed successfully (or is in still in

progress)

UNKNOWN_CMD (1) The ID of the command was not recognized

INVALID_CMD_LENGTH (2) The length of the command request was incorrect

INVALID_TRANSFER_LENG

TH (3)

The data transfer length was incorrect given the

command

INVALID_ADDRESS (4) The address specified was invalid for the command type;

i.e. did not match the type Flash/RAM that the command

was expecting

BAD_ALIGNMENT (5) The address specified was not correctly aligned according

to the requirements of the command

INTERLEAVED_WRITE (6) A Mass Storage Interface UF2 write has interfered with the

current operation. The command was abandoned with

unknown status. Note this will not happen if you have

exclusive access.

REBOOTING (7) The device is in the process of rebooting, so the command

has been ignored.

UNKNOWN_ERROR (8) Some other error occurred.

0x08 bCmdId The ID of the command

0x09 bInProgress 1 if the command is still in

progress

0 otherwise

0x0a reserved (6 zero bytes)

2.9. Power Supplies

RP2040 requires five separate power supplies. However, in most applications, several of these can be combined and

connected to a single power source. In a typical application, only a single 3.3V supply will be required. See Section

2.9.7.1, “Single 3.3V Supply”.

The power supplies and a number of potential power supply schemes are described in the following sections. Detailed

power supply parameters are provided in Section 5.6, “Power Supplies”.

RP2040 Datasheet

2.9. Power Supplies 152

2.9.1. Digital IO Supply (IOVDD)

IOVDD supplies the chip’s digital IO, and should be powered at a nominal voltage between 1.8V and 3.3V. The supply

voltage sets the external signal level for the digital IO and should be chosen based on the signal level required. See

Section 5.5.3, “Pin Specifications” for details. All digital IOs share the same power supply and operate at the same

signal level.

IOVDD should be decoupled with a 100nF capacitor close to each of the chip’s IOVDD pins.

 CAUTION

If the digital IO is powered at a nominal 1.8V, the IO input thresholds should be adjusted via the VOLTAGE_SELECT

register. By default, the IO input thresholds are valid when the digital IO is powered at a nominal voltage between

2.5V and 3.3V. See Section 2.19, “GPIO” for details. Powering the IO at 1.8V with input thresholds set for a 2.5V to

3.3V supply is a safe operating mode, but will result in input thresholds that do not meet specification. Powering the

IO at voltages greater than a nominal 1.8V with input thresholds set for a 1.8V supply may result in damage to the

chip.

2.9.2. Digital Core Supply (DVDD)

DVDD supplies the chip’s core digital logic, and should be powered at a nominal 1.1V. A dedicated on-chip voltage

regulator is provided to allow DVDD to be generated from the digital IO supply (IOVDD) or another nominally 1.8V to

3.3V supply. The connection between the output pin of the on-chip regulator (VREG_VOUT) and the DVDD supply pins is

made off-chip, allowing DVDD to be powered from an off-chip power source if required.

DVDD should be decoupled with a 100nF capacitor close to each of the chip’s DVDD pins.

2.9.3. On-Chip Voltage Regulator Input Supply (VREG_VIN)

VREG_VIN is the input supply for the on-chip voltage regulator. It should be powered at a nominal voltage between 1.8V

and 3.3V. To reduce the number of external power supplies, VREG_VIN can use the same power source as the digital IO

supply (IOVDD).

A 1μF capacitor should be connected between VREG_VIN and ground close to the chip’s VREG_VIN pin.

 CAUTION

VREG_VIN also powers the chip’s power-on reset and brown-out detection blocks, so it must be powered even if the

on-chip voltage regulator is not used.

For more details on the on-chip voltage regulator see Section 2.10, “Core Supply Regulator”.

2.9.4. USB PHY Supply (USB_VDD)

USB_VDD supplies the chip’s USB PHY, and should be powered at a nominal 3.3V. To reduce the number of external

power supplies, USB_VDD can use the same power source as the digital IO supply (IOVDD), assuming IOVDD is also

powered at 3.3V. If IOVDD is not powered at 3.3V, a separate 3.3V supply will be required for the USB PHY, see Section

2.9.7.3, “1.8V Digital IO with Functional USB and ADC”. In applications where the USB PHY is never used, USB_VDD can

be tied to any supply with a nominal voltage between 1.8V and 3.3V. See Section 2.9.7.4, “Single 1.8V Supply” for an

example. USB_VDD should not be left unconnected.

USB_VDD should be decoupled with a 100nF capacitor close to the chip’s USB_VDD pin.

RP2040 Datasheet

2.9. Power Supplies 153

2.9.5. ADC Supply (ADC_AVDD)

ADC_AVDD supplies the chip’s Analogue to Digital Converter (ADC). It can be powered at a nominal voltage between

1.8V and 3.3V, but the performance of the ADC will be compromised at voltages below 2.97V. To reduce the number of

external power supplies, ADC_AVDD can use from the same power source as the digital IO supply (IOVDD).

 NOTE

It is safe to supply ADC_AVDD at a higher or lower voltage than IOVDD, e.g. to power the ADC at 3.3V, for optimum

performance, while supporting 1.8V signal levels on the digital IO. But the voltage on the ADC analogue inputs must

not exceed IOVDD, e.g. if IOVDD is powered at 1.8V, the voltage on the ADC inputs should be limited to 1.8V.

Voltages greater than IOVDD will result in leakage currents through the ESD protection diodes. See Section 5.5.3,

“Pin Specifications” for details.

ADC_AVDD should be decoupled with a 100nF capacitor close to the chip’s ADC_AVDD pin.

2.9.6. Power Supply Sequencing

RP2040’s power supplies may be powered up or down in any order. However, small transient currents may flow in the

ADC supply (ADC_AVDD) if it is powered up before, or powered down after, the digital core supply (DVDD). This will not

damage the chip, but can be avoided by powering up DVDD before or at the same time as ADC_AVDD, and powering

down DVDD after or at the same time as ADC_AVDD. In the most common power supply scheme, where the chip is

powered from a single 3.3V supply, DVDD will be powered up shortly after ADC_AVDD due to the startup time of the on-

chip voltage regulator. This is acceptable behaviour. See Section 2.9.7.1, “Single 3.3V Supply”.

2.9.7. Power Supply Schemes

2.9.7.1. Single 3.3V Supply

In most applications, RP2040 will be powered from a single 3.3V supply, as shown in Figure 16. The digital IO (IOVDD),

USB PHY (USB_VDD) and ADC (ADC_AVDD) will be powered directly from the 3.3V supply, and the 1.1V digital core

supply (DVDD) will be regulated from the 3.3V supply by the on-chip voltage regulator. Note that the regulator output pin

(VREG_VOUT) must be connected to the chip’s DVDD pins off-chip.

For more details on the on-chip voltage regulator see Section 2.10, “Core Supply Regulator”.

RP2040 Datasheet

2.9. Power Supplies 154

Figure 16. powering

the chip from a single

3.3V supply

(simplified diagram

omitting decoupling

components)

2.9.7.2. External Core Supply

The digital core (DVDD) can be powered directly from an external 1.1V supply, rather than from the on-chip regulator, as

shown in Figure 17. This approach may make sense if a suitable external regulator is available elsewhere in the system,

or for low power applications where an efficient switched-mode regulator could be used instead of the less efficient

linear on-chip voltage regulator.

If an external core supply is used, the output of on-chip voltage regulator (VREG_VOUT) should be left unconnected.

However, power must still be provided to the regulator input (VREG_VIN) to supply the chip’s power-on reset and brown-

out detection blocks. The on-chip voltage regulator will power-on as soon as VREG_VIN is available, but can be

shutdown under software control once the chip is out of reset. See Section 2.10, “Core Supply Regulator” for details.

Figure 17. using an

external core supply

RP2040 Datasheet

2.9. Power Supplies 155

2.9.7.3. 1.8V Digital IO with Functional USB and ADC

Applications with digital IO signal levels less than 3.3V will require a separate 3.3V supply for the USB PHY and ADC, as

the USB PHY does not meet specification at voltages below 3.135V and ADC performance is compromised at voltages

below 2.97V. Figure 18 shows an example application with the digital IO (IOVDD) powered at 1.8V and a separate 3.3V

supply for the USB PHY (USB_VDD) and ADC (ADC_AVDD). In this example, the voltage regulator input (VREG_VIN) is

connected to the 1.8V supply, though it could equally have been connected to the 3.3V supply. Connecting it to the 1.8V

supply will reduce overall power consumption if the 1.8V supply is generated by an efficient switched-mode regulator.

Figure 18. supporting

1.8V IO while using

USB and the ADC

2.9.7.4. Single 1.8V Supply

If a functional USB PHY and optimum ADC performance are not required, RP2040 can be powered from a single supply

of less than 3.3V. Figure 19 shows an example with a single 1.8V supply. In this example, the core supply (DVDD) is

regulated from the 1.8V supply by the on-chip voltage regulator.

RP2040 Datasheet

2.9. Power Supplies 156

Figure 19. powering

the chip from a single

1.8V supply

2.10. Core Supply Regulator

RP2040 includes an on-chip voltage regulator, allowing the digital core supply (DVDD) to be generated from an external,

nominally 1.8V to 3.3V, power supply. In most cases, the regulator’s input supply will share an external power source

with the chip’s digital IO supply IOVDD, simplifying the overall power supply requirements.

To allow the chip to start up, the voltage regulator is enabled by default and will power-on as soon as its input supply is

available. Once the chip is out of reset, the regulator can be disabled, placed into a high impedance state, or have its

output voltage adjusted, under software control. The output voltage can be set in the range 0.80V to 1.30V in 50mV

steps, but is set to a nominal 1.1V at initial power-on, or after a reset event. The voltage regulator can supply up to

100mA.

Although intended to provide the chip’s digital core supply (DVDD), the voltage regulator can be used for other purposes

if DVDD is powered directly from an external power supply.

2.10.1. Application Circuit

RP2040 Datasheet

2.10. Core Supply Regulator 157

Figure 20. voltage

regulator application

circuit

The regulator must have 1μF capacitors placed close to its input (VREG_VIN) and output (VREG_VOUT) pins.

2.10.2. Operating Modes

The voltage regulator operates in one of three modes. The mode to be used being selected by writing to the EN and HIZ

fields in the VREG register, as shown in Table 187. At initial power-on, or following a reset event, the voltage regulator

will be in Normal Operation mode.

Table 187. Voltage

Regulator Mode Select
Mode EN HIZ

Normal Operationa 1 0

High Impedance 1 1

Shutdown 0 X

a the voltage regulator will be in normal mode at initial power-on or following a reset event

2.10.2.1. Normal Operation Mode

In Normal Operation mode, the voltage regulator’s output is in regulation at the selected voltage, and the regulator is

able to supply power.

2.10.2.2. High Impedance Mode

In High Impedance mode, the voltage regulator is disabled and its output pin (VREG_VOUT) is set to a high impedance

state. In this mode, the regulator’s power consumption is minimised. This mode allows a load connected to

VREG_VOUT to be powered from a power source other than the on-chip regulator. This could allow, for example, the

load to be initially powered from the on-chip voltage regulator, and then switched to an external regulator under

software control. The external regulator would also need to support a high impedance mode, with only one regulator

supplying the load at a time. The supply voltage is maintained by the regulator’s output capacitor during the brief period

when both regulators are in high impedance mode.

RP2040 Datasheet

2.10. Core Supply Regulator 158

2.10.2.3. Shutdown Mode

In Shutdown mode, the voltage regulator is disabled, power consumption is minimized and the regulator’s output pin

(VREG_VOUT) is pulled to 0V.

Shutdown mode is only useful if the voltage regulator is not providing the RP2040’s digital core supply (DVDD). If the

regulator is supplying DVDD, and brown-out detection is enabled, entering shutdown mode will cause a reset event and

the voltage regulator will return to normal mode. If brown-out detection isn’t enabled, the voltage regulator will shut

down and will remain in shutdown mode until its input supply (VREG_VIN) is power cycled.

2.10.3. Output Voltage Select

The required output voltage can be selected by writing to the VSEL field in the VREG register. The voltage regulator’s

output voltage can be set in the range 0.80V to 1.30V in 50mV intervals. The regulator output voltage is set to 1.1V at

initial power-on or following a reset event. For details, see the VREG register description.

Note that RP2040 may not operate reliably with its digital core supply (DVDD) at a voltage other than 1.1V.

2.10.4. Status

The VREG register contains a single status field, ROK, which indicates whether the voltage regulator’s output is being

correctly regulated.

At power on, ROK remains low until the regulator has started up and the output voltage reaches the ROK assertion

threshold (ROKTH.ASSERT). It then remains high until the voltage drops below the ROK deassertion threshold (ROKTH.DEASSERT),

remaining low until the output voltage is above the assertion threshold again. ROKTH.ASSERT is nominally 90% of the selected

output voltage, 0.99V if the selected output voltage is 1.1V, and ROKTH.DEASSERT is nominally 87% of the selected output

voltage, 0.957V if the selected output voltage is 1.1V.

Note that adjusting the output voltage to a higher voltage will cause ROK to go low until the assertion threshold for the

higher voltage is reached. ROK will also go low if the regulator is placed in high impedance mode.

2.10.5. Current Limit

The voltage regulator includes a current limit to prevent the load current exceeding the maximum rated value. The

output voltage will not be regulated and will drop below the selected value when the current limit is active.

2.10.6. List of Registers

The voltage regulator shares a register address space with the chip-level reset subsystem. The registers for both

subsystems are listed here. Only, the VREG register is part of the voltage register subsystem. The BOD and CHIP_RESET

registers are part of the chip-level reset subsystem. The shared address space is referred to as vreg_and_chip_reset

elsewhere in this document.

The VREG_AND_CHIP_RESET registers start at a base address of 0x40064000 (defined as VREG_AND_CHIP_RESET_BASE

in SDK).

Table 188. List of

VREG_AND_CHIP_RES

ET registers

Offset Name Info

0x0 VREG Voltage regulator control and status

0x4 BOD brown-out detection control

0x8 CHIP_RESET Chip reset control and status

RP2040 Datasheet

2.10. Core Supply Regulator 159

VREG_AND_CHIP_RESET: VREG Register

Offset: 0x0

Description

Voltage regulator control and status

Table 189. VREG

Register
Bits Name Description Type Reset

31:13 Reserved. - - -

12 ROK regulation status

0=not in regulation, 1=in regulation

RO 0x0

11:8 Reserved. - - -

7:4 VSEL output voltage select

0000 to 0101 - 0.80V

0110 - 0.85V

0111 - 0.90V

1000 - 0.95V

1001 - 1.00V

1010 - 1.05V

1011 - 1.10V (default)

1100 - 1.15V

1101 - 1.20V

1110 - 1.25V

1111 - 1.30V

RW 0xb

3:2 Reserved. - - -

1 HIZ high impedance mode select

0=not in high impedance mode, 1=in high impedance

mode

RW 0x0

0 EN enable

0=not enabled, 1=enabled

RW 0x1

VREG_AND_CHIP_RESET: BOD Register

Offset: 0x4

Description

brown-out detection control

Table 190. BOD

Register
Bits Name Description Type Reset

31:8 Reserved. - - -

RP2040 Datasheet

2.10. Core Supply Regulator 160

Bits Name Description Type Reset

7:4 VSEL threshold select

0000 - 0.473V

0001 - 0.516V

0010 - 0.559V

0011 - 0.602V

0100 - 0.645V

0101 - 0.688V

0110 - 0.731V

0111 - 0.774V

1000 - 0.817V

1001 - 0.860V (default)

1010 - 0.903V

1011 - 0.946V

1100 - 0.989V

1101 - 1.032V

1110 - 1.075V

1111 - 1.118V

RW 0x9

3:1 Reserved. - - -

0 EN enable

0=not enabled, 1=enabled

RW 0x1

VREG_AND_CHIP_RESET: CHIP_RESET Register

Offset: 0x8

Description

Chip reset control and status

Table 191.

CHIP_RESET Register
Bits Name Description Type Reset

31:25 Reserved. - - -

24 PSM_RESTART_F

LAG

This is set by psm_restart from the debugger.

Its purpose is to branch bootcode to a safe mode when

the debugger has issued a psm_restart in order to recover

from a boot lock-up.

In the safe mode the debugger can repair the boot code,

clear this flag then reboot the processor.

WC 0x0

23:21 Reserved. - - -

20 HAD_PSM_RESTA

RT

Last reset was from the debug port RO 0x0

19:17 Reserved. - - -

16 HAD_RUN Last reset was from the RUN pin RO 0x0

15:9 Reserved. - - -

8 HAD_POR Last reset was from the power-on reset or brown-out

detection blocks

RO 0x0

7:0 Reserved. - - -

RP2040 Datasheet

2.10. Core Supply Regulator 161

2.10.7. Detailed Specifications

Table 192. Voltage

Regulator Detailed

Specifications

Parameter Description Min Typ Max Units

VVREG_VIN input supply

voltage

1.63 1.8 - 3.3 3.63 V

ΔVVREG_VOUT output voltage

variation

-3 +3 % of selected

output voltage

IMAX output current 100 mA

ILIMIT current limit 150 350 450 mA

ROKTH.ASSERT ROK assertion

threshold

87 90 93 % of selected

output voltage

ROKTH.DEASSERT ROK deassertion

threshold

84 87 90 % of selected

output voltage

tPOWER-ON
a power-up time 275 350 μs

a values will vary with load current and capacitance on VREG_VOUT. Conditions: EN = 1, load current = 0mA, VREG_VIN

ramps up in 100μs

2.11. Power Control

RP2040 provides a range of options for reducing dynamic power:

• Top-level clock gating of individual peripherals and functional blocks

• Automatic control of top-level clock gates based on processor sleep state

• On-the-fly changes to system clock frequency or system clock source (e.g. switch to internal ring oscillator, and

disable PLLs and crystal oscillator)

• Zero-dynamic-power DORMANT state, waking on GPIO event or RTC IRQ

All digital logic on RP2040 is in a single core power domain. The following options are available for static power

reduction:

• Placing memories into state-retaining power down state

• Power gating on peripherals that support this, e.g. ADC, temperature sensor

2.11.1. Top-level Clock Gates

Each clock domain (for example, the system clock) may drive a large number of distinct hardware blocks, not all of

which may be required at once. To avoid unnecessary power dissipation, each individual endpoint of each clock (for

example, the UART system clock input) may be disabled at any time.

Enabling and disabling a clock gate is glitch-free. If a peripheral clock is temporarily disabled, and subsequently re-

enabled, the peripheral will be in the same state as prior to the clock being disabled. No reset or reinitialisation should

be required.

Clock gates are controlled by two sets of registers: the WAKE_ENx registers (starting at WAKE_EN0) and SLEEP_ENx

registers (starting at SLEEP_EN0). These two sets of registers are identical at the bit level, each possessing a flag to

control each clock endpoint. The WAKE_EN registers specify which clocks are enabled whilst the system is awake, and

the SLEEP_ENx registers select which clocks are enabled while the processor is in the SLEEP state (Section 2.11.2).

The two Cortex-M0+ processors do not have externally-controllable clock gates. Instead, the processors gate the clocks

of their subsystems autonomously, based on execution of WFI/WFE instructions, and external Event and IRQ signals.

RP2040 Datasheet

2.11. Power Control 162

2.11.2. SLEEP State

RP2040 enters the SLEEP state when all of the following are true:

• Both processors are asleep (e.g. in a WFE or WFI instruction)

• The system DMA has no outstanding transfers on any channel

RP2040 exits the SLEEP state when either processor is awoken by an interrupt.

When in the SLEEP state, the top-level clock gates are masked by the SLEEP_ENx registers (starting at SLEEP_EN0),

rather than the WAKE_ENx registers. This permits more aggressive pruning of the clock tree when the processors are

asleep.

 NOTE

Though it is possible for a clock to be enabled during SLEEP and disabled outside of SLEEP, this is generally not

useful

For example, if the system is sleeping until a character interrupt from a UART, the entire system except for the UART

can be clock-gated (SLEEP_ENx = all-zeroes except for CLK_SYS_UART0 and CLK_PERI_UART0). This includes system

infrastructure such as the bus fabric.

When the UART asserts its interrupt, and wakes a processor, RP2040 leaves SLEEP mode, and switches back to the

WAKE_ENx clock mask. At the minimum this should include the bus fabric, and the memory devices containing the

processor’s stack and interrupt vectors.

A system-level clock request handshake holds the processors off the bus until the clocks are re-enabled.

2.11.3. DORMANT State

The DORMANT state is a true zero-dynamic-power sleep state, where all clocks (and all oscillators) are disabled. The

system can awake from the DORMANT state upon a GPIO event (high/low level or rising/falling edge), or an RTC

interrupt: this restarts one of the oscillators (either ring oscillator or crystal oscillator), and ungates the oscillator output

once it is stable. System state is retained, so code execution resumes immediately upon leaving the DORMANT state.

Note that, if relying on the RTC (Section 4.8) to wake from the DORMANT state, the RTC must have some external clock

source. The RTC accepts clock frequencies as low as 1Hz.

Note also that DORMANT does not halt PLLs. To avoid unnecessary power dissipation, software should power down

PLLs before entering the DORMANT state, and power up and reconfigure the PLLs again after exiting.

The DORMANT state is entered by writing a keyword to the DORMANT register in whichever oscillator is active: ring

oscillator (Section 2.17) or crystal oscillator (Section 2.16). If both are active then the one providing the processor clock

must be stopped last because it will stop software from executing.

2.11.4. Memory Power Down

The main system memories (SRAM0…5, mapped to bus addresses 0x20000000 to 0x20041fff), as well as the USB DPRAM,

can be powered down via the MEMPOWERDOWN register in the Syscfg registers (see Section 2.21). When powered

down, memories retain their current contents, but cannot be accessed. Static power is reduced.

RP2040 Datasheet

2.11. Power Control 163

 CAUTION

Memories must not be accessed when powered down. Doing so can corrupt memory contents.

When powering a memory back up, a 20ns delay is required before accessing the memory again.

The XIP cache (see Section 2.6.3) can also be powered down, with CTRL.POWER_DOWN. The XIP hardware will not

generate cache accesses whilst the cache is powered down. Note that this is unlikely to produce a net power savings if

code continues to execute from XIP, due to the comparatively high voltages and switching capacitances of the external

QSPI bus.

2.11.5. Programmer’s Model

2.11.5.1. Sleep

The hello_sleep example, https://github.com/raspberrypi/pico-playground/blob/master/sleep/hello_sleep/

hello_sleep.c, demonstrates sleep mode. The hello_sleep application (and underlying functions) takes the following

steps:

• Run all clocks in the system from XOSC

• Configure an alarm in the RTC for 10 seconds in the future

• Set clk_rtc as the only clock running in sleep mode using the SLEEP_ENx registers (see SLEEP_EN0)

• Enable deep sleep in the processor

• Call __wfi on processor which will put the processor into deep sleep until woken by the RTC interrupt

• The RTC interrupt clears the alarm and then calls a user supplied callback function

• The callback function ends the example application

 NOTE

It is necessary to enable deep sleep on both proc0 and proc1 and call __wfi, as well as ensure the DMA is stopped to

enter sleep mode.

hello_sleep makes use of functions in pico_sleep of the Pico Extras. In particular, sleep_goto_sleep_until puts the

processor to sleep until woken up by an RTC time assumed to be in the future.

Pico Extras: https://github.com/raspberrypi/pico-extras/blob/master/src/rp2_common/pico_sleep/sleep.c Lines 106 - 122

106 void sleep_goto_sleep_until(datetime_t *t, rtc_callback_t callback) {
107 // We should have already called the sleep_run_from_dormant_source function
108 assert(dormant_source_valid(_dormant_source));
109
110 // Turn off all clocks when in sleep mode except for RTC
111 clocks_hw->sleep_en0 = CLOCKS_SLEEP_EN0_CLK_RTC_RTC_BITS;
112 clocks_hw->sleep_en1 = 0x0;
113
114 rtc_set_alarm(t, callback);
115
116 uint save = scb_hw->scr;
117 // Enable deep sleep at the proc
118 scb_hw->scr = save | M0PLUS_SCR_SLEEPDEEP_BITS;
119
120 // Go to sleep
121 __wfi();

RP2040 Datasheet

2.11. Power Control 164

https://github.com/raspberrypi/pico-playground/blob/master/sleep/hello_sleep/hello_sleep.c
https://github.com/raspberrypi/pico-playground/blob/master/sleep/hello_sleep/hello_sleep.c
https://github.com/raspberrypi/pico-extras
https://github.com/raspberrypi/pico-extras/blob/master/src/rp2_common/pico_sleep/sleep.c#L106-L122

122 }

2.11.5.2. Dormant

The hello_dormant example, https://github.com/raspberrypi/pico-playground/blob/master/sleep/hello_dormant/

hello_dormant.c, demonstrates dormant mode. The example takes the following steps:

• Run all clocks in the system from XOSC

• Configure a GPIO interrupt for the "dormant_wake" hardware which can wake both the ROSC and XOSC from

dormant mode

• Put the XOSC into dormant mode which stops all processor execution (and all other clocked logic on the chip)

immediately

• When GPIO 10 goes high, the XOSC is started again and execution of the program continues

hello_dormant uses sleep_goto_dormant_until_pin under the hood:

Pico Extras: https://github.com/raspberrypi/pico-extras/blob/master/src/rp2_common/pico_sleep/sleep.c Lines 134 - 155

134 void sleep_goto_dormant_until_pin(uint gpio_pin, bool edge, bool high) {
135 bool low = !high;
136 bool level = !edge;
137
138 // Configure the appropriate IRQ at IO bank 0
139 assert(gpio_pin < NUM_BANK0_GPIOS);
140
141 uint32_t event = 0;
142
143 if (level && low) event = IO_BANK0_DORMANT_WAKE_INTE0_GPIO0_LEVEL_LOW_BITS;
144 if (level && high) event = IO_BANK0_DORMANT_WAKE_INTE0_GPIO0_LEVEL_HIGH_BITS;
145 if (edge && high) event = IO_BANK0_DORMANT_WAKE_INTE0_GPIO0_EDGE_HIGH_BITS;
146 if (edge && low) event = IO_BANK0_DORMANT_WAKE_INTE0_GPIO0_EDGE_LOW_BITS;
147
148 gpio_set_dormant_irq_enabled(gpio_pin, event, true);
149
150 _go_dormant();
151 // Execution stops here until woken up
152
153 // Clear the irq so we can go back to dormant mode again if we want
154 gpio_acknowledge_irq(gpio_pin, event);
155 }

2.12. Chip-Level Reset

2.12.1. Overview

The chip-level reset subsystem resets the whole chip, placing it in a default state. This happens at initial power-on,

during a power supply brown-out event or when the chip’s RUN pin is taken low. The chip can also be reset via the

Rescue Debug Port. See Section 2.3.4.2, “Rescue DP” for details.

The subsystem has two reset outputs. rst_n_psm, which resets the whole chip, except the debug port, and rst_n_dp, which

only resets the Rescue DP. Both resets are held low at initial power-on, during a brown-out event or when RUN is low.

rst_n_psm can additionally be held low by the Rescue DP via the subsystem’s psm_restart input. This allows the chip to be

reset via the Rescue DP without resetting the Rescue DP itself. The subsystem releases chip level reset by taking

RP2040 Datasheet

2.12. Chip-Level Reset 165

https://github.com/raspberrypi/pico-playground/blob/master/sleep/hello_dormant/hello_dormant.c
https://github.com/raspberrypi/pico-playground/blob/master/sleep/hello_dormant/hello_dormant.c
https://github.com/raspberrypi/pico-extras/blob/master/src/rp2_common/pico_sleep/sleep.c#L134-L155

rst_n_psm high, handing control to the Power-on State Machine, which continues to start up the chip. See Section 2.13,

“Power-On State Machine” for details.

The chip level reset subsystem is shown in Figure 21, and more information is available in the following sections.

Figure 21. The chip-

level reset subsystem

2.12.2. Power-on Reset

The power-on reset block makes sure the chip starts up cleanly when power is first applied by holding it in reset until the

digital core supply (DVDD) can reliably power the chip’s core logic. The block holds its por_n output low until DVDD has

been above the power-on reset threshold (DVDDTH.POR) for a period greater than the power-on reset assertion delay

(tPOR.ASSERT). Once high, por_n remains high even if DVDD subsequently falls below DVDDTH.POR, unless brown-out detection

is enabled. The behaviour of por_n when power is applied is shown in Figure 22.

DVDDTH.POR is fixed at a nominal 0.957V, which should result in a threshold between 0.924V and 0.99V. The threshold

assumes a nominal DVDD of 1.1V at initial power-on, and por_n may never go high if a lower voltage is used. Once the

chip is out of reset, DVDD can be reduced without por_n going low, as long as brown-out detection has been disabled or

a suitable threshold voltage has been set.

DVDD

por_n

DVDDTH.POR

tPOR.ASSERT

Figure 22. A power-on

reset cycle

2.12.2.1. Detailed Specifications

RP2040 Datasheet

2.12. Chip-Level Reset 166

Table 193. Power-on

Reset Parameters
Parameter Description Min Typ Max Units

DVDDTH.POR power-on reset

threshold

0.924 0.957 0.99 V

tPOR.ASSERT power-on reset

assertion delay

3 10 μs

2.12.3. Brown-out Detection

The brown-out detection block prevents unreliable operation by initiating a power-on reset cycle if the digital core supply

(DVDD) drops below a safe operating level. The block’s bod_n output is taken low if DVDD drops below the brown-out

detection threshold (DVDDTH.BOD) for a period longer than the brown-out detection assertion delay (tBOD.ASSERT). This re-

initialises the power-on reset block, which resets the chip, by taking its por_n output low, and holds it in reset until DVDD

returns to a safe operating level. Figure 23 shows a brown-out event and the subsequent power-on reset cycle.

DVDD

por_n

bod_n

DVDDTH.BOD

DVDDTH.POR

tPOR.ASSERT

tBOD.ASSERT

Figure 23. A brown-out

detection cycle

2.12.3.1. Detection Enable

Brown-out detection is automatically enabled at initial power-on or after a brown-out initiated reset. There is, however, a

short delay, the brown-out detection activation delay (tBOD.ACTIVE), between por_n going high and detection becoming active.

This is shown in Figure 24.

DVDD

por_n

bod_n

DVDDTH.POR

detection
inactive

detection
inactive

detection
active

detection
active

DVDDTH.BOD

DVDDTH.POR

tPOR.ASSERT

tBOD.ACTIVE

tPOR.ASSERT

tBOD.ACTIVE

tBOD.ASSERT

Figure 24. Activation

of brown-out detection

at initial power-on and

following a brown-out

event.

Once the chip is out of reset, detection can be disabled under software control. This also saves a small amount of

power. If detection is subsequently re-enabled, there will be another short delay, the brown-out detection enable delay

(tBOD.ENABLE), before it becomes active again. This is shown in Figure 25.

Detection is disabled by writing a zero to the EN field in the BOD register and is re-enabled by writing a one to the same

field. The block’s bod_n output is high when detection is disabled.

RP2040 Datasheet

2.12. Chip-Level Reset 167

EN

tBOD.ENABLE

detection
inactive

1 0 1

detection
inactive

detection
active

Figure 25. Disabling

and enabling brown-

out detection

Detection is re-enabled if the BOD register is reset, as this sets the register’s EN field to one. Again, detection will become

active after a delay equal to the brown-out detection enable delay (tBOD.ENABLE).

 NOTE

If the BOD register is reset by a power-on or brown-out initiated reset, the delay between the register being reset and

brown-out detection becoming active will be equal to the brown-out detection activation delay (tBOD.ACTIVE). The delay

will be equal to the brown-out detection enable delay (tBOD.ENABLE) for all other reset sources.

2.12.3.2. Adjusting the Detection Threshold

The brown-out detection threshold (DVDDTH.BOD) has a nominal value of 0.86V at initial power-on or after a reset event.

This should result in a detection threshold between 0.83V and 0.89V. Once out of reset, the threshold can be adjusted

under software control. The new detection threshold will take effect after the brown-out detection programming delay

((tBOD.PROG). An example of this is shown in Figure 26.

The threshold is adjusted by writing to the VSEL field in the BOD register. See the BOD register description for details.

VSEL

tBOD.PROG

threshold
0.86V

1001 0111

threshold
0.774V

Figure 26. Adjusting

the brown-out

detection threshold

2.12.3.3. Detailed Specifications

Table 194. Brown-out

Detection Parameters
Parameter Description Min Typ Max Units

DVDDTH.BOD brown-out

detection

threshold

96.5 100 103.5 % of selected

threshold voltage

tBOD.ACTIVE brown-out

detection

activation delay

55 80 μs

tBOD.ASSERT brown-out

detection

assertion delay

3 10 μs

RP2040 Datasheet

2.12. Chip-Level Reset 168

Parameter Description Min Typ Max Units

tBOD.ENABLE brown-out

detection enable

delay

35 55 μs

tBOD.PROG brown-out

detection

programming

delay

20 30 μs

2.12.4. Supply Monitor

The power-on and brown-out reset blocks are powered by the on-chip voltage regulator’s input supply (VREG_VIN). The

blocks are initialised when power is first applied, but may not be reliably re-initialised if power is removed and then

reapplied before VREG_VIN has dropped to a sufficiently low level. To prevent this happening, VREG_VIN is monitored

and the power-on reset block is re-initialised if it drops below the VREG_VIN activation threshold (VREG_VINTH.ACTIVE).

VREG_VINTH.ACTIVE is fixed at a nominal 1.1V, which should result in a threshold between 0.87V and 1.26V. This threshold

does not represent a safe operating voltage. It is the voltage that VREG_VIN must drop below to reliably re-initialise the

power-on reset block. For safe operation, VREG_VIN must be at a nominal voltage between 1.8V and 3.3V.

2.12.4.1. Detailed Specifications

Table 195. Voltage

Regulator Input Supply

Monitor Parameters

Parameter Description Min Typ Max Units

VREG_VINTH.ACTIVE VREG_VIN

activation

threshold

0.87 1.1 1.26 V

2.12.5. External Reset

The chip can also be reset by taking its RUN pin low. Taking RUN low will hold the chip in reset irrespective of the state

of the core power supply (DVDD) and the power-on reset / brown-out detection blocks. The chip will come out of reset

as soon as RUN is taken high, if all other reset sources have been released. RUN can be used to extend the initial power-

on reset, or can be driven from an external source to start and stop the chip as required. If RUN is not used, it should be

tied high.

2.12.6. Rescue Debug Port Reset

The chip can also be reset via the Rescue Debug Port. This allows the chip to be recovered from a locked up state. In

addition to resetting the chip, a Rescue Debug Port reset also sets the PSM_RESTART_FLAG in the CHIP_RESET register. This

is checked by the bootcode at startup, causing it to enter a safe state if the bit is set. See Section 2.3.4.2, “Rescue DP”

for more information.

2.12.7. Source of Last Reset

The source of the most recent chip-level reset can be determined by reading the state of the HAD_POR, HAD_RUN and

HAD_PSM_RESTART fields in the CHIP_RESET register. A one in the HAD_POR field indicates a power supply related reset, i.e.

either a power-on or brown-out initiated reset, a one in the HAD_RUN field indicates the chip was last reset by the RUN pin,

and a one in the HAD_PSM_RESTART field indicates the chip has been reset via Rescue Debug Port. There should never be

more than one field set to one.

RP2040 Datasheet

2.12. Chip-Level Reset 169

2.12.8. List of Registers

The chip-level reset subsystem shares a register address space with the on-chip voltage regulator. The registers for

both subsystems are listed in Section 2.10.6. The shared address space is referred to as vreg_and_chip_reset elsewhere

in this document.

2.13. Power-On State Machine

2.13.1. Overview

The power-on state machine removes the reset from various hardware blocks in a specific order. Each peripheral in the

power-on state machine is controlled by an internal rst_n active-low reset signal and generates an internal rst_done

active-high reset done signal. The power-on state machine deasserts the reset to each peripheral, waits for that

peripheral to assert its rst_done and then deasserts the reset to the next peripheral. An important use of this is to wait

for a clock source to be running cleanly in the chip before the reset to the clock generators is deasserted. This avoids

potentially glitchy clocks being distributed to the chip.

The power-on state machine is itself taken out of reset when the Chip-Level Reset subsystem confirms that the digital

core supply (DVDD) is powered and stable, and the RUN pin is high. The power-on state machine takes a number of other

blocks out of reset at this point via its rst_n_run output. This is used to reset things that need to be reset at start-up but

must not be reset if the power-on state machine is restarted. This list includes:

• Power on logic in the ring oscillator and crystal oscillator

• Clock dividers which must keep on running during a power-on state machine restart (clk_ref and clk_sys)

• Watchdog (contains scratch registers which need to persist through a soft-restart of the power-on state machine)

2.13.2. Power On Sequence

Chip Level Reset

Released

Clock GeneratorsRing Oscillator

XIP

(Execute-In-Place)
ROM / SRAM Bus Fabric

Crystal Oscillator Reset Controller

Chip Level Reset

and Voltage

Regulator Registers

Processor Complex

Figure 27. Power-On

State Machine

Sequence.

The power-on state machine sequence is as follows:

• Chip-Level Reset subsystem deasserts power-on state machine reset once digital core supply (DVDD) is powered

and stable, and RUN pin is high (rst_n_run is also deasserted at this point)

• Ring Oscillator is started. rst_done is asserted once the ripple counter has seen a sufficient number of clock edges

to indicate the ring oscillator is stable

• Crystal Oscillator reset is deasserted. The crystal oscillator is not started at this point, so rst_done is asserted

instantly.

RP2040 Datasheet

2.13. Power-On State Machine 170

• clk_ref and clk_sys clock generators are taken out of reset. In the initial configuration clk_ref is running from the

ring oscillator with no divider. clk_sys is running from clk_ref. These clocks are needed for the rest of the sequence

to progress.

The rest of the sequence is fairly simple, with the following coming out of reset in order one by one:

• Reset Controller - used to reset all non-boot peripherals

• Chip-Level Reset and Voltage Regulator registers - used by the bootrom to check the boot state of the chip. In

particular, the PSM_RESTART_FLAG flag in the CHIP_RESET register can be set via SWD to indicate to the boot code that

there is bad code in flash and it should stop executing. The reset state of the CHIP_RESET register is determined

by the Chip-Level Reset subsystem and is not affected by reset coming from the power-on state machine

• XIP (Execute-In-Place) - used by the bootrom to execute code from an external SPI flash

• ROM and SRAM - Boot code is executed from the ROM. SRAM is used by processors and Bus Fabric.

• Bus Fabric - Allows the processors to communicate with peripherals

• Processor complex - Finally the processors can start running

The final thing to come out of reset is the processor complex. This includes both core0 and core1. Both cores will start

executing the bootcode from ROM. One of the first things the bootrom does is read the core id. At this point, core1 will

go to sleep leaving core0 to continue with the bootrom execution. The processor complex has its own reset control and

various low-power modes which is why both the core0 and core1 resets are deasserted, despite only core0 being needed

for the bootrom.

2.13.3. Register Control

The power-on state machine is a fully automated piece of hardware. It requires no input from the user to work. There

are register controls that can be used to override and see the status of the power-on state machine. This allows

hardware blocks in the power-on state machine to be reset by software if necessary. There is also a WDSEL register which

is used to control what is reset by a Watchdog reset.

2.13.4. Interaction with Watchdog

The power-on state machine can be restarted from a software-programmable position if the Watchdog fires. For

example, in the case the processor is stuck in an infinite loop, or the programmer has somehow misconfigured the chip.

It is important to note that if a peripheral in the power-on state machine has the WDSEL bit set, every peripheral after it in

the power-on sequence will also be reset because the rst_done of the selected peripheral will be deasserted, asserting

rst_n for the remaining peripherals.

2.13.5. List of Registers

The PSM registers start at a base address of 0x40010000 (defined as PSM_BASE in SDK).

Table 196. List of PSM

registers
Offset Name Info

0x0 FRCE_ON Force block out of reset (i.e. power it on)

0x4 FRCE_OFF Force into reset (i.e. power it off)

0x8 WDSEL Set to 1 if this peripheral should be reset when the watchdog

fires.

0xc DONE Indicates the peripheral’s registers are ready to access.

PSM: FRCE_ON Register

RP2040 Datasheet

2.13. Power-On State Machine 171

Offset: 0x0

Description

Force block out of reset (i.e. power it on)

Table 197. FRCE_ON

Register
Bits Name Description Type Reset

31:17 Reserved. - - -

16 PROC1 RW 0x0

15 PROC0 RW 0x0

14 SIO RW 0x0

13 VREG_AND_CHIP_RESET RW 0x0

12 XIP RW 0x0

11 SRAM5 RW 0x0

10 SRAM4 RW 0x0

9 SRAM3 RW 0x0

8 SRAM2 RW 0x0

7 SRAM1 RW 0x0

6 SRAM0 RW 0x0

5 ROM RW 0x0

4 BUSFABRIC RW 0x0

3 RESETS RW 0x0

2 CLOCKS RW 0x0

1 XOSC RW 0x0

0 ROSC RW 0x0

PSM: FRCE_OFF Register

Offset: 0x4

Description

Force into reset (i.e. power it off)

Table 198. FRCE_OFF

Register
Bits Name Description Type Reset

31:17 Reserved. - - -

16 PROC1 RW 0x0

15 PROC0 RW 0x0

14 SIO RW 0x0

13 VREG_AND_CHIP_RESET RW 0x0

12 XIP RW 0x0

11 SRAM5 RW 0x0

10 SRAM4 RW 0x0

9 SRAM3 RW 0x0

RP2040 Datasheet

2.13. Power-On State Machine 172

Bits Name Description Type Reset

8 SRAM2 RW 0x0

7 SRAM1 RW 0x0

6 SRAM0 RW 0x0

5 ROM RW 0x0

4 BUSFABRIC RW 0x0

3 RESETS RW 0x0

2 CLOCKS RW 0x0

1 XOSC RW 0x0

0 ROSC RW 0x0

PSM: WDSEL Register

Offset: 0x8

Description

Set to 1 if this peripheral should be reset when the watchdog fires.

Table 199. WDSEL

Register
Bits Name Description Type Reset

31:17 Reserved. - - -

16 PROC1 RW 0x0

15 PROC0 RW 0x0

14 SIO RW 0x0

13 VREG_AND_CHIP_RESET RW 0x0

12 XIP RW 0x0

11 SRAM5 RW 0x0

10 SRAM4 RW 0x0

9 SRAM3 RW 0x0

8 SRAM2 RW 0x0

7 SRAM1 RW 0x0

6 SRAM0 RW 0x0

5 ROM RW 0x0

4 BUSFABRIC RW 0x0

3 RESETS RW 0x0

2 CLOCKS RW 0x0

1 XOSC RW 0x0

0 ROSC RW 0x0

PSM: DONE Register

Offset: 0xc

RP2040 Datasheet

2.13. Power-On State Machine 173

Description

Indicates the peripheral’s registers are ready to access.

Table 200. DONE

Register
Bits Name Description Type Reset

31:17 Reserved. - - -

16 PROC1 RO 0x0

15 PROC0 RO 0x0

14 SIO RO 0x0

13 VREG_AND_CHIP_RESET RO 0x0

12 XIP RO 0x0

11 SRAM5 RO 0x0

10 SRAM4 RO 0x0

9 SRAM3 RO 0x0

8 SRAM2 RO 0x0

7 SRAM1 RO 0x0

6 SRAM0 RO 0x0

5 ROM RO 0x0

4 BUSFABRIC RO 0x0

3 RESETS RO 0x0

2 CLOCKS RO 0x0

1 XOSC RO 0x0

0 ROSC RO 0x0

2.14. Subsystem Resets

2.14.1. Overview

The reset controller allows software control of the resets to all of the peripherals that are not critical to boot the

processor in RP2040. This includes:

• USB Controller

• PIO

• Peripherals such as UART, I2C, SPI, PWM, Timer, ADC

• PLLs

• IO and Pad registers

The full list can be seen in the register descriptions.

Every peripheral reset by the reset controller is held in reset at power-up. It is up to software to deassert the reset of

peripherals it intends to use. Note that if you are using the SDK some peripherals may already be out of reset.

RP2040 Datasheet

2.14. Subsystem Resets 174

2.14.2. Programmer’s Model

The SDK defines a struct to represent the resets registers.

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_structs/include/hardware/structs/resets.h Lines 24 - 113

 24 typedef struct {
 25 _REG_(RESETS_RESET_OFFSET) // RESETS_RESET
 26 // Reset control
 27 // 0x01000000 [24] : usbctrl (1)
 28 // 0x00800000 [23] : uart1 (1)
 29 // 0x00400000 [22] : uart0 (1)
 30 // 0x00200000 [21] : timer (1)
 31 // 0x00100000 [20] : tbman (1)
 32 // 0x00080000 [19] : sysinfo (1)
 33 // 0x00040000 [18] : syscfg (1)
 34 // 0x00020000 [17] : spi1 (1)
 35 // 0x00010000 [16] : spi0 (1)
 36 // 0x00008000 [15] : rtc (1)
 37 // 0x00004000 [14] : pwm (1)
 38 // 0x00002000 [13] : pll_usb (1)
 39 // 0x00001000 [12] : pll_sys (1)
 40 // 0x00000800 [11] : pio1 (1)
 41 // 0x00000400 [10] : pio0 (1)
 42 // 0x00000200 [9] : pads_qspi (1)
 43 // 0x00000100 [8] : pads_bank0 (1)
 44 // 0x00000080 [7] : jtag (1)
 45 // 0x00000040 [6] : io_qspi (1)
 46 // 0x00000020 [5] : io_bank0 (1)
 47 // 0x00000010 [4] : i2c1 (1)
 48 // 0x00000008 [3] : i2c0 (1)
 49 // 0x00000004 [2] : dma (1)
 50 // 0x00000002 [1] : busctrl (1)
 51 // 0x00000001 [0] : adc (1)
 52 io_rw_32 reset;
 53
 54 _REG_(RESETS_WDSEL_OFFSET) // RESETS_WDSEL
 55 // Watchdog select
 56 // 0x01000000 [24] : usbctrl (0)
 57 // 0x00800000 [23] : uart1 (0)
 58 // 0x00400000 [22] : uart0 (0)
 59 // 0x00200000 [21] : timer (0)
 60 // 0x00100000 [20] : tbman (0)
 61 // 0x00080000 [19] : sysinfo (0)
 62 // 0x00040000 [18] : syscfg (0)
 63 // 0x00020000 [17] : spi1 (0)
 64 // 0x00010000 [16] : spi0 (0)
 65 // 0x00008000 [15] : rtc (0)
 66 // 0x00004000 [14] : pwm (0)
 67 // 0x00002000 [13] : pll_usb (0)
 68 // 0x00001000 [12] : pll_sys (0)
 69 // 0x00000800 [11] : pio1 (0)
 70 // 0x00000400 [10] : pio0 (0)
 71 // 0x00000200 [9] : pads_qspi (0)
 72 // 0x00000100 [8] : pads_bank0 (0)
 73 // 0x00000080 [7] : jtag (0)
 74 // 0x00000040 [6] : io_qspi (0)
 75 // 0x00000020 [5] : io_bank0 (0)
 76 // 0x00000010 [4] : i2c1 (0)
 77 // 0x00000008 [3] : i2c0 (0)
 78 // 0x00000004 [2] : dma (0)
 79 // 0x00000002 [1] : busctrl (0)
 80 // 0x00000001 [0] : adc (0)

RP2040 Datasheet

2.14. Subsystem Resets 175

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_structs/include/hardware/structs/resets.h#L24-L113

 81 io_rw_32 wdsel;
 82
 83 _REG_(RESETS_RESET_DONE_OFFSET) // RESETS_RESET_DONE
 84 // Reset done
 85 // 0x01000000 [24] : usbctrl (0)
 86 // 0x00800000 [23] : uart1 (0)
 87 // 0x00400000 [22] : uart0 (0)
 88 // 0x00200000 [21] : timer (0)
 89 // 0x00100000 [20] : tbman (0)
 90 // 0x00080000 [19] : sysinfo (0)
 91 // 0x00040000 [18] : syscfg (0)
 92 // 0x00020000 [17] : spi1 (0)
 93 // 0x00010000 [16] : spi0 (0)
 94 // 0x00008000 [15] : rtc (0)
 95 // 0x00004000 [14] : pwm (0)
 96 // 0x00002000 [13] : pll_usb (0)
 97 // 0x00001000 [12] : pll_sys (0)
 98 // 0x00000800 [11] : pio1 (0)
 99 // 0x00000400 [10] : pio0 (0)
100 // 0x00000200 [9] : pads_qspi (0)
101 // 0x00000100 [8] : pads_bank0 (0)
102 // 0x00000080 [7] : jtag (0)
103 // 0x00000040 [6] : io_qspi (0)
104 // 0x00000020 [5] : io_bank0 (0)
105 // 0x00000010 [4] : i2c1 (0)
106 // 0x00000008 [3] : i2c0 (0)
107 // 0x00000004 [2] : dma (0)
108 // 0x00000002 [1] : busctrl (0)
109 // 0x00000001 [0] : adc (0)
110 io_ro_32 reset_done;
111 } resets_hw_t;
112
113 #define resets_hw ((resets_hw_t *)RESETS_BASE)

Three registers are defined:

• reset: this register contains a bit for each peripheral that can be reset. If the bit is set to 1 then the reset is asserted.

If the bit is cleared then the reset is deasserted.

• wdsel: if the bit is set then this peripheral will be reset if the watchdog fires (note that the power on state machine

can potentially reset the whole reset controller, which will reset everything)

• reset_done: a bit for each peripheral, that gets set once the peripheral is out of reset. This allows software to wait

for this status bit in case the peripheral has some initialisation to do before it can be used.

The reset functions in the SDK are defined as follows:

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_resets/include/hardware/resets.h Lines 70 - 72

70 static inline void reset_block(uint32_t bits) {
71 hw_set_bits(&resets_hw->reset, bits);
72 }

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_resets/include/hardware/resets.h Lines 79 - 81

79 static inline void unreset_block(uint32_t bits) {
80 hw_clear_bits(&resets_hw->reset, bits);
81 }

RP2040 Datasheet

2.14. Subsystem Resets 176

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_resets/include/hardware/resets.h#L70-L72
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_resets/include/hardware/resets.h#L79-L81

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_resets/include/hardware/resets.h Lines 88 - 92

88 static inline void unreset_block_wait(uint32_t bits) {
89 hw_clear_bits(&resets_hw->reset, bits);
90 while (~resets_hw->reset_done & bits)
91 tight_loop_contents();
92 }

An example use of these is in the UART driver, where the driver defines a uart_reset function, selecting a different bit of

the reset register depending on the uart specified:

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_uart/uart.c Lines 27 - 35

27 static inline void uart_reset(uart_inst_t *uart) {
28 invalid_params_if(UART, uart != uart0 && uart != uart1);
29 reset_block(uart_get_index(uart) ? RESETS_RESET_UART1_BITS : RESETS_RESET_UART0_BITS);
30 }
31
32 static inline void uart_unreset(uart_inst_t *uart) {
33 invalid_params_if(UART, uart != uart0 && uart != uart1);
34 unreset_block_wait(uart_get_index(uart) ? RESETS_RESET_UART1_BITS :
 RESETS_RESET_UART0_BITS);
35 }

2.14.3. List of Registers

The reset controller registers start at a base address of 0x4000c000 (defined as RESETS_BASE in SDK).

Table 201. List of

RESETS registers
Offset Name Info

0x0 RESET Reset control.

0x4 WDSEL Watchdog select.

0x8 RESET_DONE Reset done.

RESETS: RESET Register

Offset: 0x0

Description

Reset control. If a bit is set it means the peripheral is in reset. 0 means the peripheral’s reset is deasserted.

Table 202. RESET

Register
Bits Name Description Type Reset

31:25 Reserved. - - -

24 USBCTRL RW 0x1

23 UART1 RW 0x1

22 UART0 RW 0x1

21 TIMER RW 0x1

20 TBMAN RW 0x1

19 SYSINFO RW 0x1

18 SYSCFG RW 0x1

RP2040 Datasheet

2.14. Subsystem Resets 177

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_resets/include/hardware/resets.h#L88-L92
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_uart/uart.c#L27-L35

Bits Name Description Type Reset

17 SPI1 RW 0x1

16 SPI0 RW 0x1

15 RTC RW 0x1

14 PWM RW 0x1

13 PLL_USB RW 0x1

12 PLL_SYS RW 0x1

11 PIO1 RW 0x1

10 PIO0 RW 0x1

9 PADS_QSPI RW 0x1

8 PADS_BANK0 RW 0x1

7 JTAG RW 0x1

6 IO_QSPI RW 0x1

5 IO_BANK0 RW 0x1

4 I2C1 RW 0x1

3 I2C0 RW 0x1

2 DMA RW 0x1

1 BUSCTRL RW 0x1

0 ADC RW 0x1

RESETS: WDSEL Register

Offset: 0x4

Description

Watchdog select. If a bit is set then the watchdog will reset this peripheral when the watchdog fires.

Table 203. WDSEL

Register
Bits Name Description Type Reset

31:25 Reserved. - - -

24 USBCTRL RW 0x0

23 UART1 RW 0x0

22 UART0 RW 0x0

21 TIMER RW 0x0

20 TBMAN RW 0x0

19 SYSINFO RW 0x0

18 SYSCFG RW 0x0

17 SPI1 RW 0x0

16 SPI0 RW 0x0

15 RTC RW 0x0

14 PWM RW 0x0

RP2040 Datasheet

2.14. Subsystem Resets 178

Bits Name Description Type Reset

13 PLL_USB RW 0x0

12 PLL_SYS RW 0x0

11 PIO1 RW 0x0

10 PIO0 RW 0x0

9 PADS_QSPI RW 0x0

8 PADS_BANK0 RW 0x0

7 JTAG RW 0x0

6 IO_QSPI RW 0x0

5 IO_BANK0 RW 0x0

4 I2C1 RW 0x0

3 I2C0 RW 0x0

2 DMA RW 0x0

1 BUSCTRL RW 0x0

0 ADC RW 0x0

RESETS: RESET_DONE Register

Offset: 0x8

Description

Reset done. If a bit is set then a reset done signal has been returned by the peripheral. This indicates that the

peripheral’s registers are ready to be accessed.

Table 204.

RESET_DONE Register
Bits Name Description Type Reset

31:25 Reserved. - - -

24 USBCTRL RO 0x0

23 UART1 RO 0x0

22 UART0 RO 0x0

21 TIMER RO 0x0

20 TBMAN RO 0x0

19 SYSINFO RO 0x0

18 SYSCFG RO 0x0

17 SPI1 RO 0x0

16 SPI0 RO 0x0

15 RTC RO 0x0

14 PWM RO 0x0

13 PLL_USB RO 0x0

12 PLL_SYS RO 0x0

11 PIO1 RO 0x0

10 PIO0 RO 0x0

RP2040 Datasheet

2.14. Subsystem Resets 179

Bits Name Description Type Reset

9 PADS_QSPI RO 0x0

8 PADS_BANK0 RO 0x0

7 JTAG RO 0x0

6 IO_QSPI RO 0x0

5 IO_BANK0 RO 0x0

4 I2C1 RO 0x0

3 I2C0 RO 0x0

2 DMA RO 0x0

1 BUSCTRL RO 0x0

0 ADC RO 0x0

2.15. Clocks

2.15.1. Overview

The clocks block provides independent clocks to on-chip and external components. It takes inputs from a variety of

clock sources allowing the user to trade off performance against cost, board area and power consumption. From these

sources it uses multiple clock generators to provide the required clocks. This architecture allows the user flexibility to

start and stop clocks independently and to vary some clock frequencies whilst maintaining others at their optimum

frequencies.

Figure 28. Clocks

overview

For very low cost or low power applications where precise timing is not required, the chip can be run from the internal

Ring Oscillator (ROSC). Alternatively the user can provide external clocks or construct simple relaxation oscillators

RP2040 Datasheet

2.15. Clocks 180

using the GPIOs and appropriate external passive components. Where timing is more critical, the Crystal Oscillator

(XOSC) can provide an accurate reference to the 2 on-chip PLLs to provide fast clocking at precise frequencies.

The clock generators select from the clock sources and optionally divide the selected clock before outputting through

enable logic which provides automatic clock disabling in SLEEP mode (see Section 2.11.2).

An on-chip frequency counter facilitates debugging of the clock setup and also allows measurement of the frequencies

of external clocks. The on-chip resus component restarts the system clock from a known good clock if it is accidentally

stopped. This allows the software debugger to access registers and debug the problem.

The chip has an ultra-low power mode called DORMANT (see Section 2.11.3) in which all on-chip clock sources are

stopped to save power. External sources are not stopped and can be used to provide a clock to the on-chip RTC which

can provide an alarm to wake the chip from DORMANT mode. Alternatively the GPIO interrupts can be configured to

wake the chip from DORMANT mode in response to an external event.

Up to 4 generated clocks can be output to GPIOs at up to 50MHz. This allows the user to supply clocks to external

devices, thus reducing component counts in power, space and cost sensitive applications.

2.15.2. Clock sources

The RP2040 can be run from a variety of clock sources. This flexibility allows the user to optimise the clock setup for

performance, cost, board area and power consumption. The sources include the on-chip Ring Oscillator (Section 2.17),

the Crystal Oscillator (Section 2.16), external clocks from GPIOs (Section 2.15.6.4) and the PLLs (Section 2.18).

The list of clock sources is different per clock generator and can be found as enumerated values in the CTRL register.

See CLK_SYS_CTRL as an example.

2.15.2.1. Ring Oscillator

The on-chip Ring Oscillator (Section 2.17) requires no external components. It runs automatically from power-up and is

used to clock the chip during the initial boot stages. The startup frequency is typically 6MHz but varies with PVT

(Process, Voltage and Temperature). The frequency is likely to be in the range 4-8MHz and is guaranteed to be in the

range 1.8-12MHz.

For low cost applications where frequency accuracy is unimportant, the chip can continue to run from the ROSC. If

greater performance is required the frequency can be increased by programming the registers as described in Section

2.17. The frequency will vary with PVT (Process, Voltage and Temperature) so the user must take care to avoid

exceeding the maximum frequencies described in the clock generators section. This variation can be mitigated in

various ways (see Section 2.15.2.1.1) if the user wants to continue running from the ROSC at a frequency close to the

maximum. Alternatively, the user can use an external clock or the XOSC to provide a stable reference clock and use the

PLLs to generate higher frequencies. This will require external components, which will cost board area and increase

power consumption.

If an external clock or the XOSC is used then the ROSC can be stopped to save power. However, the reference clock

generator and the system clock generator must be switched to an alternate source before doing so.

The ROSC is not affected by SLEEP mode. If required the frequency can be reduced before entering SLEEP mode to

save power. On entering DORMANT mode the ROSC is automatically stopped and is restarted in the same configuration

when exiting DORMANT mode. If the ROSC is driving clocks at close to their maximum frequencies then it is

recommended to drop the frequency before entering SLEEP or DORMANT mode to allow for frequency variation due to

changes in environmental conditions during SLEEP or DORMANT mode.

If the user wants to use the ROSC clock externally then it can be output to a GPIO pin using one of the clk_gpclk0-3

generators.

The following sections describe techniques for mitigating PVT variation of the ROSC frequency. They also provide some

interesting design challenges for use in teaching both the effects of PVT and writing software to control real time

functions.

RP2040 Datasheet

2.15. Clocks 181

 NOTE

The ROSC frequency varies with PVT so the user can send its output to the frequency counter and use it to measure

any 1 of these 3 variables if the other 2 are known.

2.15.2.1.1. Mitigating ROSC frequency variation due to process

Process varies for two reasons. Firstly, chips leave the factory with a spread of process parameters which cause

variation in the ROSC frequency across chips. Secondly, process parameters vary slightly as the chip ages, though this

will only be observable over many thousands of hours of operation. To mitigate for process variation, the user can

characterise individual chips and program the ROSC frequency accordingly. This is an adequate solution for small

numbers of chips but is not suitable for volume production. In such applications the user should consider using the

automatic mitigation techniques described below.

2.15.2.1.2. Mitigating ROSC frequency variation due to voltage

Supply voltage varies for two reasons. Firstly, the power supply itself may vary, and secondly, there will be varying on-

chip IR drop as chip activity varies. If the application has a minimum performance target then the user needs to

calibrate for that application and adjust the ROSC frequency to ensure it always exceeds the minimum required.

2.15.2.1.3. Mitigating ROSC frequency variation due to temperature

Temperature varies for two reasons. Firstly, the ambient temperature may vary, and secondly, the chip temperature will

vary as chip activity varies due to self-heating. This can be mitigated by stabilising the temperature using a temperature

controlled environment and passive or active cooling. Alternatively the user can track the temperature using the on-chip

temperature sensor and adjust the ROSC frequency so it remains within the required bounds.

2.15.2.1.4. Automatic mitigation of ROSC frequency variation due to PVT

Techniques for automatic ROSC frequency control avoid the need to calibrate individual chips but require periodic

access to a clock reference or to a time reference. If a clock reference is available then it can be used to periodically

measure the ROSC frequency and adjust it accordingly. The reference could be the on-chip XOSC which can be turned

on periodically for this purpose. This may be useful in a very low power application where it is too costly to run the

XOSC continuously and too costly to use the PLLs to achieve high frequencies. If a time reference is available then the

user could clock the on-chip RTC from the ROSC and periodically compare it against the time reference, then adjust the

ROSC frequency as necessary. Using these techniques the ROSC frequency will drift due to VT variation so the user

must take care that these variations do not allow the ROSC frequency to drift out of the acceptable range.

2.15.2.1.5. Automatic overclocking using the ROSC

The datasheet maximum frequencies for any digital device are quoted for worst case PVT. Most chips in most normal

environments can run significantly faster than the quoted maximum and can therefore be overclocked. If the RP2040 is

running from the ROSC then both the ROSC and the digital components are similarly affected by PVT, so, as the ROSC

gets faster, the processors can also run faster. This means the user can overclock from the ROSC then rely on the ROSC

frequency tracking with PVT variations. The tracking of ROSC frequency and the processor capability is not perfect and

currently there is insufficient data to specify a safe ROSC setting for this mode of operation, so some experimentation is

required.

This mode of operation will maximise processor performance but will lead to variations in the time taken to complete a

task, which may be unacceptable in some applications. Also, if the user wants to use frequency sensitive interfaces

such as USB or UART then the XOSC and PLL must be used to provide a precise clock for those components.

RP2040 Datasheet

2.15. Clocks 182

2.15.2.2. Crystal Oscillator

The Crystal Oscillator (Section 2.16) provides a precise, stable clock reference and should be used where accurate

timing is required and no suitable external clocks are available. The frequency is determined by the external crystal and

the oscillator supports frequencies in the range 1MHz to 15MHz. The on-chip PLLs can be used to synthesise higher

frequencies if required. The RP2040 reference design (see Hardware design with RP2040, Minimal Design Example)

uses a 12MHz crystal. Using the XOSC and the PLLs, the on-chip components can be run at their maximum frequencies.

Appropriate margin is built into the design to tolerate up to 1000ppm variation in the XOSC frequency.

The XOSC is inactive on power up. If required it must be enabled in software. XOSC startup takes several milliseconds

and the software must wait for the XOSC_STABLE flag to be set before starting the PLLs and before changing any clock

generators to use it. Prior to that the output from the XOSC may be non-existent or may have very short pulse widths

which will corrupt logic if used. Once it is running the reference clock (clk_ref) and the system clock (clk_sys) can be

switched to run from the XOSC and the ROSC can be stopped to save power.

The XOSC is not affected by SLEEP mode. It is automatically stopped and restarted in the same configuration when

entering and exiting DORMANT mode.

If the user wants to use the XOSC clock externally then it can be output to a GPIO pin using one of the clk_gpclk0-3

generators. It cannot be taken directly from the XIN or XOUT pins.

2.15.2.3. External Clocks

If external clocks exist in your hardware design then they can be used to clock the RP2040 either on their own or in

conjunction with the XOSC or ROSC. This will potentially save power and will allow components on the RP2040 to be run

synchronously with external components to simplify data transfer between chips. External clocks can be input on the

GPIN0 & GPIN1 GPIO inputs and on the XIN input to the XOSC. If the XIN input is used in this way the XOSC must be

configured to pass through the XIN signal. All 3 inputs are limited to 50MHz but the on-chip PLLs can be used to

synthesise higher frequencies from the XIN input if required. If the frequency accuracy of the external clocks is poorer

than 1000ppm then the generated clocks should not be run at their maximum frequencies because they may exceed

their design margins.

Once the external clocks are running, the reference clock (clk_ref) and the system clock (clk_sys) can be switched to run

from the external clocks and the ROSC can be stopped to save power.

The external clock sources are not affected by SLEEP mode or DORMANT mode.

2.15.2.4. Relaxation Oscillators

If the user wants to use external clocks to replace or supplement the other clock sources but does not have an

appropriate clock available, then 1 or 2 relaxation oscillators can be constructed using external passive components.

Simply send the clock source (GPIN0 or GPIN1) to one of the gpclk0-3 generators, invert it through the GPIO inverter

OUTOVER and connect back to the clock source input via an RC circuit.

Figure 29. Simple

relaxation oscillator

example

The frequency of clocks generated from relaxation oscillators will depend on the delay through the chip and the drive

current from the GPIO output both of which vary with PVT. They will also depend on the quality and accuracy of the

external components. It may be possible to improve the frequency accuracy using more elaborate external components

such as ceramic resonators but that will increase cost and complexity and can never rival the XOSC. For that reason

they are not discussed here. Given that these oscillators will not achieve 1000ppm then they cannot be used to drive

internal clocks at their maximum frequencies.

RP2040 Datasheet

2.15. Clocks 183

https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040.pdf
https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040.pdf#minimal-design-example

The relaxation oscillators are not affected by SLEEP mode or DORMANT mode.

2.15.2.5. PLLs

The PLLs (Section 2.18) are used to provide fast clocks when running from the XOSC (or an external clock source driven

into the XIN pin). In a fully featured application the USB PLL provides a fixed 48MHz clock to the ADC and USB while

clk_rtc and clk_ref are driven from the XOSC or external source. This allows the user to drive clk_sys from the system

PLL and vary the frequency according to demand to save power without having to change the setups of the other

clocks. clk_peri can be driven either from the fixed frequency USB PLL or from the variable frequency system PLL. If

clk_sys never needs to exceed 48MHz then one PLL can be used and the divider in the clk_sys clock generator can be

used to scale the clk_sys frequency according to demand.

When a PLL is started, its output cannot be used until the PLL locks as indicated by the LOCK bit in the STATUS register.

Thereafter the PLL output cannot be used during changes to the reference clock divider, the output dividers or the

bypass mode. The output can be used during feedback divisor changes with the proviso that the output frequency may

overshoot or undershoot on large changes to the feedback divisor. For more information, see Section 2.18.

If the PLL reference clock is accurate to 1000ppm then the PLLs can be used to drive clocks at their maximum

frequency because the frequency of the generated clocks will be within the margins allowed in the design.

The PLLs are not affected by SLEEP mode. If the user wants to save power in SLEEP mode then all clock generators

must be switched away from the PLLs and they must be stopped in software before entering SLEEP mode. The PLLs

are not stopped and restarted automatically when entering and exiting DORMANT mode. If they are left running on entry

to DORMANT mode they will be corrupted and will generate out of control clocks that will consume power

unnecessarily. This happens because their reference clock from XOSC will be stopped. It is therefore essential to switch

all clock generators away from the PLLs and stop the PLLs in software before entering DORMANT mode.

2.15.3. Clock Generators

The clock generators are built on a standard design which incorporates clock source multiplexing, division, duty cycle

correction and SLEEP mode enabling. To save chip area and power, the individual clock generators do not support all

features.

Figure 30. A generic

clock generator

2.15.3.1. Instances

RP2040 has several clock generators which are listed below.

Table 205. RP2040

clock generators
Clock Description Nominal Frequency

clk_gpout0 Clock output to GPIO. Can be used to

clock external devices or debug on

chip clocks with a logic analyser or

oscilloscope.

N/A

clk_gpout1

clk_gpout2

clk_gpout3

RP2040 Datasheet

2.15. Clocks 184

Clock Description Nominal Frequency

clk_ref Reference clock that is always running

unless in DORMANT mode. Runs from

Ring Oscillator (ROSC) at power-up

but can be switched to Crystal

Oscillator (XOSC) for more accuracy.

6 - 12MHz

clk_sys System clock that is always running

unless in DORMANT mode. Runs from

clk_ref at power-up but is typically

switched to a PLL.

125MHz

clk_peri Peripheral clock. Typically runs from

clk_sys but allows peripherals to run at

a consistent speed if clk_sys is

changed by software.

12 - 125MHz

clk_usb USB reference clock. Must be 48MHz. 48MHz

clk_adc ADC reference clock. Must be 48MHz. 48MHz

clk_rtc RTC reference clock. The RTC divides

this clock to generate a 1 second

reference.

46875Hz

For a full list of clock sources for each clock generator see the appropriate CTRL register. For example, CLK_SYS_CTRL.

2.15.3.2. Multiplexers

All clock generators have a multiplexer referred to as the auxiliary (aux) mux. This mux has a conventional design

whose output will glitch when changing the select control. Two clock generators (clk_sys and clk_ref) have an additional

multiplexer, referred to as the glitchless mux. The glitchless mux can switch between clock sources without generating

a glitch on the output.

Clock glitches should be avoided at all costs because they may corrupt the logic running on that clock. This means that

any clock generator with only an aux mux must be disabled while switching the clock source. If the clock generator has

a glitchless mux (clk_sys and clk_ref), then the glitchless mux should switch away from the aux mux while changing the

aux mux source. The clock generators require 2 cycles of the source clock to stop the output and 2 cycles of the new

source to restart the output. The user must wait for the generator to stop before changing the auxiliary mux, and

therefore must be aware of the source clock frequency.

The glitchless mux is only implemented for always-on clocks. On RP2040 the always-on clocks are the reference clock

(clk_ref) and the system clock (clk_sys). Such clocks must run continuously unless the chip is in DORMANT mode. The

glitchless mux has a status output (SELECTED) which indicates which source is selected and can be read from

software to confirm that a change of clock source has been completed.

The recommended control sequences are as follows.

To switch the glitchless mux:

• switch the glitchless mux to an alternate source

• poll the SELECTED register until the switch is completed

To switch the auxiliary mux when the generator has a glitchless mux:

• switch the glitchless mux to a source that isn’t the aux mux

• poll the SELECTED register until the switch is completed

• change the auxiliary mux select control

RP2040 Datasheet

2.15. Clocks 185

• switch the glitchless mux back to the aux mux

• if required, poll the SELECTED register until the switch is completed

To switch the auxiliary mux when the generator does not have a glitchless mux:

• disable the clock divider

• wait for the generated clock to stop (2 cycles of the clock source)

• change the auxiliary mux select control

• enable the clock divider

• if required, wait for the clock generator to restart (2 cycles of the clock source)

See Section 2.15.6.1 for a code example of this.

2.15.3.3. Divider

A fully featured divider divides by 1 or a fractional number in the range 2.0 to 2^24-0.01. Fractional division is achieved

by toggling between 2 integer divisors therefore it yields a jittery clock which may not be suitable for some applications.

For example, when dividing by 2.4 the divider will divide by 2 for 3 cycles and by 3 for 2 cycles. For divisors with large

integer components the jitter will be much smaller and less critical.

Figure 31. An example

of fractional division.

All dividers support on-the-fly divisor changes meaning the output clock will switch cleanly from one divisor to another.

The clock generator does not need to be stopped during clock divisor changes. It does this by synchronising the divisor

change to the end of the clock cycle. Similarly, the enable is synchronised to the end of the clock cycle so will not

generate glitches when the clock generator is enabled or disabled. Clock generators for always-on clocks are

permanently enabled and therefore do not have an enable control.

In the event that a clock generator locks up and never completes the current clock cycle it can be forced to stop using

the KILL control. This may result in an output glitch which may corrupt the logic driven by the clock. It is therefore

recommended the destination logic is reset prior to this operation. It is worth mentioning that this clock generator

design has been used in numerous chips and has never been known to lock up. The KILL control is inelegant and

unnecessary and should not be used as an alternative to the enable. Clock generators for always-on clocks are

permanently active and therefore do not have a KILL control.

2.15.3.4. Duty Cycle Correction

The divider operates on the rising edge of the input clock and so does not generate an even duty cycle clock when

dividing by odd numbers.

Divide by 3 will give a duty cycle of 33.3%, divide by 5 will be 40% etc. If enabled, the duty cycle correction logic will shift

the falling edge of the output clock to the falling edge of the input clock and restore a 50% duty cycle. The duty cycle

correction can be enabled and disabled while the clock is running. It will not operate when dividing by an even number.

RP2040 Datasheet

2.15. Clocks 186

Clock source

Generated clock
without DCC

Generated clock
with DCC

Figure 32. An example

of

duty_cycle_correction.

2.15.3.5. Clock Enables

Each clock goes to multiple destinations and, with a few exceptions, there are 2 enables for each destination. The

WAKE_EN registers are used to enable the clocks when the system is awake and the SLEEP_EN registers are used to enable

the clocks when the system is in sleep mode. The purpose of these enables is to reduce power in the clock distribution

networks for components that are not being used. It is worth noting that a component which is not clocked will retain its

configuration so can be restarted quickly.

 NOTE

The WAKE_EN and SLEEP_EN registers reset to 0x1, which means that by default all clocks are enabled. The programmer

only needs to use this feature if they desire a low-power design.

2.15.3.5.1. Clock Enable Exceptions

The processor cores do not have clock enables because they require a clock at all times to manage their own power

saving features.

clk_sys_busfabric cannot be disabled in wake mode because that would prevent the cores from accessing any chip

registers, including those that control the clock enables.

clk_sys_clocks does not have a wake mode enable because disabling it would prevent the cores from accessing the

clocks control registers.

The gpclks do not have clock enables.

2.15.3.5.2. System Sleep Mode

System sleep mode is entered automatically when both cores are in sleep and the DMA has no outstanding

transactions. In system sleep mode, the clock enables described in the previous paragraphs are switched from the

WAKE_EN registers to the SLEEP_EN registers. The intention is to reduce power consumed in the clock distribution networks

when the chip is inactive. If the user has not configured the WAKE_EN and SLEEP_EN registers then system sleep will do

nothing.

There is little value in using system sleep without taking other measures to reduce power before the cores are put to

sleep. Things to consider include:

• stop unused clock sources such as the PLLs and Crystal Oscillator

• reduce the frequencies of generated clocks by increasing the clock divisors

• stop external clocks

For maximum power saving when the chip is inactive, the user should consider DORMANT (see Section 2.11.3) mode in

which clocks are sourced from the Crystal Oscillator and/or the Ring Oscillator and those clock sources are stopped.

RP2040 Datasheet

2.15. Clocks 187

2.15.4. Frequency Counter

The frequency counter measures the frequency of internal and external clocks by counting the clock edges seen over a

test interval. The interval is defined by counting cycles of clk_ref which must be driven either from XOSC or from a

stable external source of known frequency.

The user can pick between accuracy and test time using the FC0_INTERVAL register. Table 206 shows the trade off.

Table 206. Frequency

Counter Test Interval

vs Accuracy

Interval Register Test Interval Accuracy

0 1μs 2048kHz

1 2μs 1024kHz

2 4μs 512kHz

3 8μs 256kHz

4 16μs 128kHz

5 32μs 64kHz

6 64μs 32kHz

7 125μs 16kHz

8 250μs 8kHz

9 500μs 4kHz

10 1ms 2kHz

11 2ms 1kHz

12 4ms 500Hz

13 8ms 250Hz

14 16ms 125Hz

15 32ms 62.5Hz

2.15.5. Resus

It is possible to write software that inadvertently stops clk_sys. This will normally cause an unrecoverable lock-up of the

cores and the on-chip debugger, leaving the user unable to trace the problem. To mitigate against that, an automatic

resuscitation circuit is provided which will switch clk_sys to a known good clock source if no edges are detected over a

user-defined interval. The known good source is clk_ref which can be driven from the XOSC, ROSC or an external

source.

The resus block counts edges on clk_sys during a timeout interval controlled by clk_ref, and forces clk_sys to be driven

from clk_ref if no clk_sys edges are detected. The interval is programmable via CLK_SYS_RESUS_CTRL.

 WARNING

There is no way for resus to revive the chip if clk_ref is also stopped.

To enable the resus, the programmer must set the timeout interval and then set the ENABLE bit in CLK_SYS_RESUS_CTRL.

To detect a resus event, the CLK_SYS_RESUS interrupt must be enabled by setting the interrupt enable bit in INTE. The

CLOCKS_DEFAULT_IRQ (see Section 2.3.2) must also be enabled at the processor.

Resus is intended as a debugging aid. The intention is for the user to trace the software error that triggered the resus,

then correct the error and reboot. It is possible to continue running after a resus event by reconfiguring clk_sys then

clearing the resus by writing the CLEAR bit in CLK_SYS_RESUS_CTRL. However, it should be noted that a resus can be

RP2040 Datasheet

2.15. Clocks 188

triggered by clk_sys running more slowly than expected and that could result in a clk_sys glitch when resus is triggered.

That glitch could corrupt the chip. This would be a rare event but is tolerable in a debugging scenario. However it is

unacceptable in normal operation therefore it is recommended to only use resus for debug.

 WARNING

Resus is a debugging aid and should not be used as a means of switching clocks in normal operation.

2.15.6. Programmer’s Model

2.15.6.1. Configuring a clock generator

The SDK defines an enum of clocks:

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_structs/include/hardware/structs/clocks.h Lines 27 - 39

27 enum clock_index {
28 clk_gpout0 = 0, ///< GPIO Muxing 0
29 clk_gpout1, ///< GPIO Muxing 1
30 clk_gpout2, ///< GPIO Muxing 2
31 clk_gpout3, ///< GPIO Muxing 3
32 clk_ref, ///< Watchdog and timers reference clock
33 clk_sys, ///< Processors, bus fabric, memory, memory mapped registers
34 clk_peri, ///< Peripheral clock for UART and SPI
35 clk_usb, ///< USB clock
36 clk_adc, ///< ADC clock
37 clk_rtc, ///< Real time clock
38 CLK_COUNT
39 };

And also a struct to describe the registers of a clock generator:

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_structs/include/hardware/structs/clocks.h Lines 43 - 63

43 typedef struct {
44 _REG_(CLOCKS_CLK_GPOUT0_CTRL_OFFSET) // CLOCKS_CLK_GPOUT0_CTRL
45 // Clock control, can be changed on-the-fly (except for auxsrc)
46 // 0x00100000 [20] : NUDGE (0): An edge on this signal shifts the phase of the output by
 1 cycle of the input clock
47 // 0x00030000 [17:16] : PHASE (0): This delays the enable signal by up to 3 cycles of the
 input clock
48 // 0x00001000 [12] : DC50 (0): Enables duty cycle correction for odd divisors
49 // 0x00000800 [11] : ENABLE (0): Starts and stops the clock generator cleanly
50 // 0x00000400 [10] : KILL (0): Asynchronously kills the clock generator
51 // 0x000001e0 [8:5] : AUXSRC (0): Selects the auxiliary clock source, will glitch when
 switching
52 io_rw_32 ctrl;
53
54 _REG_(CLOCKS_CLK_GPOUT0_DIV_OFFSET) // CLOCKS_CLK_GPOUT0_DIV
55 // Clock divisor, can be changed on-the-fly
56 // 0xffffff00 [31:8] : INT (1): Integer component of the divisor, 0 -> divide by 2^16
57 // 0x000000ff [7:0] : FRAC (0): Fractional component of the divisor
58 io_rw_32 div;
59
60 _REG_(CLOCKS_CLK_GPOUT0_SELECTED_OFFSET) // CLOCKS_CLK_GPOUT0_SELECTED
61 // Indicates which SRC is currently selected by the glitchless mux (one-hot)
62 io_ro_32 selected;

RP2040 Datasheet

2.15. Clocks 189

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_structs/include/hardware/structs/clocks.h#L27-L39
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_structs/include/hardware/structs/clocks.h#L43-L63

63 } clock_hw_t;

To configure a clock, we need to know the following pieces of information:

• The frequency of the clock source

• The mux / aux mux position of the clock source

• The desired output frequency

The SDK provides clock_configure to configure a clock:

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/clocks.c Lines 48 - 118

 48 bool clock_configure(enum clock_index clk_index, uint32_t src, uint32_t auxsrc, uint32_t
 src_freq, uint32_t freq) {
 49 uint32_t div;
 50
 51 assert(src_freq >= freq);
 52
 53 if (freq > src_freq)
 54 return false;
 55
 56 // Div register is 24.8 int.frac divider so multiply by 2^8 (left shift by 8)
 57 div = (uint32_t) (((uint64_t) src_freq << CLOCKS_CLK_GPOUT0_DIV_INT_LSB) / freq);
 58
 59 clock_hw_t *clock = &clocks_hw->clk[clk_index];
 60
 61 // If increasing divisor, set divisor before source. Otherwise set source
 62 // before divisor. This avoids a momentary overspeed when e.g. switching
 63 // to a faster source and increasing divisor to compensate.
 64 if (div > clock->div)
 65 clock->div = div;
 66
 67 // If switching a glitchless slice (ref or sys) to an aux source, switch
 68 // away from aux *first* to avoid passing glitches when changing aux mux.
 69 // Assume (!!!) glitchless source 0 is no faster than the aux source.
 70 if (has_glitchless_mux(clk_index) && src ==
 CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX) {
 71 hw_clear_bits(&clock->ctrl, CLOCKS_CLK_REF_CTRL_SRC_BITS);
 72 while (!(clock->selected & 1u))
 73 tight_loop_contents();
 74 }
 75 // If no glitchless mux, cleanly stop the clock to avoid glitches
 76 // propagating when changing aux mux. Note it would be a really bad idea
 77 // to do this on one of the glitchless clocks (clk_sys, clk_ref).
 78 else {
 79 // Disable clock. On clk_ref and clk_sys this does nothing,
 80 // all other clocks have the ENABLE bit in the same position.
 81 hw_clear_bits(&clock->ctrl, CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS);
 82 if (configured_freq[clk_index] > 0) {
 83 // Delay for 3 cycles of the target clock, for ENABLE propagation.
 84 // Note XOSC_COUNT is not helpful here because XOSC is not
 85 // necessarily running, nor is timer...:
 86 uint delay_cyc = configured_freq[clk_sys] / configured_freq[clk_index] + 1;
 87 busy_wait_at_least_cycles(delay_cyc * 3);
 88 }
 89 }
 90
 91 // Set aux mux first, and then glitchless mux if this clock has one
 92 hw_write_masked(&clock->ctrl,
 93 (auxsrc << CLOCKS_CLK_SYS_CTRL_AUXSRC_LSB),
 94 CLOCKS_CLK_SYS_CTRL_AUXSRC_BITS

RP2040 Datasheet

2.15. Clocks 190

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/clocks.c#L48-L118

 95);
 96
 97 if (has_glitchless_mux(clk_index)) {
 98 hw_write_masked(&clock->ctrl,
 99 src << CLOCKS_CLK_REF_CTRL_SRC_LSB,
100 CLOCKS_CLK_REF_CTRL_SRC_BITS
101);
102 while (!(clock->selected & (1u << src)))
103 tight_loop_contents();
104 }
105
106 // Enable clock. On clk_ref and clk_sys this does nothing,
107 // all other clocks have the ENABLE bit in the same position.
108 hw_set_bits(&clock->ctrl, CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS);
109
110 // Now that the source is configured, we can trust that the user-supplied
111 // divisor is a safe value.
112 clock->div = div;
113
114 // Store the configured frequency
115 configured_freq[clk_index] = (uint32_t)(((uint64_t) src_freq << 8) / div);
116
117 return true;
118 }

It is called in clocks_init for each clock. The following example shows the clk_sys configuration:

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/clocks.c Lines 162 - 167

162 // CLK SYS = PLL SYS (usually) 125MHz / 1 = 125MHz
163 clock_configure(clk_sys,
164 CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX,
165 CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_SYS,
166 SYS_CLK_KHZ * KHZ,
167 SYS_CLK_KHZ * KHZ);

Once a clock is configured, clock_get_hz can be called to get the output frequency in Hz.

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/clocks.c Lines 201 - 203

201 uint32_t clock_get_hz(enum clock_index clk_index) {
202 return configured_freq[clk_index];
203 }

 WARNING

It is assumed the source frequency the programmer provides is correct. If it is not then the frequency returned by

clock_get_hz will be inaccurate.

2.15.6.2. Using the frequency counter

To use the frequency counter, the programmer must:

• Set the reference frequency: clk_ref

• Set the mux position of the source they want to measure. See FC0_SRC

RP2040 Datasheet

2.15. Clocks 191

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/clocks.c#L162-L167
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/clocks.c#L201-L203

• Wait for the DONE status bit in FC0_STATUS to be set

• Read the result

The SDK defines a frequency_count function which takes the source as an argument and returns the frequency in kHz:

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/clocks.c Lines 211 - 238

211 uint32_t frequency_count_khz(uint src) {
212 fc_hw_t *fc = &clocks_hw->fc0;
213
214 // If frequency counter is running need to wait for it. It runs even if the source is NULL
215 while(fc->status & CLOCKS_FC0_STATUS_RUNNING_BITS) {
216 tight_loop_contents();
217 }
218
219 // Set reference freq
220 fc->ref_khz = clock_get_hz(clk_ref) / 1000;
221
222 // FIXME: Don't pick random interval. Use best interval
223 fc->interval = 10;
224
225 // No min or max
226 fc->min_khz = 0;
227 fc->max_khz = 0xffffffff;
228
229 // Set SRC which automatically starts the measurement
230 fc->src = src;
231
232 while(!(fc->status & CLOCKS_FC0_STATUS_DONE_BITS)) {
233 tight_loop_contents();
234 }
235
236 // Return the result
237 return fc->result >> CLOCKS_FC0_RESULT_KHZ_LSB;
238 }

There is also a wrapper function to change the unit to MHz`:

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/include/hardware/clocks.h Lines 212 - 214

212 static inline float frequency_count_mhz(uint src) {
213 return ((float) (frequency_count_khz(src))) / KHZ;
214 }

 NOTE

The frequency counter can also be used in a test mode. This allows the hardware to check if the frequency is within

a minimum frequency and a maximum frequency, set in FC0_MIN_KHZ and FC0_MAX_KHZ. In this mode, the PASS bit

in FC0_STATUS will be set when DONE is set if the frequency is within the specified range. Otherwise, either the FAST or

SLOW bit will be set.

If the programmer attempts to count a stopped clock, or the clock stops running then the DIED bit will be set. If any of

DIED, FAST, or SLOW are set then FAIL will be set.

RP2040 Datasheet

2.15. Clocks 192

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/clocks.c#L211-L238
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/include/hardware/clocks.h#L212-L214

2.15.6.3. Configuring a GPIO output clock

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/clocks.c Lines 310 - 330

310 void clock_gpio_init_int_frac(uint gpio, uint src, uint32_t div_int, uint8_t div_frac) {
311 // Bit messy but it's as much code to loop through a lookup
312 // table. The sources for each gpout generators are the same
313 // so just call with the sources from GP0
314 uint gpclk = 0;
315 if (gpio == 21) gpclk = clk_gpout0;
316 else if (gpio == 23) gpclk = clk_gpout1;
317 else if (gpio == 24) gpclk = clk_gpout2;
318 else if (gpio == 25) gpclk = clk_gpout3;
319 else {
320 invalid_params_if(CLOCKS, true);
321 }
322
323 // Set up the gpclk generator
324 clocks_hw->clk[gpclk].ctrl = (src << CLOCKS_CLK_GPOUT0_CTRL_AUXSRC_LSB) |
325 CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS;
326 clocks_hw->clk[gpclk].div = (div_int << CLOCKS_CLK_GPOUT0_DIV_INT_LSB) | div_frac;
327
328 // Set gpio pin to gpclock function
329 gpio_set_function(gpio, GPIO_FUNC_GPCK);
330 }

2.15.6.4. Configuring a GPIO input clock

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/clocks.c Lines 357 - 383

357 bool clock_configure_gpin(enum clock_index clk_index, uint gpio, uint32_t src_freq, uint32_t
 freq) {
358 // Configure a clock to run from a GPIO input
359 uint gpin = 0;
360 if (gpio == 20) gpin = 0;
361 else if (gpio == 22) gpin = 1;
362 else {
363 invalid_params_if(CLOCKS, true);
364 }
365
366 // Work out sources. GPIN is always an auxsrc
367 uint src = 0;
368
369 // GPIN1 == GPIN0 + 1
370 uint auxsrc = gpin0_src[clk_index] + gpin;
371
372 if (has_glitchless_mux(clk_index)) {
373 // AUX src is always 1
374 src = 1;
375 }
376
377 // Set the GPIO function
378 gpio_set_function(gpio, GPIO_FUNC_GPCK);
379
380 // Now we have the src, auxsrc, and configured the gpio input
381 // call clock configure to run the clock from a gpio
382 return clock_configure(clk_index, src, auxsrc, src_freq, freq);
383 }

RP2040 Datasheet

2.15. Clocks 193

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/clocks.c#L310-L330
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/clocks.c#L357-L383

2.15.6.5. Enabling resus

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/clocks.c Lines 286 - 308

286 void clocks_enable_resus(resus_callback_t resus_callback) {
287 // Restart clk_sys if it is stopped by forcing it
288 // to the default source of clk_ref. If clk_ref stops running this will
289 // not work.
290
291 // Store user's resus callback
292 _resus_callback = resus_callback;
293
294 irq_set_exclusive_handler(CLOCKS_IRQ, clocks_irq_handler);
295
296 // Enable the resus interrupt in clocks
297 clocks_hw->inte = CLOCKS_INTE_CLK_SYS_RESUS_BITS;
298
299 // Enable the clocks irq
300 irq_set_enabled(CLOCKS_IRQ, true);
301
302 // 2 * clk_ref freq / clk_sys_min_freq;
303 // assume clk_ref is 3MHz and we want clk_sys to be no lower than 1MHz
304 uint timeout = 2 * 3 * 1;
305
306 // Enable resus with the maximum timeout
307 clocks_hw->resus.ctrl = CLOCKS_CLK_SYS_RESUS_CTRL_ENABLE_BITS | timeout;
308 }

2.15.6.6. Configuring sleep mode

Sleep mode is active when neither processor core or the DMA are requesting clocks. For example, the DMA is not active

and both core0 and core1 are waiting for an interrupt. The SLEEP_EN registers set what clocks are running in sleep mode.

The hello_sleep example (https://github.com/raspberrypi/pico-playground/blob/master/sleep/hello_sleep/

hello_sleep.c) illustrates how to put the chip to sleep until the RTC fires. In this case, only the RTC clock is enabled in the

SLEEP_EN0 register.

 NOTE

clk_sys is always sent to proc0 and proc1 during sleep mode as some logic needs to be clocked for the processor to

wake up again.

Pico Extras: https://github.com/raspberrypi/pico-extras/blob/master/src/rp2_common/pico_sleep/sleep.c Lines 106 - 122

106 void sleep_goto_sleep_until(datetime_t *t, rtc_callback_t callback) {
107 // We should have already called the sleep_run_from_dormant_source function
108 assert(dormant_source_valid(_dormant_source));
109
110 // Turn off all clocks when in sleep mode except for RTC
111 clocks_hw->sleep_en0 = CLOCKS_SLEEP_EN0_CLK_RTC_RTC_BITS;
112 clocks_hw->sleep_en1 = 0x0;
113
114 rtc_set_alarm(t, callback);
115
116 uint save = scb_hw->scr;
117 // Enable deep sleep at the proc
118 scb_hw->scr = save | M0PLUS_SCR_SLEEPDEEP_BITS;
119
120 // Go to sleep

RP2040 Datasheet

2.15. Clocks 194

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/clocks.c#L286-L308
https://github.com/raspberrypi/pico-playground/blob/master/sleep/hello_sleep/hello_sleep.c
https://github.com/raspberrypi/pico-playground/blob/master/sleep/hello_sleep/hello_sleep.c
https://github.com/raspberrypi/pico-extras/blob/master/src/rp2_common/pico_sleep/sleep.c#L106-L122

121 __wfi();
122 }

2.15.7. List of Registers

The Clocks registers start at a base address of 0x40008000 (defined as CLOCKS_BASE in SDK).

Table 207. List of

CLOCKS registers
Offset Name Info

0x00 CLK_GPOUT0_CTRL Clock control, can be changed on-the-fly (except for auxsrc)

0x04 CLK_GPOUT0_DIV Clock divisor, can be changed on-the-fly

0x08 CLK_GPOUT0_SELECTED Indicates which SRC is currently selected by the glitchless mux

(one-hot).

0x0c CLK_GPOUT1_CTRL Clock control, can be changed on-the-fly (except for auxsrc)

0x10 CLK_GPOUT1_DIV Clock divisor, can be changed on-the-fly

0x14 CLK_GPOUT1_SELECTED Indicates which SRC is currently selected by the glitchless mux

(one-hot).

0x18 CLK_GPOUT2_CTRL Clock control, can be changed on-the-fly (except for auxsrc)

0x1c CLK_GPOUT2_DIV Clock divisor, can be changed on-the-fly

0x20 CLK_GPOUT2_SELECTED Indicates which SRC is currently selected by the glitchless mux

(one-hot).

0x24 CLK_GPOUT3_CTRL Clock control, can be changed on-the-fly (except for auxsrc)

0x28 CLK_GPOUT3_DIV Clock divisor, can be changed on-the-fly

0x2c CLK_GPOUT3_SELECTED Indicates which SRC is currently selected by the glitchless mux

(one-hot).

0x30 CLK_REF_CTRL Clock control, can be changed on-the-fly (except for auxsrc)

0x34 CLK_REF_DIV Clock divisor, can be changed on-the-fly

0x38 CLK_REF_SELECTED Indicates which SRC is currently selected by the glitchless mux

(one-hot).

0x3c CLK_SYS_CTRL Clock control, can be changed on-the-fly (except for auxsrc)

0x40 CLK_SYS_DIV Clock divisor, can be changed on-the-fly

0x44 CLK_SYS_SELECTED Indicates which SRC is currently selected by the glitchless mux

(one-hot).

0x48 CLK_PERI_CTRL Clock control, can be changed on-the-fly (except for auxsrc)

0x50 CLK_PERI_SELECTED Indicates which SRC is currently selected by the glitchless mux

(one-hot).

0x54 CLK_USB_CTRL Clock control, can be changed on-the-fly (except for auxsrc)

0x58 CLK_USB_DIV Clock divisor, can be changed on-the-fly

0x5c CLK_USB_SELECTED Indicates which SRC is currently selected by the glitchless mux

(one-hot).

0x60 CLK_ADC_CTRL Clock control, can be changed on-the-fly (except for auxsrc)

0x64 CLK_ADC_DIV Clock divisor, can be changed on-the-fly

RP2040 Datasheet

2.15. Clocks 195

Offset Name Info

0x68 CLK_ADC_SELECTED Indicates which SRC is currently selected by the glitchless mux

(one-hot).

0x6c CLK_RTC_CTRL Clock control, can be changed on-the-fly (except for auxsrc)

0x70 CLK_RTC_DIV Clock divisor, can be changed on-the-fly

0x74 CLK_RTC_SELECTED Indicates which SRC is currently selected by the glitchless mux

(one-hot).

0x78 CLK_SYS_RESUS_CTRL

0x7c CLK_SYS_RESUS_STATUS

0x80 FC0_REF_KHZ Reference clock frequency in kHz

0x84 FC0_MIN_KHZ Minimum pass frequency in kHz. This is optional. Set to 0 if you

are not using the pass/fail flags

0x88 FC0_MAX_KHZ Maximum pass frequency in kHz. This is optional. Set to 0x1ffffff

if you are not using the pass/fail flags

0x8c FC0_DELAY Delays the start of frequency counting to allow the mux to settle

Delay is measured in multiples of the reference clock period

0x90 FC0_INTERVAL The test interval is 0.98us * 2**interval, but let’s call it 1us *

2**interval

The default gives a test interval of 250us

0x94 FC0_SRC Clock sent to frequency counter, set to 0 when not required

Writing to this register initiates the frequency count

0x98 FC0_STATUS Frequency counter status

0x9c FC0_RESULT Result of frequency measurement, only valid when

status_done=1

0xa0 WAKE_EN0 enable clock in wake mode

0xa4 WAKE_EN1 enable clock in wake mode

0xa8 SLEEP_EN0 enable clock in sleep mode

0xac SLEEP_EN1 enable clock in sleep mode

0xb0 ENABLED0 indicates the state of the clock enable

0xb4 ENABLED1 indicates the state of the clock enable

0xb8 INTR Raw Interrupts

0xbc INTE Interrupt Enable

0xc0 INTF Interrupt Force

0xc4 INTS Interrupt status after masking & forcing

CLOCKS: CLK_GPOUT0_CTRL Register

Offset: 0x00

Description

Clock control, can be changed on-the-fly (except for auxsrc)

RP2040 Datasheet

2.15. Clocks 196

Table 208.

CLK_GPOUT0_CTRL

Register

Bits Name Description Type Reset

31:21 Reserved. - - -

20 NUDGE An edge on this signal shifts the phase of the output by 1

cycle of the input clock

This can be done at any time

RW 0x0

19:18 Reserved. - - -

17:16 PHASE This delays the enable signal by up to 3 cycles of the input

clock

This must be set before the clock is enabled to have any

effect

RW 0x0

15:13 Reserved. - - -

12 DC50 Enables duty cycle correction for odd divisors RW 0x0

11 ENABLE Starts and stops the clock generator cleanly RW 0x0

10 KILL Asynchronously kills the clock generator RW 0x0

9 Reserved. - - -

8:5 AUXSRC Selects the auxiliary clock source, will glitch when

switching

0x0 → clksrc_pll_sys

0x1 → clksrc_gpin0

0x2 → clksrc_gpin1

0x3 → clksrc_pll_usb

0x4 → rosc_clksrc

0x5 → xosc_clksrc

0x6 → clk_sys

0x7 → clk_usb

0x8 → clk_adc

0x9 → clk_rtc

0xa → clk_ref

RW 0x0

4:0 Reserved. - - -

CLOCKS: CLK_GPOUT0_DIV Register

Offset: 0x04

Description

Clock divisor, can be changed on-the-fly

Table 209.

CLK_GPOUT0_DIV

Register

Bits Name Description Type Reset

31:8 INT Integer component of the divisor, 0 → divide by 2^16 RW 0x000001

7:0 FRAC Fractional component of the divisor RW 0x00

CLOCKS: CLK_GPOUT0_SELECTED Register

Offset: 0x08

Description

Indicates which SRC is currently selected by the glitchless mux (one-hot).

RP2040 Datasheet

2.15. Clocks 197

Table 210.

CLK_GPOUT0_SELECT

ED Register

Bits Description Type Reset

31:0 This slice does not have a glitchless mux (only the AUX_SRC field is present,

not SRC) so this register is hardwired to 0x1.

RO 0x00000001

CLOCKS: CLK_GPOUT1_CTRL Register

Offset: 0x0c

Description

Clock control, can be changed on-the-fly (except for auxsrc)

Table 211.

CLK_GPOUT1_CTRL

Register

Bits Name Description Type Reset

31:21 Reserved. - - -

20 NUDGE An edge on this signal shifts the phase of the output by 1

cycle of the input clock

This can be done at any time

RW 0x0

19:18 Reserved. - - -

17:16 PHASE This delays the enable signal by up to 3 cycles of the input

clock

This must be set before the clock is enabled to have any

effect

RW 0x0

15:13 Reserved. - - -

12 DC50 Enables duty cycle correction for odd divisors RW 0x0

11 ENABLE Starts and stops the clock generator cleanly RW 0x0

10 KILL Asynchronously kills the clock generator RW 0x0

9 Reserved. - - -

8:5 AUXSRC Selects the auxiliary clock source, will glitch when

switching

0x0 → clksrc_pll_sys

0x1 → clksrc_gpin0

0x2 → clksrc_gpin1

0x3 → clksrc_pll_usb

0x4 → rosc_clksrc

0x5 → xosc_clksrc

0x6 → clk_sys

0x7 → clk_usb

0x8 → clk_adc

0x9 → clk_rtc

0xa → clk_ref

RW 0x0

4:0 Reserved. - - -

CLOCKS: CLK_GPOUT1_DIV Register

Offset: 0x10

Description

Clock divisor, can be changed on-the-fly

RP2040 Datasheet

2.15. Clocks 198

Table 212.

CLK_GPOUT1_DIV

Register

Bits Name Description Type Reset

31:8 INT Integer component of the divisor, 0 → divide by 2^16 RW 0x000001

7:0 FRAC Fractional component of the divisor RW 0x00

CLOCKS: CLK_GPOUT1_SELECTED Register

Offset: 0x14

Description

Indicates which SRC is currently selected by the glitchless mux (one-hot).

Table 213.

CLK_GPOUT1_SELECT

ED Register

Bits Description Type Reset

31:0 This slice does not have a glitchless mux (only the AUX_SRC field is present,

not SRC) so this register is hardwired to 0x1.

RO 0x00000001

CLOCKS: CLK_GPOUT2_CTRL Register

Offset: 0x18

Description

Clock control, can be changed on-the-fly (except for auxsrc)

Table 214.

CLK_GPOUT2_CTRL

Register

Bits Name Description Type Reset

31:21 Reserved. - - -

20 NUDGE An edge on this signal shifts the phase of the output by 1

cycle of the input clock

This can be done at any time

RW 0x0

19:18 Reserved. - - -

17:16 PHASE This delays the enable signal by up to 3 cycles of the input

clock

This must be set before the clock is enabled to have any

effect

RW 0x0

15:13 Reserved. - - -

12 DC50 Enables duty cycle correction for odd divisors RW 0x0

11 ENABLE Starts and stops the clock generator cleanly RW 0x0

10 KILL Asynchronously kills the clock generator RW 0x0

9 Reserved. - - -

8:5 AUXSRC Selects the auxiliary clock source, will glitch when

switching

0x0 → clksrc_pll_sys

0x1 → clksrc_gpin0

0x2 → clksrc_gpin1

0x3 → clksrc_pll_usb

0x4 → rosc_clksrc_ph

0x5 → xosc_clksrc

0x6 → clk_sys

0x7 → clk_usb

0x8 → clk_adc

0x9 → clk_rtc

0xa → clk_ref

RW 0x0

RP2040 Datasheet

2.15. Clocks 199

Bits Name Description Type Reset

4:0 Reserved. - - -

CLOCKS: CLK_GPOUT2_DIV Register

Offset: 0x1c

Description

Clock divisor, can be changed on-the-fly

Table 215.

CLK_GPOUT2_DIV

Register

Bits Name Description Type Reset

31:8 INT Integer component of the divisor, 0 → divide by 2^16 RW 0x000001

7:0 FRAC Fractional component of the divisor RW 0x00

CLOCKS: CLK_GPOUT2_SELECTED Register

Offset: 0x20

Description

Indicates which SRC is currently selected by the glitchless mux (one-hot).

Table 216.

CLK_GPOUT2_SELECT

ED Register

Bits Description Type Reset

31:0 This slice does not have a glitchless mux (only the AUX_SRC field is present,

not SRC) so this register is hardwired to 0x1.

RO 0x00000001

CLOCKS: CLK_GPOUT3_CTRL Register

Offset: 0x24

Description

Clock control, can be changed on-the-fly (except for auxsrc)

Table 217.

CLK_GPOUT3_CTRL

Register

Bits Name Description Type Reset

31:21 Reserved. - - -

20 NUDGE An edge on this signal shifts the phase of the output by 1

cycle of the input clock

This can be done at any time

RW 0x0

19:18 Reserved. - - -

17:16 PHASE This delays the enable signal by up to 3 cycles of the input

clock

This must be set before the clock is enabled to have any

effect

RW 0x0

15:13 Reserved. - - -

12 DC50 Enables duty cycle correction for odd divisors RW 0x0

11 ENABLE Starts and stops the clock generator cleanly RW 0x0

10 KILL Asynchronously kills the clock generator RW 0x0

9 Reserved. - - -

RP2040 Datasheet

2.15. Clocks 200

Bits Name Description Type Reset

8:5 AUXSRC Selects the auxiliary clock source, will glitch when

switching

0x0 → clksrc_pll_sys

0x1 → clksrc_gpin0

0x2 → clksrc_gpin1

0x3 → clksrc_pll_usb

0x4 → rosc_clksrc_ph

0x5 → xosc_clksrc

0x6 → clk_sys

0x7 → clk_usb

0x8 → clk_adc

0x9 → clk_rtc

0xa → clk_ref

RW 0x0

4:0 Reserved. - - -

CLOCKS: CLK_GPOUT3_DIV Register

Offset: 0x28

Description

Clock divisor, can be changed on-the-fly

Table 218.

CLK_GPOUT3_DIV

Register

Bits Name Description Type Reset

31:8 INT Integer component of the divisor, 0 → divide by 2^16 RW 0x000001

7:0 FRAC Fractional component of the divisor RW 0x00

CLOCKS: CLK_GPOUT3_SELECTED Register

Offset: 0x2c

Description

Indicates which SRC is currently selected by the glitchless mux (one-hot).

Table 219.

CLK_GPOUT3_SELECT

ED Register

Bits Description Type Reset

31:0 This slice does not have a glitchless mux (only the AUX_SRC field is present,

not SRC) so this register is hardwired to 0x1.

RO 0x00000001

CLOCKS: CLK_REF_CTRL Register

Offset: 0x30

Description

Clock control, can be changed on-the-fly (except for auxsrc)

Table 220.

CLK_REF_CTRL

Register

Bits Name Description Type Reset

31:7 Reserved. - - -

6:5 AUXSRC Selects the auxiliary clock source, will glitch when

switching

0x0 → clksrc_pll_usb

0x1 → clksrc_gpin0

0x2 → clksrc_gpin1

RW 0x0

RP2040 Datasheet

2.15. Clocks 201

Bits Name Description Type Reset

4:2 Reserved. - - -

1:0 SRC Selects the clock source glitchlessly, can be changed on-

the-fly

0x0 → rosc_clksrc_ph

0x1 → clksrc_clk_ref_aux

0x2 → xosc_clksrc

RW -

CLOCKS: CLK_REF_DIV Register

Offset: 0x34

Description

Clock divisor, can be changed on-the-fly

Table 221.

CLK_REF_DIV Register
Bits Name Description Type Reset

31:10 Reserved. - - -

9:8 INT Integer component of the divisor, 0 → divide by 2^16 RW 0x1

7:0 Reserved. - - -

CLOCKS: CLK_REF_SELECTED Register

Offset: 0x38

Description

Indicates which SRC is currently selected by the glitchless mux (one-hot).

Table 222.

CLK_REF_SELECTED

Register

Bits Description Type Reset

31:0 The glitchless multiplexer does not switch instantaneously (to avoid glitches),

so software should poll this register to wait for the switch to complete. This

register contains one decoded bit for each of the clock sources enumerated in

the CTRL SRC field. At most one of these bits will be set at any time, indicating

that clock is currently present at the output of the glitchless mux. Whilst

switching is in progress, this register may briefly show all-0s.

RO 0x00000001

CLOCKS: CLK_SYS_CTRL Register

Offset: 0x3c

Description

Clock control, can be changed on-the-fly (except for auxsrc)

Table 223.

CLK_SYS_CTRL

Register

Bits Name Description Type Reset

31:8 Reserved. - - -

7:5 AUXSRC Selects the auxiliary clock source, will glitch when

switching

0x0 → clksrc_pll_sys

0x1 → clksrc_pll_usb

0x2 → rosc_clksrc

0x3 → xosc_clksrc

0x4 → clksrc_gpin0

0x5 → clksrc_gpin1

RW 0x0

RP2040 Datasheet

2.15. Clocks 202

Bits Name Description Type Reset

4:1 Reserved. - - -

0 SRC Selects the clock source glitchlessly, can be changed on-

the-fly

0x0 → clk_ref

0x1 → clksrc_clk_sys_aux

RW 0x0

CLOCKS: CLK_SYS_DIV Register

Offset: 0x40

Description

Clock divisor, can be changed on-the-fly

Table 224.

CLK_SYS_DIV Register
Bits Name Description Type Reset

31:8 INT Integer component of the divisor, 0 → divide by 2^16 RW 0x000001

7:0 FRAC Fractional component of the divisor RW 0x00

CLOCKS: CLK_SYS_SELECTED Register

Offset: 0x44

Description

Indicates which SRC is currently selected by the glitchless mux (one-hot).

Table 225.

CLK_SYS_SELECTED

Register

Bits Description Type Reset

31:0 The glitchless multiplexer does not switch instantaneously (to avoid glitches),

so software should poll this register to wait for the switch to complete. This

register contains one decoded bit for each of the clock sources enumerated in

the CTRL SRC field. At most one of these bits will be set at any time, indicating

that clock is currently present at the output of the glitchless mux. Whilst

switching is in progress, this register may briefly show all-0s.

RO 0x00000001

CLOCKS: CLK_PERI_CTRL Register

Offset: 0x48

Description

Clock control, can be changed on-the-fly (except for auxsrc)

Table 226.

CLK_PERI_CTRL

Register

Bits Name Description Type Reset

31:12 Reserved. - - -

11 ENABLE Starts and stops the clock generator cleanly RW 0x0

10 KILL Asynchronously kills the clock generator RW 0x0

9:8 Reserved. - - -

RP2040 Datasheet

2.15. Clocks 203

Bits Name Description Type Reset

7:5 AUXSRC Selects the auxiliary clock source, will glitch when

switching

0x0 → clk_sys

0x1 → clksrc_pll_sys

0x2 → clksrc_pll_usb

0x3 → rosc_clksrc_ph

0x4 → xosc_clksrc

0x5 → clksrc_gpin0

0x6 → clksrc_gpin1

RW 0x0

4:0 Reserved. - - -

CLOCKS: CLK_PERI_SELECTED Register

Offset: 0x50

Description

Indicates which SRC is currently selected by the glitchless mux (one-hot).

Table 227.

CLK_PERI_SELECTED

Register

Bits Description Type Reset

31:0 This slice does not have a glitchless mux (only the AUX_SRC field is present,

not SRC) so this register is hardwired to 0x1.

RO 0x00000001

CLOCKS: CLK_USB_CTRL Register

Offset: 0x54

Description

Clock control, can be changed on-the-fly (except for auxsrc)

Table 228.

CLK_USB_CTRL

Register

Bits Name Description Type Reset

31:21 Reserved. - - -

20 NUDGE An edge on this signal shifts the phase of the output by 1

cycle of the input clock

This can be done at any time

RW 0x0

19:18 Reserved. - - -

17:16 PHASE This delays the enable signal by up to 3 cycles of the input

clock

This must be set before the clock is enabled to have any

effect

RW 0x0

15:12 Reserved. - - -

11 ENABLE Starts and stops the clock generator cleanly RW 0x0

10 KILL Asynchronously kills the clock generator RW 0x0

9:8 Reserved. - - -

RP2040 Datasheet

2.15. Clocks 204

Bits Name Description Type Reset

7:5 AUXSRC Selects the auxiliary clock source, will glitch when

switching

0x0 → clksrc_pll_usb

0x1 → clksrc_pll_sys

0x2 → rosc_clksrc_ph

0x3 → xosc_clksrc

0x4 → clksrc_gpin0

0x5 → clksrc_gpin1

RW 0x0

4:0 Reserved. - - -

CLOCKS: CLK_USB_DIV Register

Offset: 0x58

Description

Clock divisor, can be changed on-the-fly

Table 229.

CLK_USB_DIV Register
Bits Name Description Type Reset

31:10 Reserved. - - -

9:8 INT Integer component of the divisor, 0 → divide by 2^16 RW 0x1

7:0 Reserved. - - -

CLOCKS: CLK_USB_SELECTED Register

Offset: 0x5c

Description

Indicates which SRC is currently selected by the glitchless mux (one-hot).

Table 230.

CLK_USB_SELECTED

Register

Bits Description Type Reset

31:0 This slice does not have a glitchless mux (only the AUX_SRC field is present,

not SRC) so this register is hardwired to 0x1.

RO 0x00000001

CLOCKS: CLK_ADC_CTRL Register

Offset: 0x60

Description

Clock control, can be changed on-the-fly (except for auxsrc)

Table 231.

CLK_ADC_CTRL

Register

Bits Name Description Type Reset

31:21 Reserved. - - -

20 NUDGE An edge on this signal shifts the phase of the output by 1

cycle of the input clock

This can be done at any time

RW 0x0

19:18 Reserved. - - -

17:16 PHASE This delays the enable signal by up to 3 cycles of the input

clock

This must be set before the clock is enabled to have any

effect

RW 0x0

RP2040 Datasheet

2.15. Clocks 205

Bits Name Description Type Reset

15:12 Reserved. - - -

11 ENABLE Starts and stops the clock generator cleanly RW 0x0

10 KILL Asynchronously kills the clock generator RW 0x0

9:8 Reserved. - - -

7:5 AUXSRC Selects the auxiliary clock source, will glitch when

switching

0x0 → clksrc_pll_usb

0x1 → clksrc_pll_sys

0x2 → rosc_clksrc_ph

0x3 → xosc_clksrc

0x4 → clksrc_gpin0

0x5 → clksrc_gpin1

RW 0x0

4:0 Reserved. - - -

CLOCKS: CLK_ADC_DIV Register

Offset: 0x64

Description

Clock divisor, can be changed on-the-fly

Table 232.

CLK_ADC_DIV Register
Bits Name Description Type Reset

31:10 Reserved. - - -

9:8 INT Integer component of the divisor, 0 → divide by 2^16 RW 0x1

7:0 Reserved. - - -

CLOCKS: CLK_ADC_SELECTED Register

Offset: 0x68

Description

Indicates which SRC is currently selected by the glitchless mux (one-hot).

Table 233.

CLK_ADC_SELECTED

Register

Bits Description Type Reset

31:0 This slice does not have a glitchless mux (only the AUX_SRC field is present,

not SRC) so this register is hardwired to 0x1.

RO 0x00000001

CLOCKS: CLK_RTC_CTRL Register

Offset: 0x6c

Description

Clock control, can be changed on-the-fly (except for auxsrc)

Table 234.

CLK_RTC_CTRL

Register

Bits Name Description Type Reset

31:21 Reserved. - - -

RP2040 Datasheet

2.15. Clocks 206

Bits Name Description Type Reset

20 NUDGE An edge on this signal shifts the phase of the output by 1

cycle of the input clock

This can be done at any time

RW 0x0

19:18 Reserved. - - -

17:16 PHASE This delays the enable signal by up to 3 cycles of the input

clock

This must be set before the clock is enabled to have any

effect

RW 0x0

15:12 Reserved. - - -

11 ENABLE Starts and stops the clock generator cleanly RW 0x0

10 KILL Asynchronously kills the clock generator RW 0x0

9:8 Reserved. - - -

7:5 AUXSRC Selects the auxiliary clock source, will glitch when

switching

0x0 → clksrc_pll_usb

0x1 → clksrc_pll_sys

0x2 → rosc_clksrc_ph

0x3 → xosc_clksrc

0x4 → clksrc_gpin0

0x5 → clksrc_gpin1

RW 0x0

4:0 Reserved. - - -

CLOCKS: CLK_RTC_DIV Register

Offset: 0x70

Description

Clock divisor, can be changed on-the-fly

Table 235.

CLK_RTC_DIV Register
Bits Name Description Type Reset

31:8 INT Integer component of the divisor, 0 → divide by 2^16 RW 0x000001

7:0 FRAC Fractional component of the divisor RW 0x00

CLOCKS: CLK_RTC_SELECTED Register

Offset: 0x74

Description

Indicates which SRC is currently selected by the glitchless mux (one-hot).

Table 236.

CLK_RTC_SELECTED

Register

Bits Description Type Reset

31:0 This slice does not have a glitchless mux (only the AUX_SRC field is present,

not SRC) so this register is hardwired to 0x1.

RO 0x00000001

CLOCKS: CLK_SYS_RESUS_CTRL Register

Offset: 0x78

RP2040 Datasheet

2.15. Clocks 207

Table 237.

CLK_SYS_RESUS_CTR

L Register

Bits Name Description Type Reset

31:17 Reserved. - - -

16 CLEAR For clearing the resus after the fault that triggered it has

been corrected

RW 0x0

15:13 Reserved. - - -

12 FRCE Force a resus, for test purposes only RW 0x0

11:9 Reserved. - - -

8 ENABLE Enable resus RW 0x0

7:0 TIMEOUT This is expressed as a number of clk_ref cycles

and must be >= 2x clk_ref_freq/min_clk_tst_freq

RW 0xff

CLOCKS: CLK_SYS_RESUS_STATUS Register

Offset: 0x7c

Table 238.

CLK_SYS_RESUS_STA

TUS Register

Bits Name Description Type Reset

31:1 Reserved. - - -

0 RESUSSED Clock has been resuscitated, correct the error then send

ctrl_clear=1

RO 0x0

CLOCKS: FC0_REF_KHZ Register

Offset: 0x80

Table 239.

FC0_REF_KHZ Register
Bits Description Type Reset

31:20 Reserved. - -

19:0 Reference clock frequency in kHz RW 0x00000

CLOCKS: FC0_MIN_KHZ Register

Offset: 0x84

Table 240.

FC0_MIN_KHZ

Register

Bits Description Type Reset

31:25 Reserved. - -

24:0 Minimum pass frequency in kHz. This is optional. Set to 0 if you are not using

the pass/fail flags

RW 0x0000000

CLOCKS: FC0_MAX_KHZ Register

Offset: 0x88

Table 241.

FC0_MAX_KHZ

Register

Bits Description Type Reset

31:25 Reserved. - -

24:0 Maximum pass frequency in kHz. This is optional. Set to 0x1ffffff if you are

not using the pass/fail flags

RW 0x1ffffff

CLOCKS: FC0_DELAY Register

Offset: 0x8c

RP2040 Datasheet

2.15. Clocks 208

Table 242. FC0_DELAY

Register
Bits Description Type Reset

31:3 Reserved. - -

2:0 Delays the start of frequency counting to allow the mux to settle

Delay is measured in multiples of the reference clock period

RW 0x1

CLOCKS: FC0_INTERVAL Register

Offset: 0x90

Table 243.

FC0_INTERVAL

Register

Bits Description Type Reset

31:4 Reserved. - -

3:0 The test interval is 0.98us * 2**interval, but let’s call it 1us * 2**interval

The default gives a test interval of 250us

RW 0x8

CLOCKS: FC0_SRC Register

Offset: 0x94

Table 244. FC0_SRC

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 Clock sent to frequency counter, set to 0 when not required

Writing to this register initiates the frequency count

0x00 → NULL

0x01 → pll_sys_clksrc_primary

0x02 → pll_usb_clksrc_primary

0x03 → rosc_clksrc

0x04 → rosc_clksrc_ph

0x05 → xosc_clksrc

0x06 → clksrc_gpin0

0x07 → clksrc_gpin1

0x08 → clk_ref

0x09 → clk_sys

0x0a → clk_peri

0x0b → clk_usb

0x0c → clk_adc

0x0d → clk_rtc

RW 0x00

CLOCKS: FC0_STATUS Register

Offset: 0x98

Description

Frequency counter status

Table 245.

FC0_STATUS Register
Bits Name Description Type Reset

31:29 Reserved. - - -

28 DIED Test clock stopped during test RO 0x0

27:25 Reserved. - - -

24 FAST Test clock faster than expected, only valid when

status_done=1

RO 0x0

23:21 Reserved. - - -

RP2040 Datasheet

2.15. Clocks 209

Bits Name Description Type Reset

20 SLOW Test clock slower than expected, only valid when

status_done=1

RO 0x0

19:17 Reserved. - - -

16 FAIL Test failed RO 0x0

15:13 Reserved. - - -

12 WAITING Waiting for test clock to start RO 0x0

11:9 Reserved. - - -

8 RUNNING Test running RO 0x0

7:5 Reserved. - - -

4 DONE Test complete RO 0x0

3:1 Reserved. - - -

0 PASS Test passed RO 0x0

CLOCKS: FC0_RESULT Register

Offset: 0x9c

Description

Result of frequency measurement, only valid when status_done=1

Table 246.

FC0_RESULT Register
Bits Name Description Type Reset

31:30 Reserved. - - -

29:5 KHZ RO 0x0000000

4:0 FRAC RO 0x00

CLOCKS: WAKE_EN0 Register

Offset: 0xa0

Description

enable clock in wake mode

Table 247. WAKE_EN0

Register
Bits Name Description Type Reset

31 CLK_SYS_SRAM3 RW 0x1

30 CLK_SYS_SRAM2 RW 0x1

29 CLK_SYS_SRAM1 RW 0x1

28 CLK_SYS_SRAM0 RW 0x1

27 CLK_SYS_SPI1 RW 0x1

26 CLK_PERI_SPI1 RW 0x1

25 CLK_SYS_SPI0 RW 0x1

24 CLK_PERI_SPI0 RW 0x1

23 CLK_SYS_SIO RW 0x1

22 CLK_SYS_RTC RW 0x1

RP2040 Datasheet

2.15. Clocks 210

Bits Name Description Type Reset

21 CLK_RTC_RTC RW 0x1

20 CLK_SYS_ROSC RW 0x1

19 CLK_SYS_ROM RW 0x1

18 CLK_SYS_RESETS RW 0x1

17 CLK_SYS_PWM RW 0x1

16 CLK_SYS_PSM RW 0x1

15 CLK_SYS_PLL_USB RW 0x1

14 CLK_SYS_PLL_SYS RW 0x1

13 CLK_SYS_PIO1 RW 0x1

12 CLK_SYS_PIO0 RW 0x1

11 CLK_SYS_PADS RW 0x1

10 CLK_SYS_VREG_AND_CHIP_RESET RW 0x1

9 CLK_SYS_JTAG RW 0x1

8 CLK_SYS_IO RW 0x1

7 CLK_SYS_I2C1 RW 0x1

6 CLK_SYS_I2C0 RW 0x1

5 CLK_SYS_DMA RW 0x1

4 CLK_SYS_BUSFABRIC RW 0x1

3 CLK_SYS_BUSCTRL RW 0x1

2 CLK_SYS_ADC RW 0x1

1 CLK_ADC_ADC RW 0x1

0 CLK_SYS_CLOCKS RW 0x1

CLOCKS: WAKE_EN1 Register

Offset: 0xa4

Description

enable clock in wake mode

Table 248. WAKE_EN1

Register
Bits Name Description Type Reset

31:15 Reserved. - - -

14 CLK_SYS_XOSC RW 0x1

13 CLK_SYS_XIP RW 0x1

12 CLK_SYS_WATCHDOG RW 0x1

11 CLK_USB_USBCTRL RW 0x1

10 CLK_SYS_USBCTRL RW 0x1

9 CLK_SYS_UART1 RW 0x1

8 CLK_PERI_UART1 RW 0x1

RP2040 Datasheet

2.15. Clocks 211

Bits Name Description Type Reset

7 CLK_SYS_UART0 RW 0x1

6 CLK_PERI_UART0 RW 0x1

5 CLK_SYS_TIMER RW 0x1

4 CLK_SYS_TBMAN RW 0x1

3 CLK_SYS_SYSINFO RW 0x1

2 CLK_SYS_SYSCFG RW 0x1

1 CLK_SYS_SRAM5 RW 0x1

0 CLK_SYS_SRAM4 RW 0x1

CLOCKS: SLEEP_EN0 Register

Offset: 0xa8

Description

enable clock in sleep mode

Table 249. SLEEP_EN0

Register
Bits Name Description Type Reset

31 CLK_SYS_SRAM3 RW 0x1

30 CLK_SYS_SRAM2 RW 0x1

29 CLK_SYS_SRAM1 RW 0x1

28 CLK_SYS_SRAM0 RW 0x1

27 CLK_SYS_SPI1 RW 0x1

26 CLK_PERI_SPI1 RW 0x1

25 CLK_SYS_SPI0 RW 0x1

24 CLK_PERI_SPI0 RW 0x1

23 CLK_SYS_SIO RW 0x1

22 CLK_SYS_RTC RW 0x1

21 CLK_RTC_RTC RW 0x1

20 CLK_SYS_ROSC RW 0x1

19 CLK_SYS_ROM RW 0x1

18 CLK_SYS_RESETS RW 0x1

17 CLK_SYS_PWM RW 0x1

16 CLK_SYS_PSM RW 0x1

15 CLK_SYS_PLL_USB RW 0x1

14 CLK_SYS_PLL_SYS RW 0x1

13 CLK_SYS_PIO1 RW 0x1

12 CLK_SYS_PIO0 RW 0x1

11 CLK_SYS_PADS RW 0x1

10 CLK_SYS_VREG_AND_CHIP_RESET RW 0x1

RP2040 Datasheet

2.15. Clocks 212

Bits Name Description Type Reset

9 CLK_SYS_JTAG RW 0x1

8 CLK_SYS_IO RW 0x1

7 CLK_SYS_I2C1 RW 0x1

6 CLK_SYS_I2C0 RW 0x1

5 CLK_SYS_DMA RW 0x1

4 CLK_SYS_BUSFABRIC RW 0x1

3 CLK_SYS_BUSCTRL RW 0x1

2 CLK_SYS_ADC RW 0x1

1 CLK_ADC_ADC RW 0x1

0 CLK_SYS_CLOCKS RW 0x1

CLOCKS: SLEEP_EN1 Register

Offset: 0xac

Description

enable clock in sleep mode

Table 250. SLEEP_EN1

Register
Bits Name Description Type Reset

31:15 Reserved. - - -

14 CLK_SYS_XOSC RW 0x1

13 CLK_SYS_XIP RW 0x1

12 CLK_SYS_WATCHDOG RW 0x1

11 CLK_USB_USBCTRL RW 0x1

10 CLK_SYS_USBCTRL RW 0x1

9 CLK_SYS_UART1 RW 0x1

8 CLK_PERI_UART1 RW 0x1

7 CLK_SYS_UART0 RW 0x1

6 CLK_PERI_UART0 RW 0x1

5 CLK_SYS_TIMER RW 0x1

4 CLK_SYS_TBMAN RW 0x1

3 CLK_SYS_SYSINFO RW 0x1

2 CLK_SYS_SYSCFG RW 0x1

1 CLK_SYS_SRAM5 RW 0x1

0 CLK_SYS_SRAM4 RW 0x1

CLOCKS: ENABLED0 Register

Offset: 0xb0

Description

indicates the state of the clock enable

RP2040 Datasheet

2.15. Clocks 213

Table 251. ENABLED0

Register
Bits Name Description Type Reset

31 CLK_SYS_SRAM3 RO 0x0

30 CLK_SYS_SRAM2 RO 0x0

29 CLK_SYS_SRAM1 RO 0x0

28 CLK_SYS_SRAM0 RO 0x0

27 CLK_SYS_SPI1 RO 0x0

26 CLK_PERI_SPI1 RO 0x0

25 CLK_SYS_SPI0 RO 0x0

24 CLK_PERI_SPI0 RO 0x0

23 CLK_SYS_SIO RO 0x0

22 CLK_SYS_RTC RO 0x0

21 CLK_RTC_RTC RO 0x0

20 CLK_SYS_ROSC RO 0x0

19 CLK_SYS_ROM RO 0x0

18 CLK_SYS_RESETS RO 0x0

17 CLK_SYS_PWM RO 0x0

16 CLK_SYS_PSM RO 0x0

15 CLK_SYS_PLL_USB RO 0x0

14 CLK_SYS_PLL_SYS RO 0x0

13 CLK_SYS_PIO1 RO 0x0

12 CLK_SYS_PIO0 RO 0x0

11 CLK_SYS_PADS RO 0x0

10 CLK_SYS_VREG_AND_CHIP_RESET RO 0x0

9 CLK_SYS_JTAG RO 0x0

8 CLK_SYS_IO RO 0x0

7 CLK_SYS_I2C1 RO 0x0

6 CLK_SYS_I2C0 RO 0x0

5 CLK_SYS_DMA RO 0x0

4 CLK_SYS_BUSFABRIC RO 0x0

3 CLK_SYS_BUSCTRL RO 0x0

2 CLK_SYS_ADC RO 0x0

1 CLK_ADC_ADC RO 0x0

0 CLK_SYS_CLOCKS RO 0x0

CLOCKS: ENABLED1 Register

Offset: 0xb4

RP2040 Datasheet

2.15. Clocks 214

Description

indicates the state of the clock enable

Table 252. ENABLED1

Register
Bits Name Description Type Reset

31:15 Reserved. - - -

14 CLK_SYS_XOSC RO 0x0

13 CLK_SYS_XIP RO 0x0

12 CLK_SYS_WATCHDOG RO 0x0

11 CLK_USB_USBCTRL RO 0x0

10 CLK_SYS_USBCTRL RO 0x0

9 CLK_SYS_UART1 RO 0x0

8 CLK_PERI_UART1 RO 0x0

7 CLK_SYS_UART0 RO 0x0

6 CLK_PERI_UART0 RO 0x0

5 CLK_SYS_TIMER RO 0x0

4 CLK_SYS_TBMAN RO 0x0

3 CLK_SYS_SYSINFO RO 0x0

2 CLK_SYS_SYSCFG RO 0x0

1 CLK_SYS_SRAM5 RO 0x0

0 CLK_SYS_SRAM4 RO 0x0

CLOCKS: INTR Register

Offset: 0xb8

Description

Raw Interrupts

Table 253. INTR

Register
Bits Name Description Type Reset

31:1 Reserved. - - -

0 CLK_SYS_RESUS RO 0x0

CLOCKS: INTE Register

Offset: 0xbc

Description

Interrupt Enable

Table 254. INTE

Register
Bits Name Description Type Reset

31:1 Reserved. - - -

0 CLK_SYS_RESUS RW 0x0

CLOCKS: INTF Register

Offset: 0xc0

RP2040 Datasheet

2.15. Clocks 215

Description

Interrupt Force

Table 255. INTF

Register
Bits Name Description Type Reset

31:1 Reserved. - - -

0 CLK_SYS_RESUS RW 0x0

CLOCKS: INTS Register

Offset: 0xc4

Description

Interrupt status after masking & forcing

Table 256. INTS

Register
Bits Name Description Type Reset

31:1 Reserved. - - -

0 CLK_SYS_RESUS RO 0x0

2.16. Crystal Oscillator (XOSC)

2.16.1. Overview

The Crystal Oscillator (XOSC) uses an external crystal to produce an accurate reference clock. The RP2040 supports

1MHz to 15MHz crystals and the RP2040 reference design (see Hardware design with RP2040, Minimal Design

Example) uses a 12MHz crystal. The reference clock is distributed to the PLLs, which can be used to multiply the XOSC

frequency to provide accurate high speed clocks. For example, they can generate a 48MHz clock which meets the

frequency accuracy requirement of the USB interface and a 133MHz maximum speed system clock. The XOSC clock is

also a clock source for the clock generators, so can be used directly if required.

If the user already has an accurate clock source then it is possible to drive an external clock directly into XIN (aka XI),

and disable the oscillator circuit. In this mode XIN can be driven at up to 50MHz.

If the user wants to use the XOSC clock outside the RP2040 then it must be routed out to a GPIO via a clk_gpout clock

generator. It is not recommended to take it directly from XIN (aka XI) or XOUT (aka XO).

Figure 33. XOSC

overview

2.16.1.1. Recommended Crystals

For the best performance and stability across typical operating temperature ranges, it is recommended to use the

Abracon ABM8-272-T3. You can source the ABM8-272-T3 directly from Abracon or from an authorised reseller. The

Abracon ABM8-272-T3 has the following specifications:

Table 257. Key Crystal

Specifications.
Parameters Minimum Typical Maximum Units Notes

Center Frequency 12.000 12.000 12.000 MHz

Operation Mode Fundamental-AT Fundamental-AT Fundamental-AT

RP2040 Datasheet

2.16. Crystal Oscillator (XOSC) 216

https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040.pdf
https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040.pdf#minimal-design-example
https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040.pdf#minimal-design-example

Parameters Minimum Typical Maximum Units Notes

Operating Temperature -40 +85 ºC

Storage Temperature -55 +125 ºC

Frequency Tolerance (25ºC) -30 +30 ppm

Frequency Stability (25ºC) -30 +30 ppm

Equivalent Series Resistance (R1) 50 Ω

Shunt Capacitance (C0) 3.0 pF

Load Capacitance (CL) 10 10 10 pF

Drive Level 10 200 µW

Aging -5 +5 ppm @25±3°C, 1st year

Insulation Resistance 500 MΩ @100Vdc±15V

Even if you use a crystal with similar specifications, you will need to test the circuit over a range of temperatures to

ensure stability.

The crystal oscillator is powered from the VDDIO voltage. As a result, the Abracon crystal and that particular damping

resistor are tuned for 3.3V operation. If you use a different IO voltage, you will need to re-tune.

Any changes to crystal parameters risk instability across any components connected to the crystal circuit.

If you can’t source the recommended crystal directly from Abracon or a reseller, contact applications@raspberrypi.com.

Raspberry Pi Pico has been specifically tuned for the specifications of the Abracon ABM8-272-T3 crystal. For an

example of how to use a crystal with RP2040, see the Raspberry Pi Pico board schematic in Appendix B of the Pico

Datasheet and the Raspberry Pi Pico design files.

2.16.2. Usage

The XOSC is disabled on chip startup and the RP2040 boots using the Ring Oscillator (ROSC). To start the XOSC, the

programmer must set the CTRL_ENABLE register. The XOSC is not immediately usable because it takes time for the

oscillations to build to sufficient amplitude. This time will be dependent on the chosen crystal but will be of the order of

a few milliseconds. The XOSC incorporates a timer controlled by the STARTUP_DELAY register for automatically

managing this and setting a flag (STATUS_STABLE) when the XOSC clock is usable.

2.16.3. Startup Delay

The STARTUP_DELAY register specifies how many clock cycles must be seen from the crystal before it can be used.

This is specified in multiples of 256. The SDK xosc_init function sets this value. The 1ms default is sufficient for the

RP2040 reference design (see Hardware design with RP2040, Minimal Design Example) which runs the XOSC at 12MHz.

When the timer expires, the STATUS_STABLE flag will be set to indicate the XOSC output can be used.

Before starting the XOSC the programmer must ensure the STARTUP_DELAY register is correctly configured. The

required value can be calculated by:

So with a 12MHz crystal and a 1ms wait time, the calculation is:

RP2040 Datasheet

2.16. Crystal Oscillator (XOSC) 217

mailto:applications@raspberrypi.com
https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf#pico-schematic-diagram
https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf#pico-schematic-diagram
https://datasheets.raspberrypi.com/pico/RPi-Pico-R3-PUBLIC-20200119.zip
https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040.pdf
https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040.pdf#minimal-design-example

 NOTE

The value is rounded up to the nearest integer so the wait time will be just over 1ms

2.16.4. XOSC Counter

The COUNT register provides a method of managing short software delays. Writing a value to the COUNT register

automatically triggers it to start counting down to zero at the XOSC frequency. The programmer then simply polls the

register until it reaches zero. This is preferable to using NOPs in software loops because it is independent of the core

clock frequency, the compiler and the execution time of the compiled code.

2.16.5. DORMANT mode

In DORMANT mode (see Section 2.11.3) all of the on-chip clocks can be paused to save power. This is particularly

useful in battery-powered applications. The RP2040 is woken from DORMANT mode by an interrupt either from an

external event such as an edge on a GPIO pin or from the on-chip RTC. This must be configured before entering

DORMANT mode. If the RTC is being used to trigger wake-up then it must be clocked from an external source. To enter

DORMANT mode the programmer must then switch all internal clocks to be driven from XOSC or ROSC and stop the

PLLs. Then a specific 32-bit value must be written to the DORMANT register in the chosen oscillator (XOSC or ROSC) to

stop it oscillating. When exiting DORMANT mode the chosen oscillator will restart. If XOSC is chosen then the frequency

will be more precise but the restart time is longer due to the startup delay (>1ms on the RP2040 reference design (see

Hardware design with RP2040, Minimal Design Example)). If ROSC is chosen then the frequency is less precise but the

start-up time is very short (approximately 1μs).

 NOTE

The PLLs must be stopped before entering DORMANT mode

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_xosc/xosc.c Lines 52 - 57

52 void xosc_dormant(void) {
53 // WARNING: This stops the xosc until woken up by an irq
54 xosc_hw->dormant = XOSC_DORMANT_VALUE_DORMANT;
55 // Wait for it to become stable once woken up
56 while(!(xosc_hw->status & XOSC_STATUS_STABLE_BITS));
57 }

 WARNING

If no IRQ is configured before going into DORMANT mode the XOSC or ROSC will never restart.

See Section 2.11.5.2 for a complete example of DORMANT mode using the XOSC.

2.16.6. Programmer’s Model

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_structs/include/hardware/structs/xosc.h Lines 24 - 57

24 typedef struct {
25 _REG_(XOSC_CTRL_OFFSET) // XOSC_CTRL
26 // Crystal Oscillator Control
27 // 0x00fff000 [23:12] : ENABLE (0): On power-up this field is initialised to DISABLE and

RP2040 Datasheet

2.16. Crystal Oscillator (XOSC) 218

https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040.pdf
https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040.pdf#minimal-design-example
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_xosc/xosc.c#L52-L57
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_structs/include/hardware/structs/xosc.h#L24-L57

 the chip runs from the ROSC
28 // 0x00000fff [11:0] : FREQ_RANGE (0): Frequency range
29 io_rw_32 ctrl;
30
31 _REG_(XOSC_STATUS_OFFSET) // XOSC_STATUS
32 // Crystal Oscillator Status
33 // 0x80000000 [31] : STABLE (0): Oscillator is running and stable
34 // 0x01000000 [24] : BADWRITE (0): An invalid value has been written to CTRL_ENABLE or
CTRL_FREQ_RANGE or DORMANT
35 // 0x00001000 [12] : ENABLED (0): Oscillator is enabled but not necessarily running and
stable, resets to 0
36 // 0x00000003 [1:0] : FREQ_RANGE (0): The current frequency range setting, always reads 0
37 io_rw_32 status;
38
39 _REG_(XOSC_DORMANT_OFFSET) // XOSC_DORMANT
40 // Crystal Oscillator pause control
41 io_rw_32 dormant;
42
43 _REG_(XOSC_STARTUP_OFFSET) // XOSC_STARTUP
44 // Controls the startup delay
45 // 0x00100000 [20] : X4 (0): Multiplies the startup_delay by 4
46 // 0x00003fff [13:0] : DELAY (0xc4): in multiples of 256*xtal_period
47 io_rw_32 startup;
48
49 uint32_t _pad0[3];
50
51 _REG_(XOSC_COUNT_OFFSET) // XOSC_COUNT
52 // A down counter running at the xosc frequency which counts to zero and stops
53 // 0x000000ff [7:0] : COUNT (0)
54 io_rw_32 count;
55 } xosc_hw_t;
56
57 #define xosc_hw ((xosc_hw_t *)XOSC_BASE)

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_xosc/xosc.c Lines 29 - 41

29 void xosc_init(void) {
30 // Assumes 1-15 MHz input, checked above.
31 xosc_hw->ctrl = XOSC_CTRL_FREQ_RANGE_VALUE_1_15MHZ;
32
33 // Set xosc startup delay
34 xosc_hw->startup = STARTUP_DELAY;
35
36 // Set the enable bit now that we have set freq range and startup delay
37 hw_set_bits(&xosc_hw->ctrl, XOSC_CTRL_ENABLE_VALUE_ENABLE << XOSC_CTRL_ENABLE_LSB);
38
39 // Wait for XOSC to be stable
40 while(!(xosc_hw->status & XOSC_STATUS_STABLE_BITS));
41 }

2.16.7. List of Registers

The XOSC registers start at a base address of 0x40024000 (defined as XOSC_BASE in SDK).

Table 258. List of

XOSC registers
Offset Name Info

0x00 CTRL Crystal Oscillator Control

0x04 STATUS Crystal Oscillator Status

RP2040 Datasheet

2.16. Crystal Oscillator (XOSC) 219

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_xosc/xosc.c#L29-L41

Offset Name Info

0x08 DORMANT Crystal Oscillator pause control

0x0c STARTUP Controls the startup delay

0x1c COUNT A down counter running at the XOSC frequency which counts to

zero and stops.

XOSC: CTRL Register

Offset: 0x00

Description

Crystal Oscillator Control

Table 259. CTRL

Register
Bits Name Description Type Reset

31:24 Reserved. - - -

23:12 ENABLE On power-up this field is initialised to DISABLE and the

chip runs from the ROSC.

If the chip has subsequently been programmed to run

from the XOSC then setting this field to DISABLE may

lock-up the chip. If this is a concern then run the clk_ref

from the ROSC and enable the clk_sys RESUS feature.

The 12-bit code is intended to give some protection

against accidental writes. An invalid setting will enable the

oscillator.

0xd1e → DISABLE

0xfab → ENABLE

RW -

11:0 FREQ_RANGE Frequency range. This resets to 0xAA0 and cannot be

changed.

0xaa0 → 1_15MHZ

0xaa1 → RESERVED_1

0xaa2 → RESERVED_2

0xaa3 → RESERVED_3

RW -

XOSC: STATUS Register

Offset: 0x04

Description

Crystal Oscillator Status

Table 260. STATUS

Register
Bits Name Description Type Reset

31 STABLE Oscillator is running and stable RO 0x0

30:25 Reserved. - - -

24 BADWRITE An invalid value has been written to CTRL_ENABLE or

CTRL_FREQ_RANGE or DORMANT

WC 0x0

23:13 Reserved. - - -

12 ENABLED Oscillator is enabled but not necessarily running and

stable, resets to 0

RO -

11:2 Reserved. - - -

RP2040 Datasheet

2.16. Crystal Oscillator (XOSC) 220

Bits Name Description Type Reset

1:0 FREQ_RANGE The current frequency range setting, always reads 0

0x0 → 1_15MHZ

0x1 → RESERVED_1

0x2 → RESERVED_2

0x3 → RESERVED_3

RO -

XOSC: DORMANT Register

Offset: 0x08

Description

Crystal Oscillator pause control

Table 261. DORMANT

Register
Bits Description Type Reset

31:0 This is used to save power by pausing the XOSC

On power-up this field is initialised to WAKE

An invalid write will also select WAKE

WARNING: stop the PLLs before selecting dormant mode

WARNING: setup the irq before selecting dormant mode

0x636f6d61 → DORMANT

0x77616b65 → WAKE

RW -

XOSC: STARTUP Register

Offset: 0x0c

Description

Controls the startup delay

Table 262. STARTUP

Register
Bits Name Description Type Reset

31:21 Reserved. - - -

20 X4 Multiplies the startup_delay by 4. This is of little value to

the user given that the delay can be programmed directly.

RW 0x0

19:14 Reserved. - - -

13:0 DELAY in multiples of 256*xtal_period. The reset value of 0xc4

corresponds to approx 50 000 cycles.

RW 0x00c4

XOSC: COUNT Register

Offset: 0x1c

Table 263. COUNT

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 A down counter running at the xosc frequency which counts to zero and stops.

To start the counter write a non-zero value.

Can be used for short software pauses when setting up time sensitive

hardware.

RW 0x00

RP2040 Datasheet

2.16. Crystal Oscillator (XOSC) 221

2.17. Ring Oscillator (ROSC)

2.17.1. Overview

The Ring Oscillator (ROSC) is an on-chip oscillator built from a ring of inverters. It requires no external components and

is started automatically during RP2040 power up. It provides the clock to the cores during boot. The frequency of the

ROSC is programmable and it can directly provide a high speed clock to the cores, but the frequency varies with

Process, Voltage and Temperature (PVT) so it cannot provide clocks for components which require an accurate

frequency such as the RTC, USB and ADC. Methods for mitigating the frequency variation are discussed in Section 2.15

but these are only relevant to very low power design. For most applications requiring accurate clock frequencies it is

recommended to switch to the XOSC and PLLs. During boot the ROSC runs at a nominal 6.5MHz and is guaranteed to

be in the range 1.8MHz to 12MHz.

Once the chip has booted the programmer can choose to continue running from the ROSC and increase its frequency or

start the Crystal Oscillator (XOSC) and PLLs. The ROSC can be disabled after the system clocks have been switched to

the XOSC. Each oscillator has advantages and the programmer can switch between them to achieve the best solution

for the application.

Figure 34. ROSC

overview.

2.17.2. ROSC/XOSC trade-offs

The advantages of the ROSC are its flexibility and its low power. Also, there is no requirement for internal or external

components when using the ROSC to provide clocks. Its frequency is programmable so it can be used to provide a fast

core clock without starting the PLLs and can be divided by clock generators (Section 2.15) to generate slower peripheral

clocks. The ROSC starts immediately and responds immediately to the frequency controls. It will retain the frequency

setting when entering and exiting the DORMANT state (see Section 2.11.3). However, the user must be aware that the

frequency may have drifted when exiting the DORMANT state due to changes in the supply voltage and the chip

temperature.

The disadvantage of the ROSC is its frequency variation with PVT (Process, Voltage & Temperature) which makes it

unsuitable for generating precise clocks or for applications where software execution timing is important. However, the

PVT frequency variation can be exploited to provide automatic frequency scaling to maximise performance. This is

discussed in Section 2.15.

The only advantage of the XOSC is its accurate frequency, but this is an overriding requirement in many applications.

The disadvantages of the XOSC are its requirement for external components (a crystal etc), its higher power

consumption, slow startup time (>1ms) and fixed, low frequency. PLLs are required to produce higher frequency clocks.

They consume more power and take significant time to start up and to change frequency. Exiting DORMANT mode is

much slower than for ROSC because the XOSC must be restarted and the PLLs must be reconfigured.

2.17.3. Modifying the frequency

The ROSC is arranged as 8 stages, each with programmable drive. There are 2 methods of controlling the frequency.

The frequency range controls the number of stages in the ROSC loop and the FREQA & FREQB registers control the drive

strength of the stages.

RP2040 Datasheet

2.17. Ring Oscillator (ROSC) 222

The frequency range is changed by writing to the FREQ_RANGE register which controls the number of stages in the

ROSC loop. The default LOW range has 8 (stages 0-7), MEDIUM has 6 (stages 2-7), HIGH has 4 (stages 4-7) and

TOOHIGH has 2 (stages 6-7). It is recommended to change FREQ_RANGE one step at a time until the desired range is

reached. The ROSC output will not glitch when increasing the frequency range, so the output clock can continue to be

used. However, that is not true when going back down the frequency range. An alternate clock source must be selected

for the modules clocked by ROSC, or they must be held in reset during the transition. The behaviour has not been fully

characterised but the MEDIUM range will be approximately 1.33 times the LOW RANGE, the HIGH range will be 2 times

the LOW range and the TOOHIGH range will be 4 times the LOW range. The TOOHIGH range is aptly named. It should

not be used because the internal logic of the ROSC will not run at that frequency.

The FREQA & FREQB registers control the drive strength of the stages in the ROSC loop. Increasing the drive strength

reduces the delay through the stage and increases the oscillation frequency. Each stage has 3 drive strength control

bits. Each bit turns on additional drive, therefore each stage has 4 drive strength settings equal to the number of bits

set, with 0 being the default, 1 being double drive, 2 being triple drive and 3 being quadruple drive. Turning on extra drive

will not have a linear effect on frequency, setting a second bit will have less impact than setting the first bit and so on.

To ensure smooth transitions it is recommended to change one drive strength bit at a time. When FREQ_RANGE is used

to shorten the ROSC loop, the bypassed stages still propagate the signal and therefore their drive strengths must be set

to at least the same level as the lowest drive strength in the stages that are in the loop. This will not affect the

oscillation frequency.

2.17.4. ROSC divider

The ROSC frequency is too fast to be used directly so is divided in an integer divider controlled by the DIV register. DIV

can be changed while the ROSC is running, the output clock will change frequency without glitching. The default divisor

is 16 which ensures the output clock is in the range 1.8 to 12MHz on chip startup.

The divider has 2 outputs, rosc_clksrc and rosc_clksrc_ph, the second being a phase shifted version of the first. This is

primarily intended for use during product development and the outputs will be identical if the PHASE register is left in its

default state.

2.17.5. Random Number Generator

If the system clocks are running from the XOSC and/or PLLs the ROSC can be used to generate random numbers.

Simply enable the ROSC and read the RANDOMBIT register to get a 1-bit random number and read it n times to get an n-

bit value. This does not meet the requirements of randomness for security systems because it can be compromised,

but it may be useful in less critical applications. If the cores are running from the ROSC then the value will not be

random because the timing of the register read will be correlated to the phase of the ROSC.

2.17.6. ROSC Counter

The COUNT register provides a method of managing short software delays. Writing a value to the COUNT register

automatically triggers it to start counting down to zero at the ROSC frequency. The programmer then simply polls the

register until it reaches zero. This is preferable to using NOPs in software loops because it is independent of the core

clock frequency, the compiler and the execution time of the compiled code.

2.17.7. DORMANT mode

In DORMANT mode (see Section 2.11.3) all of the on-chip clocks can be paused to save power. This is particularly

useful in battery-powered applications. The RP2040 is woken from DORMANT mode by an interrupt either from an

external event such as an edge on a GPIO pin or from the on-chip RTC. This must be configured before entering

DORMANT mode. If the RTC is being used to trigger wake-up then it must be clocked from an external source. To enter

DORMANT mode the programmer must then switch all internal clocks to be driven from XOSC or ROSC and stop the

RP2040 Datasheet

2.17. Ring Oscillator (ROSC) 223

PLLs. Then a specific 32-bit value must be written to the DORMANT register in the chosen oscillator (XOSC or ROSC) to

stop it oscillating. When exiting DORMANT mode the chosen oscillator will restart. If XOSC is chosen then the frequency

will be more precise but the restart time is longer due to the startup delay (>1ms on the RP2040 reference design (see

Hardware design with RP2040, Minimal Design Example)). If ROSC is chosen then the frequency is less precise but the

start-up time is very short (approximately 1μs).

Pico Extras: https://github.com/raspberrypi/pico-extras/blob/master/src/rp2_common/hardware_rosc/rosc.c Lines 56 - 61

56 void rosc_set_dormant(void) {
57 // WARNING: This stops the rosc until woken up by an irq
58 rosc_write(&rosc_hw->dormant, ROSC_DORMANT_VALUE_DORMANT);
59 // Wait for it to become stable once woken up
60 while(!(rosc_hw->status & ROSC_STATUS_STABLE_BITS));
61 }

 WARNING

If no IRQ is configured before going into dormant mode the ROSC will never restart.

See Section 2.11.5.2 for a some examples of dormant mode.

2.17.8. List of Registers

The ROSC registers start at a base address of 0x40060000 (defined as ROSC_BASE in SDK).

Table 264. List of

ROSC registers
Offset Name Info

0x00 CTRL Ring Oscillator control

0x04 FREQA Ring Oscillator frequency control A

0x08 FREQB Ring Oscillator frequency control B

0x0c DORMANT Ring Oscillator pause control

0x10 DIV Controls the output divider

0x14 PHASE Controls the phase shifted output

0x18 STATUS Ring Oscillator Status

0x1c RANDOMBIT Returns a 1 bit random value

0x20 COUNT A down counter running at the ROSC frequency which counts to

zero and stops.

ROSC: CTRL Register

Offset: 0x00

Description

Ring Oscillator control

Table 265. CTRL

Register
Bits Name Description Type Reset

31:24 Reserved. - - -

RP2040 Datasheet

2.17. Ring Oscillator (ROSC) 224

https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040.pdf
https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040.pdf#minimal-design-example
https://github.com/raspberrypi/pico-extras/blob/master/src/rp2_common/hardware_rosc/rosc.c#L56-L61

Bits Name Description Type Reset

23:12 ENABLE On power-up this field is initialised to ENABLE

The system clock must be switched to another source

before setting this field to DISABLE otherwise the chip will

lock up

The 12-bit code is intended to give some protection

against accidental writes. An invalid setting will enable the

oscillator.

0xd1e → DISABLE

0xfab → ENABLE

RW -

11:0 FREQ_RANGE Controls the number of delay stages in the ROSC ring

LOW uses stages 0 to 7

MEDIUM uses stages 2 to 7

HIGH uses stages 4 to 7

TOOHIGH uses stages 6 to 7 and should not be used

because its frequency exceeds design specifications

The clock output will not glitch when changing the range

up one step at a time

The clock output will glitch when changing the range

down

Note: the values here are gray coded which is why HIGH

comes before TOOHIGH

0xfa4 → LOW

0xfa5 → MEDIUM

0xfa7 → HIGH

0xfa6 → TOOHIGH

RW 0xaa0

ROSC: FREQA Register

Offset: 0x04

Description

The FREQA & FREQB registers control the frequency by controlling the drive strength of each stage

The drive strength has 4 levels determined by the number of bits set

Increasing the number of bits set increases the drive strength and increases the oscillation frequency

0 bits set is the default drive strength

1 bit set doubles the drive strength

2 bits set triples drive strength

3 bits set quadruples drive strength

Table 266. FREQA

Register
Bits Name Description Type Reset

31:16 PASSWD Set to 0x9696 to apply the settings

Any other value in this field will set all drive strengths to 0

0x9696 → PASS

RW 0x0000

15 Reserved. - - -

14:12 DS3 Stage 3 drive strength RW 0x0

11 Reserved. - - -

10:8 DS2 Stage 2 drive strength RW 0x0

7 Reserved. - - -

6:4 DS1 Stage 1 drive strength RW 0x0

3 Reserved. - - -

RP2040 Datasheet

2.17. Ring Oscillator (ROSC) 225

Bits Name Description Type Reset

2:0 DS0 Stage 0 drive strength RW 0x0

ROSC: FREQB Register

Offset: 0x08

Description

For a detailed description see freqa register

Table 267. FREQB

Register
Bits Name Description Type Reset

31:16 PASSWD Set to 0x9696 to apply the settings

Any other value in this field will set all drive strengths to 0

0x9696 → PASS

RW 0x0000

15 Reserved. - - -

14:12 DS7 Stage 7 drive strength RW 0x0

11 Reserved. - - -

10:8 DS6 Stage 6 drive strength RW 0x0

7 Reserved. - - -

6:4 DS5 Stage 5 drive strength RW 0x0

3 Reserved. - - -

2:0 DS4 Stage 4 drive strength RW 0x0

ROSC: DORMANT Register

Offset: 0x0c

Description

Ring Oscillator pause control

Table 268. DORMANT

Register
Bits Description Type Reset

31:0 This is used to save power by pausing the ROSC

On power-up this field is initialised to WAKE

An invalid write will also select WAKE

Warning: setup the irq before selecting dormant mode

0x636f6d61 → DORMANT

0x77616b65 → WAKE

RW -

ROSC: DIV Register

Offset: 0x10

Description

Controls the output divider

Table 269. DIV

Register
Bits Description Type Reset

31:12 Reserved. - -

RP2040 Datasheet

2.17. Ring Oscillator (ROSC) 226

Bits Description Type Reset

11:0 set to 0xaa0 + div where

div = 0 divides by 32

div = 1-31 divides by div

any other value sets div=31

this register resets to div=16

0xaa0 → PASS

RW -

ROSC: PHASE Register

Offset: 0x14

Description

Controls the phase shifted output

Table 270. PHASE

Register
Bits Name Description Type Reset

31:12 Reserved. - - -

11:4 PASSWD set to 0xaa

any other value enables the output with shift=0

RW 0x00

3 ENABLE enable the phase-shifted output

this can be changed on-the-fly

RW 0x1

2 FLIP invert the phase-shifted output

this is ignored when div=1

RW 0x0

1:0 SHIFT phase shift the phase-shifted output by SHIFT input clocks

this can be changed on-the-fly

must be set to 0 before setting div=1

RW 0x0

ROSC: STATUS Register

Offset: 0x18

Description

Ring Oscillator Status

Table 271. STATUS

Register
Bits Name Description Type Reset

31 STABLE Oscillator is running and stable RO 0x0

30:25 Reserved. - - -

24 BADWRITE An invalid value has been written to CTRL_ENABLE or

CTRL_FREQ_RANGE or FREQA or FREQB or DIV or PHASE

or DORMANT

WC 0x0

23:17 Reserved. - - -

16 DIV_RUNNING post-divider is running

this resets to 0 but transitions to 1 during chip startup

RO -

15:13 Reserved. - - -

12 ENABLED Oscillator is enabled but not necessarily running and

stable

this resets to 0 but transitions to 1 during chip startup

RO -

11:0 Reserved. - - -

RP2040 Datasheet

2.17. Ring Oscillator (ROSC) 227

ROSC: RANDOMBIT Register

Offset: 0x1c

Table 272.

RANDOMBIT Register
Bits Description Type Reset

31:1 Reserved. - -

0 This just reads the state of the oscillator output so randomness is

compromised if the ring oscillator is stopped or run at a harmonic of the bus

frequency

RO 0x1

ROSC: COUNT Register

Offset: 0x20

Table 273. COUNT

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 A down counter running at the ROSC frequency which counts to zero and

stops.

To start the counter write a non-zero value.

Can be used for short software pauses when setting up time sensitive

hardware.

RW 0x00

2.18. PLL

2.18.1. Overview

The PLL is designed to take a reference clock, and multiply it using a VCO (Voltage Controlled Oscillator) with a

feedback loop. The VCO must run at high frequencies (between 750 and 1600MHz), so there are two dividers, known as

post dividers that can divide the VCO frequency before it is distributed to the clock generators on the chip.

There are two PLLs in RP2040. They are:

• pll_sys - Used to generate up to a 133MHz system clock

• pll_usb - Used to generate a 48MHz USB reference clock

RP2040 Datasheet

2.18. PLL 228

FREF

REFDIV

FBDIV

LOCK

FOUTVCO

CLKSSCG

Analog circuits

Post divider rate circuits

Reference rate circuits

FOUTPOSTDIV

Lock Detect

Feedback Divide

÷16-320

BYPASS

POSTDIV1 POSTDIV2

÷1-7÷1-7PFD÷1-63

6'b 3'b 3'b

12'b

VCO

Figure 35. On both

PLLs, the FREF

(reference) input is

connected to the

crystal oscillator’s XI

input. The PLL

contains a VCO, which

is locked to a constant

ratio of the reference

clock via the feedback

loop (phase-frequency

detector and loop

filter). This can

synthesise very high

frequencies, which

may be divided down

by the post-dividers.

2.18.2. Calculating PLL parameters

To configure the PLL, you must know the frequency of the reference clock, which on RP2040 is routed directly from the

crystal oscillator. This will often be a 12MHz crystal, for compatibility with RP2040’s USB bootrom. The PLL’s final

output frequency FOUTPOSTDIV can then be calculated as (FREF / REFDIV) × FBDIV / (POSTDIV1 × POSTDIV2). With a desired

output frequency in mind, you must select PLL parameters according to the following constraints of the PLL design:

• Minimum reference frequency (FREF / REFDIV) is 5MHz

• Oscillator frequency (FOUTVCO) must be in the range 750MHz → 1600MHz

• Feedback divider (FBDIV) must be in the range 16 → 320

• The post dividers POSTDIV1 and POSTDIV2 must be in the range 1 → 7

• Maximum input frequency (FREF / REFDIV) is VCO frequency divided by 16, due to minimum feedback divisor

Additionally, the maximum frequencies of the chip’s clock generators (attached to FOUTPOSTDIV) must be respected. For

the system PLL this is 133MHz, and for the USB PLL, 48MHz.

 NOTE

The crystal oscillator on RP2040 is designed for crystals between 5 and 15MHz, so typically REFDIV should be 1. If the

application circuit drives a faster reference directly into the XI input, and a low VCO frequency is desired, the

reference divisor can be increased to keep the PLL input within a suitable range.

 TIP

When two different values are required for POSTDIV1 and POSTDIV2, it’s preferable to assign the higher value to POSTDIV1,

for lower power consumption.

In the RP2040 reference design (see Hardware design with RP2040, Minimal Design Example), which attaches a 12MHz

crystal to the crystal oscillator, this implies that the minimum achievable and legal VCO frequency is 12MHz × 63 =

756MHz, and the maximum VCO is 12MHz × 133 = 1596MHz, so FBDIV must remain in the range 63 → 133. For example,

setting FBDIV to 100 would synthesise a 1200MHz VCO frequency. A POSTDIV1 value of 6 and a POSTDIV2 value of 2 would

divide this by 12 in total, producing a clean 100MHz at the PLL’s final output.

2.18.2.1. Jitter vs Power Consumption

There are often several sets of PLL configuration parameters which achieve, or are very close to, the desired output

frequency. It is up to the programmer to decide whether to prioritise low PLL power consumption, or lower jitter, which

is cycle-to-cycle variation in the PLL’s output clock period. This is not a concern as far as system stability is concerned,

because RP2040’s digital logic is designed with margin for the worst-case possible jitter on the system clock, but a

highly accurate clock is often needed for audio and video applications, or where data is being transmitted and received

RP2040 Datasheet

2.18. PLL 229

https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040.pdf
https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040.pdf#minimal-design-example

in accordance with a specification. For example, the USB specification defines a maximum amount of allowable jitter.

Jitter is minimised by running the VCO at the highest possible frequency, so that higher post-divide values can be used.

For example, 1500MHz VCO / 6 / 2 = 125MHz. To reduce power consumption, the VCO frequency should be as low as

possible. For example: 750MHz VCO / 6 / 1 = 125MHz.

Another consideration here is that slightly adjusting the output frequency may allow a much lower VCO frequency to be

achieved, by bringing the output to a closer rational multiple of the input. Indeed the exact desired frequency may not be

exactly achievable with any allowable VCO frequency, or combination of divisors.

SDK provides a Python script that searches for the best VCO and post divider options for a desired output frequency:

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/scripts/vcocalc.py

 1 #!/usr/bin/env python3
 2
 3 import argparse
 4
 5 parser = argparse.ArgumentParser(description="PLL parameter calculator")
 6 parser.add_argument("--input", "-i", default=12, help="Input (reference) frequency. Default
 12 MHz", type=float)
 7 parser.add_argument("--ref-min", default=5, help="Override minimum reference frequency.
 Default 5 MHz", type=float)
 8 parser.add_argument("--vco-max", default=1600, help="Override maximum VCO frequency. Default
 1600 MHz", type=float)
 9 parser.add_argument("--vco-min", default=750, help="Override minimum VCO frequency. Default
 750 MHz", type=float)
10 parser.add_argument("--low-vco", "-l", action="store_true", help="Use a lower VCO frequency
 when possible. This reduces power consumption, at the cost of increased jitter")
11 parser.add_argument("output", help="Output frequency in MHz.", type=float)
12 args = parser.parse_args()
13
14 # Fixed hardware parameters
15 fbdiv_range = range(16, 320 + 1)
16 postdiv_range = range(1, 7 + 1)
17 ref_min = 5
18 refdiv_min = 1
19 refdiv_max = 63
20
21 refdiv_range = range(refdiv_min, max(refdiv_min, min(refdiv_max, int(args.input / args
 .ref_min))) + 1)
22
23 best = (0, 0, 0, 0, 0)
24 best_margin = args.output
25
26 for refdiv in refdiv_range:
27 for fbdiv in (fbdiv_range if args.low_vco else reversed(fbdiv_range)):
28 vco = args.input / refdiv * fbdiv
29 if vco < args.vco_min or vco > args.vco_max:
30 continue
31 # pd1 is inner loop so that we prefer higher ratios of pd1:pd2
32 for pd2 in postdiv_range:
33 for pd1 in postdiv_range:
34 out = vco / pd1 / pd2
35 margin = abs(out - args.output)
36 if margin < best_margin:
37 best = (out, fbdiv, pd1, pd2, refdiv)
38 best_margin = margin
39
40 print("Requested: {} MHz".format(args.output))
41 print("Achieved: {} MHz".format(best[0]))
42 print("REFDIV: {}".format(best[4]))
43 print("FBDIV: {} (VCO = {} MHz)".format(best[1], args.input / best[4] * best[1]))
44 print("PD1: {}".format(best[2]))

RP2040 Datasheet

2.18. PLL 230

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/scripts/vcocalc.py

45 print("PD2: {}".format(best[3]))

Given an input and output frequency, this script will find the best possible set of PLL parameters to get as close as

possible. Where multiple equally good combinations are found, it returns the parameters which yield the highest VCO

frequency, for best output stability. The -l or --low-vco flag will instead prefer lower frequencies, for reduced power

consumption.

Here a 48MHz output is requested:

$./vcocalc.py 48
Requested: 48.0 MHz
Achieved: 48.0 MHz
FBDIV: 120 (VCO = 1440 MHz)
PD1: 6
PD2: 5

Asking for a 48MHz output with a lower VCO frequency, if possible:

$./vcocalc.py -l 48
Requested: 48.0 MHz
Achieved: 48.0 MHz
FBDIV: 64 (VCO = 768 MHz)
PD1: 4
PD2: 4

For a 125MHz system clock with a 12MHz input, the minimum VCO frequency is quite high.

$./vcocalc.py -l 125
Requested: 125.0 MHz
Achieved: 125.0 MHz
FBDIV: 125 (VCO = 1500 MHz)
PD1: 6
PD2: 2

We can restrict the search to lower VCO frequencies, so that the script will consider looser frequency matches. Note

that, whilst a 750MHz VCO would be ideal here, we can’t achieve exactly 750MHz by multiplying the 12MHz input by an

integer, which is why the previous invocation returned such a high VCO frequency.

$./vcocalc.py -l 125 --vco-max 800
Requested: 125.0 MHz
Achieved: 126.0 MHz
FBDIV: 63 (VCO = 756 MHz)
PD1: 6
PD2: 1

A 126MHz system clock may be a tolerable deviation from the desired 125MHz, and generating this clock consumes

less power at the PLL.

RP2040 Datasheet

2.18. PLL 231

2.18.3. Configuration

The SDK uses the following PLL settings:

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/include/hardware/clocks.h Lines 93 - 110

 93 //
 94 // There are two PLLs in RP2040:
 95 // 1. The 'SYS PLL' generates the 125MHz system clock, the frequency is defined by
 `SYS_CLK_KHZ`.
 96 // 2. The 'USB PLL' generates the 48MHz USB clock, the frequency is defined by `USB_CLK_KHZ`.
 97 //
 98 // The two PLLs use the crystal oscillator output directly as their reference frequency input;
 the PLLs reference
 99 // frequency cannot be reduced by the dividers present in the clocks block. The crystal
 frequency is defined by `XOSC_KHZ` or
100 // `XOSC_MHZ`.
101 //
102 // The system's default definitions are correct for the above frequencies with a 12MHz
103 // crystal frequency. If different frequencies are required, these must be defined in
104 // the board configuration file together with the revised PLL settings
105 // Use `vcocalc.py` to check and calculate new PLL settings if you change any of these
 frequencies.
106 //
107 // Default PLL configuration:
108 // REF FBDIV VCO POSTDIV
109 // PLL SYS: 12 / 1 = 12MHz * 125 = 1500MHz / 6 / 2 = 125MHz
110 // PLL USB: 12 / 1 = 12MHz * 100 = 1200MHz / 5 / 5 = 48MHz

The pll_init function in the SDK, which we will examine below, asserts that all of these conditions are true before

attempting to configure the PLL.

The SDK defines the PLL control registers as a struct. It then maps them into memory for each instance of the PLL.

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_structs/include/hardware/structs/pll.h Lines 24 - 53

24 typedef struct {
25 _REG_(PLL_CS_OFFSET) // PLL_CS
26 // Control and Status
27 // 0x80000000 [31] : LOCK (0): PLL is locked
28 // 0x00000100 [8] : BYPASS (0): Passes the reference clock to the output instead of the
 divided VCO
29 // 0x0000003f [5:0] : REFDIV (1): Divides the PLL input reference clock
30 io_rw_32 cs;
31
32 _REG_(PLL_PWR_OFFSET) // PLL_PWR
33 // Controls the PLL power modes
34 // 0x00000020 [5] : VCOPD (1): PLL VCO powerdown
35 // 0x00000008 [3] : POSTDIVPD (1): PLL post divider powerdown
36 // 0x00000004 [2] : DSMPD (1): PLL DSM powerdown
37 // 0x00000001 [0] : PD (1): PLL powerdown
38 io_rw_32 pwr;
39
40 _REG_(PLL_FBDIV_INT_OFFSET) // PLL_FBDIV_INT
41 // Feedback divisor
42 // 0x00000fff [11:0] : FBDIV_INT (0): see ctrl reg description for constraints
43 io_rw_32 fbdiv_int;
44
45 _REG_(PLL_PRIM_OFFSET) // PLL_PRIM
46 // Controls the PLL post dividers for the primary output
47 // 0x00070000 [18:16] : POSTDIV1 (0x7): divide by 1-7

RP2040 Datasheet

2.18. PLL 232

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/include/hardware/clocks.h#L93-L110
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_structs/include/hardware/structs/pll.h#L24-L53

48 // 0x00007000 [14:12] : POSTDIV2 (0x7): divide by 1-7
49 io_rw_32 prim;
50 } pll_hw_t;
51
52 #define pll_sys_hw ((pll_hw_t *)PLL_SYS_BASE)
53 #define pll_usb_hw ((pll_hw_t *)PLL_USB_BASE)

The SDK defines pll_init which is used to configure, or reconfigure a PLL. It starts by clearing any previous power state

in the PLL, then calculates the appropriate feedback divider value. There are assertions to check these values satisfy the

constraints above.

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_pll/pll.c Lines 13 - 21

13 void pll_init(PLL pll, uint refdiv, uint vco_freq, uint post_div1, uint post_div2) {
14 uint32_t ref_freq = XOSC_KHZ * KHZ / refdiv;
15
16 // Check vco freq is in an acceptable range
17 assert(vco_freq >= (PICO_PLL_VCO_MIN_FREQ_KHZ * KHZ) && vco_freq <=
 (PICO_PLL_VCO_MAX_FREQ_KHZ * KHZ));
18
19 // What are we multiplying the reference clock by to get the vco freq
20 // (The regs are called div, because you divide the vco output and compare it to the
 refclk)
21 uint32_t fbdiv = vco_freq / ref_freq;

The programming sequence for the PLL is as follows:

• Program the reference clock divider (is a divide by 1 in the RP2040 case)

• Program the feedback divider

• Turn on the main power and VCO

• Wait for the VCO to lock (i.e. keep its output frequency stable)

• Set up post dividers and turn them on

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_pll/pll.c Lines 42 - 71

42 if ((pll->cs & PLL_CS_LOCK_BITS) &&
43 (refdiv == (pll->cs & PLL_CS_REFDIV_BITS)) &&
44 (fbdiv == (pll->fbdiv_int & PLL_FBDIV_INT_BITS)) &&
45 (pdiv == (pll->prim & (PLL_PRIM_POSTDIV1_BITS | PLL_PRIM_POSTDIV2_BITS)))) {
46 // do not disrupt PLL that is already correctly configured and operating
47 return;
48 }
49
50 uint32_t pll_reset = (pll_usb_hw == pll) ? RESETS_RESET_PLL_USB_BITS :
 RESETS_RESET_PLL_SYS_BITS;
51 reset_block(pll_reset);
52 unreset_block_wait(pll_reset);
53
54 // Load VCO-related dividers before starting VCO
55 pll->cs = refdiv;
56 pll->fbdiv_int = fbdiv;
57
58 // Turn on PLL
59 uint32_t power = PLL_PWR_PD_BITS | // Main power
60 PLL_PWR_VCOPD_BITS; // VCO Power
61
62 hw_clear_bits(&pll->pwr, power);
63

RP2040 Datasheet

2.18. PLL 233

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_pll/pll.c#L13-L21
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_pll/pll.c#L42-L71

64 // Wait for PLL to lock
65 while (!(pll->cs & PLL_CS_LOCK_BITS)) tight_loop_contents();
66
67 // Set up post dividers
68 pll->prim = pdiv;
69
70 // Turn on post divider
71 hw_clear_bits(&pll->pwr, PLL_PWR_POSTDIVPD_BITS);

Note the VCO is turned on first, followed by the post dividers so the PLL does not output a dirty clock while the VCO is

locking.

2.18.4. List of Registers

The PLL_SYS and PLL_USB registers start at base addresses of 0x40028000 and 0x4002c000 respectively (defined as

PLL_SYS_BASE and PLL_USB_BASE in SDK).

Table 274. List of PLL

registers
Offset Name Info

0x0 CS Control and Status

0x4 PWR Controls the PLL power modes.

0x8 FBDIV_INT Feedback divisor

0xc PRIM Controls the PLL post dividers for the primary output

PLL: CS Register

Offset: 0x0

Description

Control and Status

GENERAL CONSTRAINTS:

Reference clock frequency min=5MHz, max=800MHz

Feedback divider min=16, max=320

VCO frequency min=750MHz, max=1600MHz

Table 275. CS Register
Bits Name Description Type Reset

31 LOCK PLL is locked RO 0x0

30:9 Reserved. - - -

8 BYPASS Passes the reference clock to the output instead of the

divided VCO. The VCO continues to run so the user can

switch between the reference clock and the divided VCO

but the output will glitch when doing so.

RW 0x0

7:6 Reserved. - - -

5:0 REFDIV Divides the PLL input reference clock.

Behaviour is undefined for div=0.

PLL output will be unpredictable during refdiv changes,

wait for lock=1 before using it.

RW 0x01

PLL: PWR Register

Offset: 0x4

RP2040 Datasheet

2.18. PLL 234

Description

Controls the PLL power modes.

Table 276. PWR

Register
Bits Name Description Type Reset

31:6 Reserved. - - -

5 VCOPD PLL VCO powerdown

To save power set high when PLL output not required or

bypass=1.

RW 0x1

4 Reserved. - - -

3 POSTDIVPD PLL post divider powerdown

To save power set high when PLL output not required or

bypass=1.

RW 0x1

2 DSMPD PLL DSM powerdown

Nothing is achieved by setting this low.

RW 0x1

1 Reserved. - - -

0 PD PLL powerdown

To save power set high when PLL output not required.

RW 0x1

PLL: FBDIV_INT Register

Offset: 0x8

Description

Feedback divisor

(note: this PLL does not support fractional division)

Table 277. FBDIV_INT

Register
Bits Description Type Reset

31:12 Reserved. - -

11:0 see ctrl reg description for constraints RW 0x000

PLL: PRIM Register

Offset: 0xc

Description

Controls the PLL post dividers for the primary output

(note: this PLL does not have a secondary output)

the primary output is driven from VCO divided by postdiv1*postdiv2

Table 278. PRIM

Register
Bits Name Description Type Reset

31:19 Reserved. - - -

18:16 POSTDIV1 divide by 1-7 RW 0x7

15 Reserved. - - -

14:12 POSTDIV2 divide by 1-7 RW 0x7

11:0 Reserved. - - -

RP2040 Datasheet

2.18. PLL 235

2.19. GPIO

2.19.1. Overview

RP2040 has 36 multi-functional General Purpose Input / Output (GPIO) pins, divided into two banks. In a typical use

case, the pins in the QSPI bank (QSPI_SS, QSPI_SCLK and QSPI_SD0 to QSPI_SD3) are used to execute code from an

external flash device, leaving the User bank (GPIO0 to GPIO29) for the programmer to use. All GPIOs support digital

input and output, but GPIO26 to GPIO29 can also be used as inputs to the chip’s Analogue to Digital Converter (ADC).

Each GPIO can be controlled directly by software running on the processors, or by a number of other functional blocks.

The User GPIO bank supports the following functions:

• Software control via SIO (Single-Cycle IO) - Section 2.3.1.2, “GPIO Control”

• Programmable IO (PIO) - Chapter 3, PIO

• 2 × SPI - Section 4.4, “SPI”

• 2 × UART - Section 4.2, “UART”

• 2 × I2C (two-wire serial interface) - Section 4.3, “I2C”

• 8 × two-channel PWM - Section 4.5, “PWM”

• 2 × external clock inputs - Section 2.15.2.3, “External Clocks”

• 4 × general purpose clock output - Section 2.15, “Clocks”

• 4 × input to ADC - Section 4.9, “ADC and Temperature Sensor”

• USB VBUS management - Section 4.1.2.8, “VBUS Control”

• External interrupt requests, level or edge-sensitive

The QSPI bank supports the following functions:

• Software control via SIO (Single-Cycle IO) - Section 2.3.1.2, “GPIO Control”

• Flash execute in place (XIP) - Section 2.6.3, “Flash”

The logical structure of an example IO is shown in Figure 36.

RP2040 Datasheet

2.19. GPIO 236

Figure 36. Logical

structure of a GPIO.

Each GPIO can be

controlled by one of a

number of peripherals,

or by software control

registers in the SIO.

The function select

(FSEL) selects which

peripheral output is in

control of the GPIO’s

direction and output

level, and/or which

peripheral input can

see this GPIO’s input

level. These three

signals (output level,

output enable, input

level) can also be

inverted, or forced

high or low, using the

GPIO control registers.

2.19.2. Function Select

The function allocated to each GPIO is selected by writing to the FUNCSEL field in the GPIO’s CTRL register. See

GPIO0_CTRL as an example. The functions available on each IO are shown in Table 279 and Table 281.

Table 279. General

Purpose Input/Output

(GPIO) User Bank

Functions

Function

GPIO F1 F2 F3 F4 F5 F6 F7 F8 F9

0 SPI0 RX UART0 TX I2C0 SDA PWM0 A SIO PIO0 PIO1 USB OVCUR DET

1 SPI0 CSn UART0 RX I2C0 SCL PWM0 B SIO PIO0 PIO1 USB VBUS DET

2 SPI0 SCK UART0 CTS I2C1 SDA PWM1 A SIO PIO0 PIO1 USB VBUS EN

3 SPI0 TX UART0 RTS I2C1 SCL PWM1 B SIO PIO0 PIO1 USB OVCUR DET

4 SPI0 RX UART1 TX I2C0 SDA PWM2 A SIO PIO0 PIO1 USB VBUS DET

5 SPI0 CSn UART1 RX I2C0 SCL PWM2 B SIO PIO0 PIO1 USB VBUS EN

6 SPI0 SCK UART1 CTS I2C1 SDA PWM3 A SIO PIO0 PIO1 USB OVCUR DET

7 SPI0 TX UART1 RTS I2C1 SCL PWM3 B SIO PIO0 PIO1 USB VBUS DET

8 SPI1 RX UART1 TX I2C0 SDA PWM4 A SIO PIO0 PIO1 USB VBUS EN

9 SPI1 CSn UART1 RX I2C0 SCL PWM4 B SIO PIO0 PIO1 USB OVCUR DET

10 SPI1 SCK UART1 CTS I2C1 SDA PWM5 A SIO PIO0 PIO1 USB VBUS DET

11 SPI1 TX UART1 RTS I2C1 SCL PWM5 B SIO PIO0 PIO1 USB VBUS EN

12 SPI1 RX UART0 TX I2C0 SDA PWM6 A SIO PIO0 PIO1 USB OVCUR DET

13 SPI1 CSn UART0 RX I2C0 SCL PWM6 B SIO PIO0 PIO1 USB VBUS DET

14 SPI1 SCK UART0 CTS I2C1 SDA PWM7 A SIO PIO0 PIO1 USB VBUS EN

15 SPI1 TX UART0 RTS I2C1 SCL PWM7 B SIO PIO0 PIO1 USB OVCUR DET

16 SPI0 RX UART0 TX I2C0 SDA PWM0 A SIO PIO0 PIO1 USB VBUS DET

17 SPI0 CSn UART0 RX I2C0 SCL PWM0 B SIO PIO0 PIO1 USB VBUS EN

18 SPI0 SCK UART0 CTS I2C1 SDA PWM1 A SIO PIO0 PIO1 USB OVCUR DET

19 SPI0 TX UART0 RTS I2C1 SCL PWM1 B SIO PIO0 PIO1 USB VBUS DET

20 SPI0 RX UART1 TX I2C0 SDA PWM2 A SIO PIO0 PIO1 CLOCK GPIN0 USB VBUS EN

RP2040 Datasheet

2.19. GPIO 237

Function

21 SPI0 CSn UART1 RX I2C0 SCL PWM2 B SIO PIO0 PIO1 CLOCK GPOUT0 USB OVCUR DET

22 SPI0 SCK UART1 CTS I2C1 SDA PWM3 A SIO PIO0 PIO1 CLOCK GPIN1 USB VBUS DET

23 SPI0 TX UART1 RTS I2C1 SCL PWM3 B SIO PIO0 PIO1 CLOCK GPOUT1 USB VBUS EN

24 SPI1 RX UART1 TX I2C0 SDA PWM4 A SIO PIO0 PIO1 CLOCK GPOUT2 USB OVCUR DET

25 SPI1 CSn UART1 RX I2C0 SCL PWM4 B SIO PIO0 PIO1 CLOCK GPOUT3 USB VBUS DET

26 SPI1 SCK UART1 CTS I2C1 SDA PWM5 A SIO PIO0 PIO1 USB VBUS EN

27 SPI1 TX UART1 RTS I2C1 SCL PWM5 B SIO PIO0 PIO1 USB OVCUR DET

28 SPI1 RX UART0 TX I2C0 SDA PWM6 A SIO PIO0 PIO1 USB VBUS DET

29 SPI1 CSn UART0 RX I2C0 SCL PWM6 B SIO PIO0 PIO1 USB VBUS EN

Each GPIO can have one function selected at a time. Likewise, each peripheral input (e.g. UART0 RX) should only be

selected on one GPIO at a time. If the same peripheral input is connected to multiple GPIOs, the peripheral sees the

logical OR of these GPIO inputs.

Table 280. GPIO User

Bank function

descriptions

Function Name Description

SPIx Connect one of the internal PL022 SPI peripherals to GPIO

UARTx Connect one of the internal PL011 UART peripherals to GPIO

I2Cx Connect one of the internal DW I2C peripherals to GPIO

PWMx A/B Connect a PWM slice to GPIO. There are eight PWM slices, each with two output

channels (A/B). The B pin can also be used as an input, for frequency and duty cycle

measurement.

SIO Software control of GPIO, from the single-cycle IO (SIO) block. The SIO function (F5)

must be selected for the processors to drive a GPIO, but the input is always connected,

so software can check the state of GPIOs at any time.

PIOx Connect one of the programmable IO blocks (PIO) to GPIO. PIO can implement a wide

variety of interfaces, and has its own internal pin mapping hardware, allowing flexible

placement of digital interfaces on user bank GPIOs. The PIO function (F6, F7) must be

selected for PIO to drive a GPIO, but the input is always connected, so the PIOs can

always see the state of all pins.

CLOCK GPINx General purpose clock inputs. Can be routed to a number of internal clock domains on

RP2040, e.g. to provide a 1Hz clock for the RTC, or can be connected to an internal

frequency counter.

CLOCK GPOUTx General purpose clock outputs. Can drive a number of internal clocks onto GPIOs, with

optional integer divide.

USB OVCUR DET/VBUS

DET/VBUS EN

USB power control signals to/from the internal USB controller

Table 281. General

Purpose Input/Output

(GPIO) QSPI Bank

Functions

Function

IO F0 F1 F2 F3 F4 F5 F6 F7 F8 F9

QSPI SCK XIP SCK SIO

QSPI CSn XIP CSn SIO

QSPI SD0 XIP SD0 SIO

RP2040 Datasheet

2.19. GPIO 238

Function

QSPI SD1 XIP SD1 SIO

QSPI SD2 XIP SD2 SIO

QSPI SD3 XIP SD3 SIO

Table 282. GPIO QSPI

Bank function

descriptions

Function Name Description

XIP Connection to the synchronous serial interface (SSI) inside the flash execute in place (XIP) subsystem.

This allows processors to execute code directly from an external SPI, Dual-SPI or Quad-SPI flash

SIO Software control of GPIO, from the single-cycle IO (SIO) block. The SIO function (F5) must be selected

for the processors to drive a GPIO, but the input is always connected, so software can check the state

of GPIOs at any time. The QSPI IOs are controlled via the SIO_GPIO_HI_x registers, and are mapped to

register bits in the order SCK, CSn, SD0, SD1, SD2, SD3, starting at the LSB.

The six QSPI Bank GPIO pins are typically used by the XIP peripheral to communicate with an external flash device.

However, there are two scenarios where the pins can be used as software-controlled GPIOs:

• If a SPI or Dual-SPI flash device is used for execute-in-place, then the SD2 and SD3 pins are not used for flash

access, and can be used for other GPIO functions on the circuit board.

• If RP2040 is used in a flashless configuration (USB boot only), then all six pins can be used for software-controlled

GPIO functions

2.19.3. Interrupts

An interrupt can be generated for every GPIO pin in four scenarios:

• Level High: the GPIO pin is a logical 1

• Level Low: the GPIO pin is a logical 0

• Edge High: the GPIO has transitioned from a logical 0 to a logical 1

• Edge Low: the GPIO has transitioned from a logical 1 to a logical 0

The level interrupts are not latched. This means that if the pin is a logical 1 and the level high interrupt is active, it will

become inactive as soon as the pin changes to a logical 0. The edge interrupts are stored in the INTR register and can be

cleared by writing to the INTR register.

There are enable, status, and force registers for three interrupt destinations: proc 0, proc 1, and dormant_wake. For proc

0 the registers are enable (PROC0_INTE0), status (PROC0_INTS0), and force (PROC0_INTF0). Dormant wake is used to

wake the ROSC or XOSC up from dormant mode. See Section 2.11.5.2 for more information on dormant mode.

All interrupts are ORed together per-bank per-destination resulting in a total of six GPIO interrupts:

• IO bank 0 to dormant wake

• IO bank 0 to proc 0

• IO bank 0 to proc 1

• IO QSPI to dormant wake

• IO QSPI to proc 0

• IO QSPI to proc 1

This means the user can watch for several GPIO events at once.

RP2040 Datasheet

2.19. GPIO 239

2.19.4. Pads

Each GPIO is connected to the off-chip world via a "pad". Pads are the electrical interface between the chip’s internal

logic and external circuitry. They translate signal voltage levels, support higher currents and offer some protection

against electrostatic discharge (ESD) events. Pad electrical behaviour can be adjusted to meet the requirements of the

external circuitry. The following adjustments are available:

• Output drive strength can be set to 2mA, 4mA, 8mA or 12mA

• Output slew rate can be set to slow or fast

• Input hysteresis (schmitt trigger mode) can be enabled

• A pull-up or pull-down can be enabled, to set the output signal level when the output driver is disabled

• The input buffer can be disabled, to reduce current consumption when the pad is unused, unconnected or

connected to an analogue signal.

An example pad is shown in Figure 37.

PAD

GPIO

Muxing

Slew Rate

Output Enable

Output Data

Drive Strength

Input Enable

Input Data

Schmitt Trigger

Pull-Up / Pull-Down

2

2

Figure 37. Diagram of

a single IO pad.

The pad’s Output Enable, Output Data and Input Data ports are connected, via the IO mux, to the function controlling the

pad. All other ports are controlled from the pad control register. The register also allows the pad’s output driver to be

disabled, by overriding the Output Enable signal from the function controlling the pad. See GPIO0 for an example of a

pad control register.

Both the output signal level and acceptable input signal level at the pad are determined by the digital IO supply (IOVDD).

IOVDD can be any nominal voltage between 1.8V and 3.3V, but to meet specification when powered at 1.8V, the pad

input thresholds must be adjusted by writing a 1 to the pad VOLTAGE_SELECT registers. By default the pad input thresholds

are valid for an IOVDD voltage between 2.5V and 3.3V. Using a voltage of 1.8V with the default input thresholds is a safe

operating mode, though it will result in input thresholds that don’t meet specification.

 WARNING

Using IOVDD voltages greater than 1.8V, with the input thresholds set for 1.8V may result in damage to the chip.

Pad input threshold are adjusted on a per bank basis, with separate VOLTAGE_SELECT registers for the pads associated with

the User IO bank (IO Bank 0) and the QSPI IO bank. However, both banks share the same digital IO supply (IOVDD), so

both register should always be set to the same value.

Pad register details are available in Section 2.19.6.3, “Pad Control - User Bank” and Section 2.19.6.4, “Pad Control - QSPI

Bank”.

2.19.5. Software Examples

RP2040 Datasheet

2.19. GPIO 240

2.19.5.1. Select an IO function

An IO pin can perform many different functions and must be configured before use. For example, you may want it to be

a UART_TX pin, or a PWM output. The SDK provides gpio_set_function for this purpose. Many SDK examples will call

gpio_set_function at the beginning so that it can print to a UART.

The SDK starts by defining a structure to represent the registers of IO bank 0, the User IO bank. Each IO has a status

register, followed by a control register. There are 30 IOs, so the structure containing a status and control register is

instantiated as io[30] to repeat it 30 times.

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_structs/include/hardware/structs/iobank0.h Lines 163 - 211

163 typedef struct {
164 iobank0_status_ctrl_hw_t io[NUM_BANK0_GPIOS]; // 30
165
166 _REG_(IO_BANK0_INTR0_OFFSET) // IO_BANK0_INTR0
167 // (Description copied from array index 0 register IO_BANK0_INTR0 applies similarly to
 other array indexes)
168 //
169 // Raw Interrupts
170 // 0x80000000 [31] : GPIO7_EDGE_HIGH (0)
171 // 0x40000000 [30] : GPIO7_EDGE_LOW (0)
172 // 0x20000000 [29] : GPIO7_LEVEL_HIGH (0)
173 // 0x10000000 [28] : GPIO7_LEVEL_LOW (0)
174 // 0x08000000 [27] : GPIO6_EDGE_HIGH (0)
175 // 0x04000000 [26] : GPIO6_EDGE_LOW (0)
176 // 0x02000000 [25] : GPIO6_LEVEL_HIGH (0)
177 // 0x01000000 [24] : GPIO6_LEVEL_LOW (0)
178 // 0x00800000 [23] : GPIO5_EDGE_HIGH (0)
179 // 0x00400000 [22] : GPIO5_EDGE_LOW (0)
180 // 0x00200000 [21] : GPIO5_LEVEL_HIGH (0)
181 // 0x00100000 [20] : GPIO5_LEVEL_LOW (0)
182 // 0x00080000 [19] : GPIO4_EDGE_HIGH (0)
183 // 0x00040000 [18] : GPIO4_EDGE_LOW (0)
184 // 0x00020000 [17] : GPIO4_LEVEL_HIGH (0)
185 // 0x00010000 [16] : GPIO4_LEVEL_LOW (0)
186 // 0x00008000 [15] : GPIO3_EDGE_HIGH (0)
187 // 0x00004000 [14] : GPIO3_EDGE_LOW (0)
188 // 0x00002000 [13] : GPIO3_LEVEL_HIGH (0)
189 // 0x00001000 [12] : GPIO3_LEVEL_LOW (0)
190 // 0x00000800 [11] : GPIO2_EDGE_HIGH (0)
191 // 0x00000400 [10] : GPIO2_EDGE_LOW (0)
192 // 0x00000200 [9] : GPIO2_LEVEL_HIGH (0)
193 // 0x00000100 [8] : GPIO2_LEVEL_LOW (0)
194 // 0x00000080 [7] : GPIO1_EDGE_HIGH (0)
195 // 0x00000040 [6] : GPIO1_EDGE_LOW (0)
196 // 0x00000020 [5] : GPIO1_LEVEL_HIGH (0)
197 // 0x00000010 [4] : GPIO1_LEVEL_LOW (0)
198 // 0x00000008 [3] : GPIO0_EDGE_HIGH (0)
199 // 0x00000004 [2] : GPIO0_EDGE_LOW (0)
200 // 0x00000002 [1] : GPIO0_LEVEL_HIGH (0)
201 // 0x00000001 [0] : GPIO0_LEVEL_LOW (0)
202 io_rw_32 intr[4];
203
204 io_irq_ctrl_hw_t proc0_irq_ctrl;
205
206 io_irq_ctrl_hw_t proc1_irq_ctrl;
207
208 io_irq_ctrl_hw_t dormant_wake_irq_ctrl;
209 } iobank0_hw_t;
210
211 #define iobank0_hw ((iobank0_hw_t *)IO_BANK0_BASE)

RP2040 Datasheet

2.19. GPIO 241

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_structs/include/hardware/structs/iobank0.h#L163-L211

A similar structure is defined for the pad control registers for IO bank 1. By default, all pads come out of reset ready to

use, with their input enabled and output disable set to 0. Regardless, gpio_set_function in the SDK sets these to make

sure the pad is ready to use by the selected function. Finally, the desired function select is written to the IO control

register (see GPIO0_CTRL for an example of an IO control register).

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/gpio.c Lines 30 - 43

30 // Select function for this GPIO, and ensure input/output are enabled at the pad.
31 // This also clears the input/output/irq override bits.
32 void gpio_set_function(uint gpio, enum gpio_function fn) {
33 check_gpio_param(gpio);
34 invalid_params_if(GPIO, ((uint32_t)fn << IO_BANK0_GPIO0_CTRL_FUNCSEL_LSB) &
 ~IO_BANK0_GPIO0_CTRL_FUNCSEL_BITS);
35 // Set input enable on, output disable off
36 hw_write_masked(&padsbank0_hw->io[gpio],
37 PADS_BANK0_GPIO0_IE_BITS,
38 PADS_BANK0_GPIO0_IE_BITS | PADS_BANK0_GPIO0_OD_BITS
39);
40 // Zero all fields apart from fsel; we want this IO to do what the peripheral tells it.
41 // This doesn't affect e.g. pullup/pulldown, as these are in pad controls.
42 iobank0_hw->io[gpio].ctrl = fn << IO_BANK0_GPIO0_CTRL_FUNCSEL_LSB;
43 }

2.19.5.2. Enable a GPIO interrupt

The SDK provides a method of being interrupted when a GPIO pin changes state:

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/gpio.c Lines 176 - 182

176 void gpio_set_irq_enabled(uint gpio, uint32_t events, bool enabled) {
177 // Separate mask/force/status per-core, so check which core called, and
178 // set the relevant IRQ controls.
179 io_irq_ctrl_hw_t *irq_ctrl_base = get_core_num() ?
180 &iobank0_hw->proc1_irq_ctrl : &iobank0_hw-
 >proc0_irq_ctrl;
181 _gpio_set_irq_enabled(gpio, events, enabled, irq_ctrl_base);
182 }

gpio_set_irq_enabled uses a lower level function _gpio_set_irq_enabled:

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/gpio.c Lines 163 - 174

163 static void _gpio_set_irq_enabled(uint gpio, uint32_t events, bool enabled, io_irq_ctrl_hw_t
 *irq_ctrl_base) {
164 // Clear stale events which might cause immediate spurious handler entry
165 gpio_acknowledge_irq(gpio, events);
166
167 io_rw_32 *en_reg = &irq_ctrl_base->inte[gpio / 8];
168 events <<= 4 * (gpio % 8);
169
170 if (enabled)
171 hw_set_bits(en_reg, events);
172 else
173 hw_clear_bits(en_reg, events);
174 }

The user provides a pointer to a callback function that is called when the GPIO event happens. An example application

RP2040 Datasheet

2.19. GPIO 242

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/gpio.c#L30-L43
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/gpio.c#L176-L182
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/gpio.c#L163-L174

that uses this system is hello_gpio_irq:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/gpio/hello_gpio_irq/hello_gpio_irq.c

 1 /**
 2 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
 3 *
 4 * SPDX-License-Identifier: BSD-3-Clause
 5 */
 6
 7 #include <stdio.h>
 8 #include "pico/stdlib.h"
 9 #include "hardware/gpio.h"
10
11 static char event_str[128];
12
13 void gpio_event_string(char *buf, uint32_t events);
14
15 void gpio_callback(uint gpio, uint32_t events) {
16 // Put the GPIO event(s) that just happened into event_str
17 // so we can print it
18 gpio_event_string(event_str, events);
19 printf("GPIO %d %s\n", gpio, event_str);
20 }
21
22 int main() {
23 stdio_init_all();
24
25 printf("Hello GPIO IRQ\n");
26 gpio_set_irq_enabled_with_callback(2, GPIO_IRQ_EDGE_RISE | GPIO_IRQ_EDGE_FALL, true,
 &gpio_callback);
27
28 // Wait forever
29 while (1);
30 }
31
32
33 static const char *gpio_irq_str[] = {
34 "LEVEL_LOW", // 0x1
35 "LEVEL_HIGH", // 0x2
36 "EDGE_FALL", // 0x4
37 "EDGE_RISE" // 0x8
38 };
39
40 void gpio_event_string(char *buf, uint32_t events) {
41 for (uint i = 0; i < 4; i++) {
42 uint mask = (1 << i);
43 if (events & mask) {
44 // Copy this event string into the user string
45 const char *event_str = gpio_irq_str[i];
46 while (*event_str != '\0') {
47 *buf++ = *event_str++;
48 }
49 events &= ~mask;
50
51 // If more events add ", "
52 if (events) {
53 *buf++ = ',';
54 *buf++ = ' ';
55 }
56 }
57 }
58 *buf++ = '\0';

RP2040 Datasheet

2.19. GPIO 243

https://github.com/raspberrypi/pico-examples/blob/master/gpio/hello_gpio_irq/hello_gpio_irq.c

59 }

2.19.6. List of Registers

2.19.6.1. IO - User Bank

The User Bank IO registers start at a base address of 0x40014000 (defined as IO_BANK0_BASE in SDK).

Table 283. List of

IO_BANK0 registers
Offset Name Info

0x000 GPIO0_STATUS GPIO status

0x004 GPIO0_CTRL GPIO control including function select and overrides.

0x008 GPIO1_STATUS GPIO status

0x00c GPIO1_CTRL GPIO control including function select and overrides.

0x010 GPIO2_STATUS GPIO status

0x014 GPIO2_CTRL GPIO control including function select and overrides.

0x018 GPIO3_STATUS GPIO status

0x01c GPIO3_CTRL GPIO control including function select and overrides.

0x020 GPIO4_STATUS GPIO status

0x024 GPIO4_CTRL GPIO control including function select and overrides.

0x028 GPIO5_STATUS GPIO status

0x02c GPIO5_CTRL GPIO control including function select and overrides.

0x030 GPIO6_STATUS GPIO status

0x034 GPIO6_CTRL GPIO control including function select and overrides.

0x038 GPIO7_STATUS GPIO status

0x03c GPIO7_CTRL GPIO control including function select and overrides.

0x040 GPIO8_STATUS GPIO status

0x044 GPIO8_CTRL GPIO control including function select and overrides.

0x048 GPIO9_STATUS GPIO status

0x04c GPIO9_CTRL GPIO control including function select and overrides.

0x050 GPIO10_STATUS GPIO status

0x054 GPIO10_CTRL GPIO control including function select and overrides.

0x058 GPIO11_STATUS GPIO status

0x05c GPIO11_CTRL GPIO control including function select and overrides.

0x060 GPIO12_STATUS GPIO status

0x064 GPIO12_CTRL GPIO control including function select and overrides.

0x068 GPIO13_STATUS GPIO status

0x06c GPIO13_CTRL GPIO control including function select and overrides.

0x070 GPIO14_STATUS GPIO status

RP2040 Datasheet

2.19. GPIO 244

Offset Name Info

0x074 GPIO14_CTRL GPIO control including function select and overrides.

0x078 GPIO15_STATUS GPIO status

0x07c GPIO15_CTRL GPIO control including function select and overrides.

0x080 GPIO16_STATUS GPIO status

0x084 GPIO16_CTRL GPIO control including function select and overrides.

0x088 GPIO17_STATUS GPIO status

0x08c GPIO17_CTRL GPIO control including function select and overrides.

0x090 GPIO18_STATUS GPIO status

0x094 GPIO18_CTRL GPIO control including function select and overrides.

0x098 GPIO19_STATUS GPIO status

0x09c GPIO19_CTRL GPIO control including function select and overrides.

0x0a0 GPIO20_STATUS GPIO status

0x0a4 GPIO20_CTRL GPIO control including function select and overrides.

0x0a8 GPIO21_STATUS GPIO status

0x0ac GPIO21_CTRL GPIO control including function select and overrides.

0x0b0 GPIO22_STATUS GPIO status

0x0b4 GPIO22_CTRL GPIO control including function select and overrides.

0x0b8 GPIO23_STATUS GPIO status

0x0bc GPIO23_CTRL GPIO control including function select and overrides.

0x0c0 GPIO24_STATUS GPIO status

0x0c4 GPIO24_CTRL GPIO control including function select and overrides.

0x0c8 GPIO25_STATUS GPIO status

0x0cc GPIO25_CTRL GPIO control including function select and overrides.

0x0d0 GPIO26_STATUS GPIO status

0x0d4 GPIO26_CTRL GPIO control including function select and overrides.

0x0d8 GPIO27_STATUS GPIO status

0x0dc GPIO27_CTRL GPIO control including function select and overrides.

0x0e0 GPIO28_STATUS GPIO status

0x0e4 GPIO28_CTRL GPIO control including function select and overrides.

0x0e8 GPIO29_STATUS GPIO status

0x0ec GPIO29_CTRL GPIO control including function select and overrides.

0x0f0 INTR0 Raw Interrupts

0x0f4 INTR1 Raw Interrupts

0x0f8 INTR2 Raw Interrupts

0x0fc INTR3 Raw Interrupts

0x100 PROC0_INTE0 Interrupt Enable for proc0

RP2040 Datasheet

2.19. GPIO 245

Offset Name Info

0x104 PROC0_INTE1 Interrupt Enable for proc0

0x108 PROC0_INTE2 Interrupt Enable for proc0

0x10c PROC0_INTE3 Interrupt Enable for proc0

0x110 PROC0_INTF0 Interrupt Force for proc0

0x114 PROC0_INTF1 Interrupt Force for proc0

0x118 PROC0_INTF2 Interrupt Force for proc0

0x11c PROC0_INTF3 Interrupt Force for proc0

0x120 PROC0_INTS0 Interrupt status after masking & forcing for proc0

0x124 PROC0_INTS1 Interrupt status after masking & forcing for proc0

0x128 PROC0_INTS2 Interrupt status after masking & forcing for proc0

0x12c PROC0_INTS3 Interrupt status after masking & forcing for proc0

0x130 PROC1_INTE0 Interrupt Enable for proc1

0x134 PROC1_INTE1 Interrupt Enable for proc1

0x138 PROC1_INTE2 Interrupt Enable for proc1

0x13c PROC1_INTE3 Interrupt Enable for proc1

0x140 PROC1_INTF0 Interrupt Force for proc1

0x144 PROC1_INTF1 Interrupt Force for proc1

0x148 PROC1_INTF2 Interrupt Force for proc1

0x14c PROC1_INTF3 Interrupt Force for proc1

0x150 PROC1_INTS0 Interrupt status after masking & forcing for proc1

0x154 PROC1_INTS1 Interrupt status after masking & forcing for proc1

0x158 PROC1_INTS2 Interrupt status after masking & forcing for proc1

0x15c PROC1_INTS3 Interrupt status after masking & forcing for proc1

0x160 DORMANT_WAKE_INTE0 Interrupt Enable for dormant_wake

0x164 DORMANT_WAKE_INTE1 Interrupt Enable for dormant_wake

0x168 DORMANT_WAKE_INTE2 Interrupt Enable for dormant_wake

0x16c DORMANT_WAKE_INTE3 Interrupt Enable for dormant_wake

0x170 DORMANT_WAKE_INTF0 Interrupt Force for dormant_wake

0x174 DORMANT_WAKE_INTF1 Interrupt Force for dormant_wake

0x178 DORMANT_WAKE_INTF2 Interrupt Force for dormant_wake

0x17c DORMANT_WAKE_INTF3 Interrupt Force for dormant_wake

0x180 DORMANT_WAKE_INTS0 Interrupt status after masking & forcing for dormant_wake

0x184 DORMANT_WAKE_INTS1 Interrupt status after masking & forcing for dormant_wake

0x188 DORMANT_WAKE_INTS2 Interrupt status after masking & forcing for dormant_wake

0x18c DORMANT_WAKE_INTS3 Interrupt status after masking & forcing for dormant_wake

RP2040 Datasheet

2.19. GPIO 246

IO_BANK0: GPIO0_STATUS, GPIO1_STATUS, …, GPIO28_STATUS,

GPIO29_STATUS Registers

Offsets: 0x000, 0x008, …, 0x0e0, 0x0e8

Description

GPIO status

Table 284.

GPIO0_STATUS,

GPIO1_STATUS, …,

GPIO28_STATUS,

GPIO29_STATUS

Registers

Bits Name Description Type Reset

31:27 Reserved. - - -

26 IRQTOPROC interrupt to processors, after override is applied RO 0x0

25 Reserved. - - -

24 IRQFROMPAD interrupt from pad before override is applied RO 0x0

23:20 Reserved. - - -

19 INTOPERI input signal to peripheral, after override is applied RO 0x0

18 Reserved. - - -

17 INFROMPAD input signal from pad, before override is applied RO 0x0

16:14 Reserved. - - -

13 OETOPAD output enable to pad after register override is applied RO 0x0

12 OEFROMPERI output enable from selected peripheral, before register

override is applied

RO 0x0

11:10 Reserved. - - -

9 OUTTOPAD output signal to pad after register override is applied RO 0x0

8 OUTFROMPERI output signal from selected peripheral, before register

override is applied

RO 0x0

7:0 Reserved. - - -

IO_BANK0: GPIO0_CTRL, GPIO1_CTRL, …, GPIO28_CTRL, GPIO29_CTRL

Registers

Offsets: 0x004, 0x00c, …, 0x0e4, 0x0ec

Description

GPIO control including function select and overrides.

Table 285.

GPIO0_CTRL,

GPIO1_CTRL, …,

GPIO28_CTRL,

GPIO29_CTRL

Registers

Bits Name Description Type Reset

31:30 Reserved. - - -

29:28 IRQOVER 0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

RW 0x0

27:18 Reserved. - - -

17:16 INOVER 0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

RW 0x0

RP2040 Datasheet

2.19. GPIO 247

Bits Name Description Type Reset

15:14 Reserved. - - -

13:12 OEOVER 0x0 → drive output enable from peripheral signal selected

by funcsel

0x1 → drive output enable from inverse of peripheral

signal selected by funcsel

0x2 → disable output

0x3 → enable output

RW 0x0

11:10 Reserved. - - -

9:8 OUTOVER 0x0 → drive output from peripheral signal selected by

funcsel

0x1 → drive output from inverse of peripheral signal

selected by funcsel

0x2 → drive output low

0x3 → drive output high

RW 0x0

7:5 Reserved. - - -

4:0 FUNCSEL Function select. 31 == NULL. See GPIO function table for

available functions.

RW 0x1f

IO_BANK0: INTR0 Register

Offset: 0x0f0

Description

Raw Interrupts

Table 286. INTR0

Register
Bits Name Description Type Reset

31 GPIO7_EDGE_HIGH WC 0x0

30 GPIO7_EDGE_LOW WC 0x0

29 GPIO7_LEVEL_HIGH RO 0x0

28 GPIO7_LEVEL_LOW RO 0x0

27 GPIO6_EDGE_HIGH WC 0x0

26 GPIO6_EDGE_LOW WC 0x0

25 GPIO6_LEVEL_HIGH RO 0x0

24 GPIO6_LEVEL_LOW RO 0x0

23 GPIO5_EDGE_HIGH WC 0x0

22 GPIO5_EDGE_LOW WC 0x0

21 GPIO5_LEVEL_HIGH RO 0x0

20 GPIO5_LEVEL_LOW RO 0x0

19 GPIO4_EDGE_HIGH WC 0x0

18 GPIO4_EDGE_LOW WC 0x0

17 GPIO4_LEVEL_HIGH RO 0x0

16 GPIO4_LEVEL_LOW RO 0x0

15 GPIO3_EDGE_HIGH WC 0x0

RP2040 Datasheet

2.19. GPIO 248

Bits Name Description Type Reset

14 GPIO3_EDGE_LOW WC 0x0

13 GPIO3_LEVEL_HIGH RO 0x0

12 GPIO3_LEVEL_LOW RO 0x0

11 GPIO2_EDGE_HIGH WC 0x0

10 GPIO2_EDGE_LOW WC 0x0

9 GPIO2_LEVEL_HIGH RO 0x0

8 GPIO2_LEVEL_LOW RO 0x0

7 GPIO1_EDGE_HIGH WC 0x0

6 GPIO1_EDGE_LOW WC 0x0

5 GPIO1_LEVEL_HIGH RO 0x0

4 GPIO1_LEVEL_LOW RO 0x0

3 GPIO0_EDGE_HIGH WC 0x0

2 GPIO0_EDGE_LOW WC 0x0

1 GPIO0_LEVEL_HIGH RO 0x0

0 GPIO0_LEVEL_LOW RO 0x0

IO_BANK0: INTR1 Register

Offset: 0x0f4

Description

Raw Interrupts

Table 287. INTR1

Register
Bits Name Description Type Reset

31 GPIO15_EDGE_HIGH WC 0x0

30 GPIO15_EDGE_LOW WC 0x0

29 GPIO15_LEVEL_HIGH RO 0x0

28 GPIO15_LEVEL_LOW RO 0x0

27 GPIO14_EDGE_HIGH WC 0x0

26 GPIO14_EDGE_LOW WC 0x0

25 GPIO14_LEVEL_HIGH RO 0x0

24 GPIO14_LEVEL_LOW RO 0x0

23 GPIO13_EDGE_HIGH WC 0x0

22 GPIO13_EDGE_LOW WC 0x0

21 GPIO13_LEVEL_HIGH RO 0x0

20 GPIO13_LEVEL_LOW RO 0x0

19 GPIO12_EDGE_HIGH WC 0x0

18 GPIO12_EDGE_LOW WC 0x0

17 GPIO12_LEVEL_HIGH RO 0x0

RP2040 Datasheet

2.19. GPIO 249

Bits Name Description Type Reset

16 GPIO12_LEVEL_LOW RO 0x0

15 GPIO11_EDGE_HIGH WC 0x0

14 GPIO11_EDGE_LOW WC 0x0

13 GPIO11_LEVEL_HIGH RO 0x0

12 GPIO11_LEVEL_LOW RO 0x0

11 GPIO10_EDGE_HIGH WC 0x0

10 GPIO10_EDGE_LOW WC 0x0

9 GPIO10_LEVEL_HIGH RO 0x0

8 GPIO10_LEVEL_LOW RO 0x0

7 GPIO9_EDGE_HIGH WC 0x0

6 GPIO9_EDGE_LOW WC 0x0

5 GPIO9_LEVEL_HIGH RO 0x0

4 GPIO9_LEVEL_LOW RO 0x0

3 GPIO8_EDGE_HIGH WC 0x0

2 GPIO8_EDGE_LOW WC 0x0

1 GPIO8_LEVEL_HIGH RO 0x0

0 GPIO8_LEVEL_LOW RO 0x0

IO_BANK0: INTR2 Register

Offset: 0x0f8

Description

Raw Interrupts

Table 288. INTR2

Register
Bits Name Description Type Reset

31 GPIO23_EDGE_HIGH WC 0x0

30 GPIO23_EDGE_LOW WC 0x0

29 GPIO23_LEVEL_HIGH RO 0x0

28 GPIO23_LEVEL_LOW RO 0x0

27 GPIO22_EDGE_HIGH WC 0x0

26 GPIO22_EDGE_LOW WC 0x0

25 GPIO22_LEVEL_HIGH RO 0x0

24 GPIO22_LEVEL_LOW RO 0x0

23 GPIO21_EDGE_HIGH WC 0x0

22 GPIO21_EDGE_LOW WC 0x0

21 GPIO21_LEVEL_HIGH RO 0x0

20 GPIO21_LEVEL_LOW RO 0x0

19 GPIO20_EDGE_HIGH WC 0x0

RP2040 Datasheet

2.19. GPIO 250

Bits Name Description Type Reset

18 GPIO20_EDGE_LOW WC 0x0

17 GPIO20_LEVEL_HIGH RO 0x0

16 GPIO20_LEVEL_LOW RO 0x0

15 GPIO19_EDGE_HIGH WC 0x0

14 GPIO19_EDGE_LOW WC 0x0

13 GPIO19_LEVEL_HIGH RO 0x0

12 GPIO19_LEVEL_LOW RO 0x0

11 GPIO18_EDGE_HIGH WC 0x0

10 GPIO18_EDGE_LOW WC 0x0

9 GPIO18_LEVEL_HIGH RO 0x0

8 GPIO18_LEVEL_LOW RO 0x0

7 GPIO17_EDGE_HIGH WC 0x0

6 GPIO17_EDGE_LOW WC 0x0

5 GPIO17_LEVEL_HIGH RO 0x0

4 GPIO17_LEVEL_LOW RO 0x0

3 GPIO16_EDGE_HIGH WC 0x0

2 GPIO16_EDGE_LOW WC 0x0

1 GPIO16_LEVEL_HIGH RO 0x0

0 GPIO16_LEVEL_LOW RO 0x0

IO_BANK0: INTR3 Register

Offset: 0x0fc

Description

Raw Interrupts

Table 289. INTR3

Register
Bits Name Description Type Reset

31:24 Reserved. - - -

23 GPIO29_EDGE_HIGH WC 0x0

22 GPIO29_EDGE_LOW WC 0x0

21 GPIO29_LEVEL_HIGH RO 0x0

20 GPIO29_LEVEL_LOW RO 0x0

19 GPIO28_EDGE_HIGH WC 0x0

18 GPIO28_EDGE_LOW WC 0x0

17 GPIO28_LEVEL_HIGH RO 0x0

16 GPIO28_LEVEL_LOW RO 0x0

15 GPIO27_EDGE_HIGH WC 0x0

14 GPIO27_EDGE_LOW WC 0x0

RP2040 Datasheet

2.19. GPIO 251

Bits Name Description Type Reset

13 GPIO27_LEVEL_HIGH RO 0x0

12 GPIO27_LEVEL_LOW RO 0x0

11 GPIO26_EDGE_HIGH WC 0x0

10 GPIO26_EDGE_LOW WC 0x0

9 GPIO26_LEVEL_HIGH RO 0x0

8 GPIO26_LEVEL_LOW RO 0x0

7 GPIO25_EDGE_HIGH WC 0x0

6 GPIO25_EDGE_LOW WC 0x0

5 GPIO25_LEVEL_HIGH RO 0x0

4 GPIO25_LEVEL_LOW RO 0x0

3 GPIO24_EDGE_HIGH WC 0x0

2 GPIO24_EDGE_LOW WC 0x0

1 GPIO24_LEVEL_HIGH RO 0x0

0 GPIO24_LEVEL_LOW RO 0x0

IO_BANK0: PROC0_INTE0 Register

Offset: 0x100

Description

Interrupt Enable for proc0

Table 290.

PROC0_INTE0 Register
Bits Name Description Type Reset

31 GPIO7_EDGE_HIGH RW 0x0

30 GPIO7_EDGE_LOW RW 0x0

29 GPIO7_LEVEL_HIGH RW 0x0

28 GPIO7_LEVEL_LOW RW 0x0

27 GPIO6_EDGE_HIGH RW 0x0

26 GPIO6_EDGE_LOW RW 0x0

25 GPIO6_LEVEL_HIGH RW 0x0

24 GPIO6_LEVEL_LOW RW 0x0

23 GPIO5_EDGE_HIGH RW 0x0

22 GPIO5_EDGE_LOW RW 0x0

21 GPIO5_LEVEL_HIGH RW 0x0

20 GPIO5_LEVEL_LOW RW 0x0

19 GPIO4_EDGE_HIGH RW 0x0

18 GPIO4_EDGE_LOW RW 0x0

17 GPIO4_LEVEL_HIGH RW 0x0

16 GPIO4_LEVEL_LOW RW 0x0

RP2040 Datasheet

2.19. GPIO 252

Bits Name Description Type Reset

15 GPIO3_EDGE_HIGH RW 0x0

14 GPIO3_EDGE_LOW RW 0x0

13 GPIO3_LEVEL_HIGH RW 0x0

12 GPIO3_LEVEL_LOW RW 0x0

11 GPIO2_EDGE_HIGH RW 0x0

10 GPIO2_EDGE_LOW RW 0x0

9 GPIO2_LEVEL_HIGH RW 0x0

8 GPIO2_LEVEL_LOW RW 0x0

7 GPIO1_EDGE_HIGH RW 0x0

6 GPIO1_EDGE_LOW RW 0x0

5 GPIO1_LEVEL_HIGH RW 0x0

4 GPIO1_LEVEL_LOW RW 0x0

3 GPIO0_EDGE_HIGH RW 0x0

2 GPIO0_EDGE_LOW RW 0x0

1 GPIO0_LEVEL_HIGH RW 0x0

0 GPIO0_LEVEL_LOW RW 0x0

IO_BANK0: PROC0_INTE1 Register

Offset: 0x104

Description

Interrupt Enable for proc0

Table 291.

PROC0_INTE1 Register
Bits Name Description Type Reset

31 GPIO15_EDGE_HIGH RW 0x0

30 GPIO15_EDGE_LOW RW 0x0

29 GPIO15_LEVEL_HIGH RW 0x0

28 GPIO15_LEVEL_LOW RW 0x0

27 GPIO14_EDGE_HIGH RW 0x0

26 GPIO14_EDGE_LOW RW 0x0

25 GPIO14_LEVEL_HIGH RW 0x0

24 GPIO14_LEVEL_LOW RW 0x0

23 GPIO13_EDGE_HIGH RW 0x0

22 GPIO13_EDGE_LOW RW 0x0

21 GPIO13_LEVEL_HIGH RW 0x0

20 GPIO13_LEVEL_LOW RW 0x0

19 GPIO12_EDGE_HIGH RW 0x0

18 GPIO12_EDGE_LOW RW 0x0

RP2040 Datasheet

2.19. GPIO 253

Bits Name Description Type Reset

17 GPIO12_LEVEL_HIGH RW 0x0

16 GPIO12_LEVEL_LOW RW 0x0

15 GPIO11_EDGE_HIGH RW 0x0

14 GPIO11_EDGE_LOW RW 0x0

13 GPIO11_LEVEL_HIGH RW 0x0

12 GPIO11_LEVEL_LOW RW 0x0

11 GPIO10_EDGE_HIGH RW 0x0

10 GPIO10_EDGE_LOW RW 0x0

9 GPIO10_LEVEL_HIGH RW 0x0

8 GPIO10_LEVEL_LOW RW 0x0

7 GPIO9_EDGE_HIGH RW 0x0

6 GPIO9_EDGE_LOW RW 0x0

5 GPIO9_LEVEL_HIGH RW 0x0

4 GPIO9_LEVEL_LOW RW 0x0

3 GPIO8_EDGE_HIGH RW 0x0

2 GPIO8_EDGE_LOW RW 0x0

1 GPIO8_LEVEL_HIGH RW 0x0

0 GPIO8_LEVEL_LOW RW 0x0

IO_BANK0: PROC0_INTE2 Register

Offset: 0x108

Description

Interrupt Enable for proc0

Table 292.

PROC0_INTE2 Register
Bits Name Description Type Reset

31 GPIO23_EDGE_HIGH RW 0x0

30 GPIO23_EDGE_LOW RW 0x0

29 GPIO23_LEVEL_HIGH RW 0x0

28 GPIO23_LEVEL_LOW RW 0x0

27 GPIO22_EDGE_HIGH RW 0x0

26 GPIO22_EDGE_LOW RW 0x0

25 GPIO22_LEVEL_HIGH RW 0x0

24 GPIO22_LEVEL_LOW RW 0x0

23 GPIO21_EDGE_HIGH RW 0x0

22 GPIO21_EDGE_LOW RW 0x0

21 GPIO21_LEVEL_HIGH RW 0x0

20 GPIO21_LEVEL_LOW RW 0x0

RP2040 Datasheet

2.19. GPIO 254

Bits Name Description Type Reset

19 GPIO20_EDGE_HIGH RW 0x0

18 GPIO20_EDGE_LOW RW 0x0

17 GPIO20_LEVEL_HIGH RW 0x0

16 GPIO20_LEVEL_LOW RW 0x0

15 GPIO19_EDGE_HIGH RW 0x0

14 GPIO19_EDGE_LOW RW 0x0

13 GPIO19_LEVEL_HIGH RW 0x0

12 GPIO19_LEVEL_LOW RW 0x0

11 GPIO18_EDGE_HIGH RW 0x0

10 GPIO18_EDGE_LOW RW 0x0

9 GPIO18_LEVEL_HIGH RW 0x0

8 GPIO18_LEVEL_LOW RW 0x0

7 GPIO17_EDGE_HIGH RW 0x0

6 GPIO17_EDGE_LOW RW 0x0

5 GPIO17_LEVEL_HIGH RW 0x0

4 GPIO17_LEVEL_LOW RW 0x0

3 GPIO16_EDGE_HIGH RW 0x0

2 GPIO16_EDGE_LOW RW 0x0

1 GPIO16_LEVEL_HIGH RW 0x0

0 GPIO16_LEVEL_LOW RW 0x0

IO_BANK0: PROC0_INTE3 Register

Offset: 0x10c

Description

Interrupt Enable for proc0

Table 293.

PROC0_INTE3 Register
Bits Name Description Type Reset

31:24 Reserved. - - -

23 GPIO29_EDGE_HIGH RW 0x0

22 GPIO29_EDGE_LOW RW 0x0

21 GPIO29_LEVEL_HIGH RW 0x0

20 GPIO29_LEVEL_LOW RW 0x0

19 GPIO28_EDGE_HIGH RW 0x0

18 GPIO28_EDGE_LOW RW 0x0

17 GPIO28_LEVEL_HIGH RW 0x0

16 GPIO28_LEVEL_LOW RW 0x0

15 GPIO27_EDGE_HIGH RW 0x0

RP2040 Datasheet

2.19. GPIO 255

Bits Name Description Type Reset

14 GPIO27_EDGE_LOW RW 0x0

13 GPIO27_LEVEL_HIGH RW 0x0

12 GPIO27_LEVEL_LOW RW 0x0

11 GPIO26_EDGE_HIGH RW 0x0

10 GPIO26_EDGE_LOW RW 0x0

9 GPIO26_LEVEL_HIGH RW 0x0

8 GPIO26_LEVEL_LOW RW 0x0

7 GPIO25_EDGE_HIGH RW 0x0

6 GPIO25_EDGE_LOW RW 0x0

5 GPIO25_LEVEL_HIGH RW 0x0

4 GPIO25_LEVEL_LOW RW 0x0

3 GPIO24_EDGE_HIGH RW 0x0

2 GPIO24_EDGE_LOW RW 0x0

1 GPIO24_LEVEL_HIGH RW 0x0

0 GPIO24_LEVEL_LOW RW 0x0

IO_BANK0: PROC0_INTF0 Register

Offset: 0x110

Description

Interrupt Force for proc0

Table 294.

PROC0_INTF0 Register
Bits Name Description Type Reset

31 GPIO7_EDGE_HIGH RW 0x0

30 GPIO7_EDGE_LOW RW 0x0

29 GPIO7_LEVEL_HIGH RW 0x0

28 GPIO7_LEVEL_LOW RW 0x0

27 GPIO6_EDGE_HIGH RW 0x0

26 GPIO6_EDGE_LOW RW 0x0

25 GPIO6_LEVEL_HIGH RW 0x0

24 GPIO6_LEVEL_LOW RW 0x0

23 GPIO5_EDGE_HIGH RW 0x0

22 GPIO5_EDGE_LOW RW 0x0

21 GPIO5_LEVEL_HIGH RW 0x0

20 GPIO5_LEVEL_LOW RW 0x0

19 GPIO4_EDGE_HIGH RW 0x0

18 GPIO4_EDGE_LOW RW 0x0

17 GPIO4_LEVEL_HIGH RW 0x0

RP2040 Datasheet

2.19. GPIO 256

Bits Name Description Type Reset

16 GPIO4_LEVEL_LOW RW 0x0

15 GPIO3_EDGE_HIGH RW 0x0

14 GPIO3_EDGE_LOW RW 0x0

13 GPIO3_LEVEL_HIGH RW 0x0

12 GPIO3_LEVEL_LOW RW 0x0

11 GPIO2_EDGE_HIGH RW 0x0

10 GPIO2_EDGE_LOW RW 0x0

9 GPIO2_LEVEL_HIGH RW 0x0

8 GPIO2_LEVEL_LOW RW 0x0

7 GPIO1_EDGE_HIGH RW 0x0

6 GPIO1_EDGE_LOW RW 0x0

5 GPIO1_LEVEL_HIGH RW 0x0

4 GPIO1_LEVEL_LOW RW 0x0

3 GPIO0_EDGE_HIGH RW 0x0

2 GPIO0_EDGE_LOW RW 0x0

1 GPIO0_LEVEL_HIGH RW 0x0

0 GPIO0_LEVEL_LOW RW 0x0

IO_BANK0: PROC0_INTF1 Register

Offset: 0x114

Description

Interrupt Force for proc0

Table 295.

PROC0_INTF1 Register
Bits Name Description Type Reset

31 GPIO15_EDGE_HIGH RW 0x0

30 GPIO15_EDGE_LOW RW 0x0

29 GPIO15_LEVEL_HIGH RW 0x0

28 GPIO15_LEVEL_LOW RW 0x0

27 GPIO14_EDGE_HIGH RW 0x0

26 GPIO14_EDGE_LOW RW 0x0

25 GPIO14_LEVEL_HIGH RW 0x0

24 GPIO14_LEVEL_LOW RW 0x0

23 GPIO13_EDGE_HIGH RW 0x0

22 GPIO13_EDGE_LOW RW 0x0

21 GPIO13_LEVEL_HIGH RW 0x0

20 GPIO13_LEVEL_LOW RW 0x0

19 GPIO12_EDGE_HIGH RW 0x0

RP2040 Datasheet

2.19. GPIO 257

Bits Name Description Type Reset

18 GPIO12_EDGE_LOW RW 0x0

17 GPIO12_LEVEL_HIGH RW 0x0

16 GPIO12_LEVEL_LOW RW 0x0

15 GPIO11_EDGE_HIGH RW 0x0

14 GPIO11_EDGE_LOW RW 0x0

13 GPIO11_LEVEL_HIGH RW 0x0

12 GPIO11_LEVEL_LOW RW 0x0

11 GPIO10_EDGE_HIGH RW 0x0

10 GPIO10_EDGE_LOW RW 0x0

9 GPIO10_LEVEL_HIGH RW 0x0

8 GPIO10_LEVEL_LOW RW 0x0

7 GPIO9_EDGE_HIGH RW 0x0

6 GPIO9_EDGE_LOW RW 0x0

5 GPIO9_LEVEL_HIGH RW 0x0

4 GPIO9_LEVEL_LOW RW 0x0

3 GPIO8_EDGE_HIGH RW 0x0

2 GPIO8_EDGE_LOW RW 0x0

1 GPIO8_LEVEL_HIGH RW 0x0

0 GPIO8_LEVEL_LOW RW 0x0

IO_BANK0: PROC0_INTF2 Register

Offset: 0x118

Description

Interrupt Force for proc0

Table 296.

PROC0_INTF2 Register
Bits Name Description Type Reset

31 GPIO23_EDGE_HIGH RW 0x0

30 GPIO23_EDGE_LOW RW 0x0

29 GPIO23_LEVEL_HIGH RW 0x0

28 GPIO23_LEVEL_LOW RW 0x0

27 GPIO22_EDGE_HIGH RW 0x0

26 GPIO22_EDGE_LOW RW 0x0

25 GPIO22_LEVEL_HIGH RW 0x0

24 GPIO22_LEVEL_LOW RW 0x0

23 GPIO21_EDGE_HIGH RW 0x0

22 GPIO21_EDGE_LOW RW 0x0

21 GPIO21_LEVEL_HIGH RW 0x0

RP2040 Datasheet

2.19. GPIO 258

Bits Name Description Type Reset

20 GPIO21_LEVEL_LOW RW 0x0

19 GPIO20_EDGE_HIGH RW 0x0

18 GPIO20_EDGE_LOW RW 0x0

17 GPIO20_LEVEL_HIGH RW 0x0

16 GPIO20_LEVEL_LOW RW 0x0

15 GPIO19_EDGE_HIGH RW 0x0

14 GPIO19_EDGE_LOW RW 0x0

13 GPIO19_LEVEL_HIGH RW 0x0

12 GPIO19_LEVEL_LOW RW 0x0

11 GPIO18_EDGE_HIGH RW 0x0

10 GPIO18_EDGE_LOW RW 0x0

9 GPIO18_LEVEL_HIGH RW 0x0

8 GPIO18_LEVEL_LOW RW 0x0

7 GPIO17_EDGE_HIGH RW 0x0

6 GPIO17_EDGE_LOW RW 0x0

5 GPIO17_LEVEL_HIGH RW 0x0

4 GPIO17_LEVEL_LOW RW 0x0

3 GPIO16_EDGE_HIGH RW 0x0

2 GPIO16_EDGE_LOW RW 0x0

1 GPIO16_LEVEL_HIGH RW 0x0

0 GPIO16_LEVEL_LOW RW 0x0

IO_BANK0: PROC0_INTF3 Register

Offset: 0x11c

Description

Interrupt Force for proc0

Table 297.

PROC0_INTF3 Register
Bits Name Description Type Reset

31:24 Reserved. - - -

23 GPIO29_EDGE_HIGH RW 0x0

22 GPIO29_EDGE_LOW RW 0x0

21 GPIO29_LEVEL_HIGH RW 0x0

20 GPIO29_LEVEL_LOW RW 0x0

19 GPIO28_EDGE_HIGH RW 0x0

18 GPIO28_EDGE_LOW RW 0x0

17 GPIO28_LEVEL_HIGH RW 0x0

16 GPIO28_LEVEL_LOW RW 0x0

RP2040 Datasheet

2.19. GPIO 259

Bits Name Description Type Reset

15 GPIO27_EDGE_HIGH RW 0x0

14 GPIO27_EDGE_LOW RW 0x0

13 GPIO27_LEVEL_HIGH RW 0x0

12 GPIO27_LEVEL_LOW RW 0x0

11 GPIO26_EDGE_HIGH RW 0x0

10 GPIO26_EDGE_LOW RW 0x0

9 GPIO26_LEVEL_HIGH RW 0x0

8 GPIO26_LEVEL_LOW RW 0x0

7 GPIO25_EDGE_HIGH RW 0x0

6 GPIO25_EDGE_LOW RW 0x0

5 GPIO25_LEVEL_HIGH RW 0x0

4 GPIO25_LEVEL_LOW RW 0x0

3 GPIO24_EDGE_HIGH RW 0x0

2 GPIO24_EDGE_LOW RW 0x0

1 GPIO24_LEVEL_HIGH RW 0x0

0 GPIO24_LEVEL_LOW RW 0x0

IO_BANK0: PROC0_INTS0 Register

Offset: 0x120

Description

Interrupt status after masking & forcing for proc0

Table 298.

PROC0_INTS0

Register

Bits Name Description Type Reset

31 GPIO7_EDGE_HIGH RO 0x0

30 GPIO7_EDGE_LOW RO 0x0

29 GPIO7_LEVEL_HIGH RO 0x0

28 GPIO7_LEVEL_LOW RO 0x0

27 GPIO6_EDGE_HIGH RO 0x0

26 GPIO6_EDGE_LOW RO 0x0

25 GPIO6_LEVEL_HIGH RO 0x0

24 GPIO6_LEVEL_LOW RO 0x0

23 GPIO5_EDGE_HIGH RO 0x0

22 GPIO5_EDGE_LOW RO 0x0

21 GPIO5_LEVEL_HIGH RO 0x0

20 GPIO5_LEVEL_LOW RO 0x0

19 GPIO4_EDGE_HIGH RO 0x0

18 GPIO4_EDGE_LOW RO 0x0

RP2040 Datasheet

2.19. GPIO 260

Bits Name Description Type Reset

17 GPIO4_LEVEL_HIGH RO 0x0

16 GPIO4_LEVEL_LOW RO 0x0

15 GPIO3_EDGE_HIGH RO 0x0

14 GPIO3_EDGE_LOW RO 0x0

13 GPIO3_LEVEL_HIGH RO 0x0

12 GPIO3_LEVEL_LOW RO 0x0

11 GPIO2_EDGE_HIGH RO 0x0

10 GPIO2_EDGE_LOW RO 0x0

9 GPIO2_LEVEL_HIGH RO 0x0

8 GPIO2_LEVEL_LOW RO 0x0

7 GPIO1_EDGE_HIGH RO 0x0

6 GPIO1_EDGE_LOW RO 0x0

5 GPIO1_LEVEL_HIGH RO 0x0

4 GPIO1_LEVEL_LOW RO 0x0

3 GPIO0_EDGE_HIGH RO 0x0

2 GPIO0_EDGE_LOW RO 0x0

1 GPIO0_LEVEL_HIGH RO 0x0

0 GPIO0_LEVEL_LOW RO 0x0

IO_BANK0: PROC0_INTS1 Register

Offset: 0x124

Description

Interrupt status after masking & forcing for proc0

Table 299.

PROC0_INTS1

Register

Bits Name Description Type Reset

31 GPIO15_EDGE_HIGH RO 0x0

30 GPIO15_EDGE_LOW RO 0x0

29 GPIO15_LEVEL_HIGH RO 0x0

28 GPIO15_LEVEL_LOW RO 0x0

27 GPIO14_EDGE_HIGH RO 0x0

26 GPIO14_EDGE_LOW RO 0x0

25 GPIO14_LEVEL_HIGH RO 0x0

24 GPIO14_LEVEL_LOW RO 0x0

23 GPIO13_EDGE_HIGH RO 0x0

22 GPIO13_EDGE_LOW RO 0x0

21 GPIO13_LEVEL_HIGH RO 0x0

20 GPIO13_LEVEL_LOW RO 0x0

RP2040 Datasheet

2.19. GPIO 261

Bits Name Description Type Reset

19 GPIO12_EDGE_HIGH RO 0x0

18 GPIO12_EDGE_LOW RO 0x0

17 GPIO12_LEVEL_HIGH RO 0x0

16 GPIO12_LEVEL_LOW RO 0x0

15 GPIO11_EDGE_HIGH RO 0x0

14 GPIO11_EDGE_LOW RO 0x0

13 GPIO11_LEVEL_HIGH RO 0x0

12 GPIO11_LEVEL_LOW RO 0x0

11 GPIO10_EDGE_HIGH RO 0x0

10 GPIO10_EDGE_LOW RO 0x0

9 GPIO10_LEVEL_HIGH RO 0x0

8 GPIO10_LEVEL_LOW RO 0x0

7 GPIO9_EDGE_HIGH RO 0x0

6 GPIO9_EDGE_LOW RO 0x0

5 GPIO9_LEVEL_HIGH RO 0x0

4 GPIO9_LEVEL_LOW RO 0x0

3 GPIO8_EDGE_HIGH RO 0x0

2 GPIO8_EDGE_LOW RO 0x0

1 GPIO8_LEVEL_HIGH RO 0x0

0 GPIO8_LEVEL_LOW RO 0x0

IO_BANK0: PROC0_INTS2 Register

Offset: 0x128

Description

Interrupt status after masking & forcing for proc0

Table 300.

PROC0_INTS2

Register

Bits Name Description Type Reset

31 GPIO23_EDGE_HIGH RO 0x0

30 GPIO23_EDGE_LOW RO 0x0

29 GPIO23_LEVEL_HIGH RO 0x0

28 GPIO23_LEVEL_LOW RO 0x0

27 GPIO22_EDGE_HIGH RO 0x0

26 GPIO22_EDGE_LOW RO 0x0

25 GPIO22_LEVEL_HIGH RO 0x0

24 GPIO22_LEVEL_LOW RO 0x0

23 GPIO21_EDGE_HIGH RO 0x0

22 GPIO21_EDGE_LOW RO 0x0

RP2040 Datasheet

2.19. GPIO 262

Bits Name Description Type Reset

21 GPIO21_LEVEL_HIGH RO 0x0

20 GPIO21_LEVEL_LOW RO 0x0

19 GPIO20_EDGE_HIGH RO 0x0

18 GPIO20_EDGE_LOW RO 0x0

17 GPIO20_LEVEL_HIGH RO 0x0

16 GPIO20_LEVEL_LOW RO 0x0

15 GPIO19_EDGE_HIGH RO 0x0

14 GPIO19_EDGE_LOW RO 0x0

13 GPIO19_LEVEL_HIGH RO 0x0

12 GPIO19_LEVEL_LOW RO 0x0

11 GPIO18_EDGE_HIGH RO 0x0

10 GPIO18_EDGE_LOW RO 0x0

9 GPIO18_LEVEL_HIGH RO 0x0

8 GPIO18_LEVEL_LOW RO 0x0

7 GPIO17_EDGE_HIGH RO 0x0

6 GPIO17_EDGE_LOW RO 0x0

5 GPIO17_LEVEL_HIGH RO 0x0

4 GPIO17_LEVEL_LOW RO 0x0

3 GPIO16_EDGE_HIGH RO 0x0

2 GPIO16_EDGE_LOW RO 0x0

1 GPIO16_LEVEL_HIGH RO 0x0

0 GPIO16_LEVEL_LOW RO 0x0

IO_BANK0: PROC0_INTS3 Register

Offset: 0x12c

Description

Interrupt status after masking & forcing for proc0

Table 301.

PROC0_INTS3

Register

Bits Name Description Type Reset

31:24 Reserved. - - -

23 GPIO29_EDGE_HIGH RO 0x0

22 GPIO29_EDGE_LOW RO 0x0

21 GPIO29_LEVEL_HIGH RO 0x0

20 GPIO29_LEVEL_LOW RO 0x0

19 GPIO28_EDGE_HIGH RO 0x0

18 GPIO28_EDGE_LOW RO 0x0

17 GPIO28_LEVEL_HIGH RO 0x0

RP2040 Datasheet

2.19. GPIO 263

Bits Name Description Type Reset

16 GPIO28_LEVEL_LOW RO 0x0

15 GPIO27_EDGE_HIGH RO 0x0

14 GPIO27_EDGE_LOW RO 0x0

13 GPIO27_LEVEL_HIGH RO 0x0

12 GPIO27_LEVEL_LOW RO 0x0

11 GPIO26_EDGE_HIGH RO 0x0

10 GPIO26_EDGE_LOW RO 0x0

9 GPIO26_LEVEL_HIGH RO 0x0

8 GPIO26_LEVEL_LOW RO 0x0

7 GPIO25_EDGE_HIGH RO 0x0

6 GPIO25_EDGE_LOW RO 0x0

5 GPIO25_LEVEL_HIGH RO 0x0

4 GPIO25_LEVEL_LOW RO 0x0

3 GPIO24_EDGE_HIGH RO 0x0

2 GPIO24_EDGE_LOW RO 0x0

1 GPIO24_LEVEL_HIGH RO 0x0

0 GPIO24_LEVEL_LOW RO 0x0

IO_BANK0: PROC1_INTE0 Register

Offset: 0x130

Description

Interrupt Enable for proc1

Table 302.

PROC1_INTE0 Register
Bits Name Description Type Reset

31 GPIO7_EDGE_HIGH RW 0x0

30 GPIO7_EDGE_LOW RW 0x0

29 GPIO7_LEVEL_HIGH RW 0x0

28 GPIO7_LEVEL_LOW RW 0x0

27 GPIO6_EDGE_HIGH RW 0x0

26 GPIO6_EDGE_LOW RW 0x0

25 GPIO6_LEVEL_HIGH RW 0x0

24 GPIO6_LEVEL_LOW RW 0x0

23 GPIO5_EDGE_HIGH RW 0x0

22 GPIO5_EDGE_LOW RW 0x0

21 GPIO5_LEVEL_HIGH RW 0x0

20 GPIO5_LEVEL_LOW RW 0x0

19 GPIO4_EDGE_HIGH RW 0x0

RP2040 Datasheet

2.19. GPIO 264

Bits Name Description Type Reset

18 GPIO4_EDGE_LOW RW 0x0

17 GPIO4_LEVEL_HIGH RW 0x0

16 GPIO4_LEVEL_LOW RW 0x0

15 GPIO3_EDGE_HIGH RW 0x0

14 GPIO3_EDGE_LOW RW 0x0

13 GPIO3_LEVEL_HIGH RW 0x0

12 GPIO3_LEVEL_LOW RW 0x0

11 GPIO2_EDGE_HIGH RW 0x0

10 GPIO2_EDGE_LOW RW 0x0

9 GPIO2_LEVEL_HIGH RW 0x0

8 GPIO2_LEVEL_LOW RW 0x0

7 GPIO1_EDGE_HIGH RW 0x0

6 GPIO1_EDGE_LOW RW 0x0

5 GPIO1_LEVEL_HIGH RW 0x0

4 GPIO1_LEVEL_LOW RW 0x0

3 GPIO0_EDGE_HIGH RW 0x0

2 GPIO0_EDGE_LOW RW 0x0

1 GPIO0_LEVEL_HIGH RW 0x0

0 GPIO0_LEVEL_LOW RW 0x0

IO_BANK0: PROC1_INTE1 Register

Offset: 0x134

Description

Interrupt Enable for proc1

Table 303.

PROC1_INTE1 Register
Bits Name Description Type Reset

31 GPIO15_EDGE_HIGH RW 0x0

30 GPIO15_EDGE_LOW RW 0x0

29 GPIO15_LEVEL_HIGH RW 0x0

28 GPIO15_LEVEL_LOW RW 0x0

27 GPIO14_EDGE_HIGH RW 0x0

26 GPIO14_EDGE_LOW RW 0x0

25 GPIO14_LEVEL_HIGH RW 0x0

24 GPIO14_LEVEL_LOW RW 0x0

23 GPIO13_EDGE_HIGH RW 0x0

22 GPIO13_EDGE_LOW RW 0x0

21 GPIO13_LEVEL_HIGH RW 0x0

RP2040 Datasheet

2.19. GPIO 265

Bits Name Description Type Reset

20 GPIO13_LEVEL_LOW RW 0x0

19 GPIO12_EDGE_HIGH RW 0x0

18 GPIO12_EDGE_LOW RW 0x0

17 GPIO12_LEVEL_HIGH RW 0x0

16 GPIO12_LEVEL_LOW RW 0x0

15 GPIO11_EDGE_HIGH RW 0x0

14 GPIO11_EDGE_LOW RW 0x0

13 GPIO11_LEVEL_HIGH RW 0x0

12 GPIO11_LEVEL_LOW RW 0x0

11 GPIO10_EDGE_HIGH RW 0x0

10 GPIO10_EDGE_LOW RW 0x0

9 GPIO10_LEVEL_HIGH RW 0x0

8 GPIO10_LEVEL_LOW RW 0x0

7 GPIO9_EDGE_HIGH RW 0x0

6 GPIO9_EDGE_LOW RW 0x0

5 GPIO9_LEVEL_HIGH RW 0x0

4 GPIO9_LEVEL_LOW RW 0x0

3 GPIO8_EDGE_HIGH RW 0x0

2 GPIO8_EDGE_LOW RW 0x0

1 GPIO8_LEVEL_HIGH RW 0x0

0 GPIO8_LEVEL_LOW RW 0x0

IO_BANK0: PROC1_INTE2 Register

Offset: 0x138

Description

Interrupt Enable for proc1

Table 304.

PROC1_INTE2 Register
Bits Name Description Type Reset

31 GPIO23_EDGE_HIGH RW 0x0

30 GPIO23_EDGE_LOW RW 0x0

29 GPIO23_LEVEL_HIGH RW 0x0

28 GPIO23_LEVEL_LOW RW 0x0

27 GPIO22_EDGE_HIGH RW 0x0

26 GPIO22_EDGE_LOW RW 0x0

25 GPIO22_LEVEL_HIGH RW 0x0

24 GPIO22_LEVEL_LOW RW 0x0

23 GPIO21_EDGE_HIGH RW 0x0

RP2040 Datasheet

2.19. GPIO 266

Bits Name Description Type Reset

22 GPIO21_EDGE_LOW RW 0x0

21 GPIO21_LEVEL_HIGH RW 0x0

20 GPIO21_LEVEL_LOW RW 0x0

19 GPIO20_EDGE_HIGH RW 0x0

18 GPIO20_EDGE_LOW RW 0x0

17 GPIO20_LEVEL_HIGH RW 0x0

16 GPIO20_LEVEL_LOW RW 0x0

15 GPIO19_EDGE_HIGH RW 0x0

14 GPIO19_EDGE_LOW RW 0x0

13 GPIO19_LEVEL_HIGH RW 0x0

12 GPIO19_LEVEL_LOW RW 0x0

11 GPIO18_EDGE_HIGH RW 0x0

10 GPIO18_EDGE_LOW RW 0x0

9 GPIO18_LEVEL_HIGH RW 0x0

8 GPIO18_LEVEL_LOW RW 0x0

7 GPIO17_EDGE_HIGH RW 0x0

6 GPIO17_EDGE_LOW RW 0x0

5 GPIO17_LEVEL_HIGH RW 0x0

4 GPIO17_LEVEL_LOW RW 0x0

3 GPIO16_EDGE_HIGH RW 0x0

2 GPIO16_EDGE_LOW RW 0x0

1 GPIO16_LEVEL_HIGH RW 0x0

0 GPIO16_LEVEL_LOW RW 0x0

IO_BANK0: PROC1_INTE3 Register

Offset: 0x13c

Description

Interrupt Enable for proc1

Table 305.

PROC1_INTE3 Register
Bits Name Description Type Reset

31:24 Reserved. - - -

23 GPIO29_EDGE_HIGH RW 0x0

22 GPIO29_EDGE_LOW RW 0x0

21 GPIO29_LEVEL_HIGH RW 0x0

20 GPIO29_LEVEL_LOW RW 0x0

19 GPIO28_EDGE_HIGH RW 0x0

18 GPIO28_EDGE_LOW RW 0x0

RP2040 Datasheet

2.19. GPIO 267

Bits Name Description Type Reset

17 GPIO28_LEVEL_HIGH RW 0x0

16 GPIO28_LEVEL_LOW RW 0x0

15 GPIO27_EDGE_HIGH RW 0x0

14 GPIO27_EDGE_LOW RW 0x0

13 GPIO27_LEVEL_HIGH RW 0x0

12 GPIO27_LEVEL_LOW RW 0x0

11 GPIO26_EDGE_HIGH RW 0x0

10 GPIO26_EDGE_LOW RW 0x0

9 GPIO26_LEVEL_HIGH RW 0x0

8 GPIO26_LEVEL_LOW RW 0x0

7 GPIO25_EDGE_HIGH RW 0x0

6 GPIO25_EDGE_LOW RW 0x0

5 GPIO25_LEVEL_HIGH RW 0x0

4 GPIO25_LEVEL_LOW RW 0x0

3 GPIO24_EDGE_HIGH RW 0x0

2 GPIO24_EDGE_LOW RW 0x0

1 GPIO24_LEVEL_HIGH RW 0x0

0 GPIO24_LEVEL_LOW RW 0x0

IO_BANK0: PROC1_INTF0 Register

Offset: 0x140

Description

Interrupt Force for proc1

Table 306.

PROC1_INTF0 Register
Bits Name Description Type Reset

31 GPIO7_EDGE_HIGH RW 0x0

30 GPIO7_EDGE_LOW RW 0x0

29 GPIO7_LEVEL_HIGH RW 0x0

28 GPIO7_LEVEL_LOW RW 0x0

27 GPIO6_EDGE_HIGH RW 0x0

26 GPIO6_EDGE_LOW RW 0x0

25 GPIO6_LEVEL_HIGH RW 0x0

24 GPIO6_LEVEL_LOW RW 0x0

23 GPIO5_EDGE_HIGH RW 0x0

22 GPIO5_EDGE_LOW RW 0x0

21 GPIO5_LEVEL_HIGH RW 0x0

20 GPIO5_LEVEL_LOW RW 0x0

RP2040 Datasheet

2.19. GPIO 268

Bits Name Description Type Reset

19 GPIO4_EDGE_HIGH RW 0x0

18 GPIO4_EDGE_LOW RW 0x0

17 GPIO4_LEVEL_HIGH RW 0x0

16 GPIO4_LEVEL_LOW RW 0x0

15 GPIO3_EDGE_HIGH RW 0x0

14 GPIO3_EDGE_LOW RW 0x0

13 GPIO3_LEVEL_HIGH RW 0x0

12 GPIO3_LEVEL_LOW RW 0x0

11 GPIO2_EDGE_HIGH RW 0x0

10 GPIO2_EDGE_LOW RW 0x0

9 GPIO2_LEVEL_HIGH RW 0x0

8 GPIO2_LEVEL_LOW RW 0x0

7 GPIO1_EDGE_HIGH RW 0x0

6 GPIO1_EDGE_LOW RW 0x0

5 GPIO1_LEVEL_HIGH RW 0x0

4 GPIO1_LEVEL_LOW RW 0x0

3 GPIO0_EDGE_HIGH RW 0x0

2 GPIO0_EDGE_LOW RW 0x0

1 GPIO0_LEVEL_HIGH RW 0x0

0 GPIO0_LEVEL_LOW RW 0x0

IO_BANK0: PROC1_INTF1 Register

Offset: 0x144

Description

Interrupt Force for proc1

Table 307.

PROC1_INTF1 Register
Bits Name Description Type Reset

31 GPIO15_EDGE_HIGH RW 0x0

30 GPIO15_EDGE_LOW RW 0x0

29 GPIO15_LEVEL_HIGH RW 0x0

28 GPIO15_LEVEL_LOW RW 0x0

27 GPIO14_EDGE_HIGH RW 0x0

26 GPIO14_EDGE_LOW RW 0x0

25 GPIO14_LEVEL_HIGH RW 0x0

24 GPIO14_LEVEL_LOW RW 0x0

23 GPIO13_EDGE_HIGH RW 0x0

22 GPIO13_EDGE_LOW RW 0x0

RP2040 Datasheet

2.19. GPIO 269

Bits Name Description Type Reset

21 GPIO13_LEVEL_HIGH RW 0x0

20 GPIO13_LEVEL_LOW RW 0x0

19 GPIO12_EDGE_HIGH RW 0x0

18 GPIO12_EDGE_LOW RW 0x0

17 GPIO12_LEVEL_HIGH RW 0x0

16 GPIO12_LEVEL_LOW RW 0x0

15 GPIO11_EDGE_HIGH RW 0x0

14 GPIO11_EDGE_LOW RW 0x0

13 GPIO11_LEVEL_HIGH RW 0x0

12 GPIO11_LEVEL_LOW RW 0x0

11 GPIO10_EDGE_HIGH RW 0x0

10 GPIO10_EDGE_LOW RW 0x0

9 GPIO10_LEVEL_HIGH RW 0x0

8 GPIO10_LEVEL_LOW RW 0x0

7 GPIO9_EDGE_HIGH RW 0x0

6 GPIO9_EDGE_LOW RW 0x0

5 GPIO9_LEVEL_HIGH RW 0x0

4 GPIO9_LEVEL_LOW RW 0x0

3 GPIO8_EDGE_HIGH RW 0x0

2 GPIO8_EDGE_LOW RW 0x0

1 GPIO8_LEVEL_HIGH RW 0x0

0 GPIO8_LEVEL_LOW RW 0x0

IO_BANK0: PROC1_INTF2 Register

Offset: 0x148

Description

Interrupt Force for proc1

Table 308.

PROC1_INTF2 Register
Bits Name Description Type Reset

31 GPIO23_EDGE_HIGH RW 0x0

30 GPIO23_EDGE_LOW RW 0x0

29 GPIO23_LEVEL_HIGH RW 0x0

28 GPIO23_LEVEL_LOW RW 0x0

27 GPIO22_EDGE_HIGH RW 0x0

26 GPIO22_EDGE_LOW RW 0x0

25 GPIO22_LEVEL_HIGH RW 0x0

24 GPIO22_LEVEL_LOW RW 0x0

RP2040 Datasheet

2.19. GPIO 270

Bits Name Description Type Reset

23 GPIO21_EDGE_HIGH RW 0x0

22 GPIO21_EDGE_LOW RW 0x0

21 GPIO21_LEVEL_HIGH RW 0x0

20 GPIO21_LEVEL_LOW RW 0x0

19 GPIO20_EDGE_HIGH RW 0x0

18 GPIO20_EDGE_LOW RW 0x0

17 GPIO20_LEVEL_HIGH RW 0x0

16 GPIO20_LEVEL_LOW RW 0x0

15 GPIO19_EDGE_HIGH RW 0x0

14 GPIO19_EDGE_LOW RW 0x0

13 GPIO19_LEVEL_HIGH RW 0x0

12 GPIO19_LEVEL_LOW RW 0x0

11 GPIO18_EDGE_HIGH RW 0x0

10 GPIO18_EDGE_LOW RW 0x0

9 GPIO18_LEVEL_HIGH RW 0x0

8 GPIO18_LEVEL_LOW RW 0x0

7 GPIO17_EDGE_HIGH RW 0x0

6 GPIO17_EDGE_LOW RW 0x0

5 GPIO17_LEVEL_HIGH RW 0x0

4 GPIO17_LEVEL_LOW RW 0x0

3 GPIO16_EDGE_HIGH RW 0x0

2 GPIO16_EDGE_LOW RW 0x0

1 GPIO16_LEVEL_HIGH RW 0x0

0 GPIO16_LEVEL_LOW RW 0x0

IO_BANK0: PROC1_INTF3 Register

Offset: 0x14c

Description

Interrupt Force for proc1

Table 309.

PROC1_INTF3 Register
Bits Name Description Type Reset

31:24 Reserved. - - -

23 GPIO29_EDGE_HIGH RW 0x0

22 GPIO29_EDGE_LOW RW 0x0

21 GPIO29_LEVEL_HIGH RW 0x0

20 GPIO29_LEVEL_LOW RW 0x0

19 GPIO28_EDGE_HIGH RW 0x0

RP2040 Datasheet

2.19. GPIO 271

Bits Name Description Type Reset

18 GPIO28_EDGE_LOW RW 0x0

17 GPIO28_LEVEL_HIGH RW 0x0

16 GPIO28_LEVEL_LOW RW 0x0

15 GPIO27_EDGE_HIGH RW 0x0

14 GPIO27_EDGE_LOW RW 0x0

13 GPIO27_LEVEL_HIGH RW 0x0

12 GPIO27_LEVEL_LOW RW 0x0

11 GPIO26_EDGE_HIGH RW 0x0

10 GPIO26_EDGE_LOW RW 0x0

9 GPIO26_LEVEL_HIGH RW 0x0

8 GPIO26_LEVEL_LOW RW 0x0

7 GPIO25_EDGE_HIGH RW 0x0

6 GPIO25_EDGE_LOW RW 0x0

5 GPIO25_LEVEL_HIGH RW 0x0

4 GPIO25_LEVEL_LOW RW 0x0

3 GPIO24_EDGE_HIGH RW 0x0

2 GPIO24_EDGE_LOW RW 0x0

1 GPIO24_LEVEL_HIGH RW 0x0

0 GPIO24_LEVEL_LOW RW 0x0

IO_BANK0: PROC1_INTS0 Register

Offset: 0x150

Description

Interrupt status after masking & forcing for proc1

Table 310.

PROC1_INTS0

Register

Bits Name Description Type Reset

31 GPIO7_EDGE_HIGH RO 0x0

30 GPIO7_EDGE_LOW RO 0x0

29 GPIO7_LEVEL_HIGH RO 0x0

28 GPIO7_LEVEL_LOW RO 0x0

27 GPIO6_EDGE_HIGH RO 0x0

26 GPIO6_EDGE_LOW RO 0x0

25 GPIO6_LEVEL_HIGH RO 0x0

24 GPIO6_LEVEL_LOW RO 0x0

23 GPIO5_EDGE_HIGH RO 0x0

22 GPIO5_EDGE_LOW RO 0x0

21 GPIO5_LEVEL_HIGH RO 0x0

RP2040 Datasheet

2.19. GPIO 272

Bits Name Description Type Reset

20 GPIO5_LEVEL_LOW RO 0x0

19 GPIO4_EDGE_HIGH RO 0x0

18 GPIO4_EDGE_LOW RO 0x0

17 GPIO4_LEVEL_HIGH RO 0x0

16 GPIO4_LEVEL_LOW RO 0x0

15 GPIO3_EDGE_HIGH RO 0x0

14 GPIO3_EDGE_LOW RO 0x0

13 GPIO3_LEVEL_HIGH RO 0x0

12 GPIO3_LEVEL_LOW RO 0x0

11 GPIO2_EDGE_HIGH RO 0x0

10 GPIO2_EDGE_LOW RO 0x0

9 GPIO2_LEVEL_HIGH RO 0x0

8 GPIO2_LEVEL_LOW RO 0x0

7 GPIO1_EDGE_HIGH RO 0x0

6 GPIO1_EDGE_LOW RO 0x0

5 GPIO1_LEVEL_HIGH RO 0x0

4 GPIO1_LEVEL_LOW RO 0x0

3 GPIO0_EDGE_HIGH RO 0x0

2 GPIO0_EDGE_LOW RO 0x0

1 GPIO0_LEVEL_HIGH RO 0x0

0 GPIO0_LEVEL_LOW RO 0x0

IO_BANK0: PROC1_INTS1 Register

Offset: 0x154

Description

Interrupt status after masking & forcing for proc1

Table 311.

PROC1_INTS1

Register

Bits Name Description Type Reset

31 GPIO15_EDGE_HIGH RO 0x0

30 GPIO15_EDGE_LOW RO 0x0

29 GPIO15_LEVEL_HIGH RO 0x0

28 GPIO15_LEVEL_LOW RO 0x0

27 GPIO14_EDGE_HIGH RO 0x0

26 GPIO14_EDGE_LOW RO 0x0

25 GPIO14_LEVEL_HIGH RO 0x0

24 GPIO14_LEVEL_LOW RO 0x0

23 GPIO13_EDGE_HIGH RO 0x0

RP2040 Datasheet

2.19. GPIO 273

Bits Name Description Type Reset

22 GPIO13_EDGE_LOW RO 0x0

21 GPIO13_LEVEL_HIGH RO 0x0

20 GPIO13_LEVEL_LOW RO 0x0

19 GPIO12_EDGE_HIGH RO 0x0

18 GPIO12_EDGE_LOW RO 0x0

17 GPIO12_LEVEL_HIGH RO 0x0

16 GPIO12_LEVEL_LOW RO 0x0

15 GPIO11_EDGE_HIGH RO 0x0

14 GPIO11_EDGE_LOW RO 0x0

13 GPIO11_LEVEL_HIGH RO 0x0

12 GPIO11_LEVEL_LOW RO 0x0

11 GPIO10_EDGE_HIGH RO 0x0

10 GPIO10_EDGE_LOW RO 0x0

9 GPIO10_LEVEL_HIGH RO 0x0

8 GPIO10_LEVEL_LOW RO 0x0

7 GPIO9_EDGE_HIGH RO 0x0

6 GPIO9_EDGE_LOW RO 0x0

5 GPIO9_LEVEL_HIGH RO 0x0

4 GPIO9_LEVEL_LOW RO 0x0

3 GPIO8_EDGE_HIGH RO 0x0

2 GPIO8_EDGE_LOW RO 0x0

1 GPIO8_LEVEL_HIGH RO 0x0

0 GPIO8_LEVEL_LOW RO 0x0

IO_BANK0: PROC1_INTS2 Register

Offset: 0x158

Description

Interrupt status after masking & forcing for proc1

Table 312.

PROC1_INTS2

Register

Bits Name Description Type Reset

31 GPIO23_EDGE_HIGH RO 0x0

30 GPIO23_EDGE_LOW RO 0x0

29 GPIO23_LEVEL_HIGH RO 0x0

28 GPIO23_LEVEL_LOW RO 0x0

27 GPIO22_EDGE_HIGH RO 0x0

26 GPIO22_EDGE_LOW RO 0x0

25 GPIO22_LEVEL_HIGH RO 0x0

RP2040 Datasheet

2.19. GPIO 274

Bits Name Description Type Reset

24 GPIO22_LEVEL_LOW RO 0x0

23 GPIO21_EDGE_HIGH RO 0x0

22 GPIO21_EDGE_LOW RO 0x0

21 GPIO21_LEVEL_HIGH RO 0x0

20 GPIO21_LEVEL_LOW RO 0x0

19 GPIO20_EDGE_HIGH RO 0x0

18 GPIO20_EDGE_LOW RO 0x0

17 GPIO20_LEVEL_HIGH RO 0x0

16 GPIO20_LEVEL_LOW RO 0x0

15 GPIO19_EDGE_HIGH RO 0x0

14 GPIO19_EDGE_LOW RO 0x0

13 GPIO19_LEVEL_HIGH RO 0x0

12 GPIO19_LEVEL_LOW RO 0x0

11 GPIO18_EDGE_HIGH RO 0x0

10 GPIO18_EDGE_LOW RO 0x0

9 GPIO18_LEVEL_HIGH RO 0x0

8 GPIO18_LEVEL_LOW RO 0x0

7 GPIO17_EDGE_HIGH RO 0x0

6 GPIO17_EDGE_LOW RO 0x0

5 GPIO17_LEVEL_HIGH RO 0x0

4 GPIO17_LEVEL_LOW RO 0x0

3 GPIO16_EDGE_HIGH RO 0x0

2 GPIO16_EDGE_LOW RO 0x0

1 GPIO16_LEVEL_HIGH RO 0x0

0 GPIO16_LEVEL_LOW RO 0x0

IO_BANK0: PROC1_INTS3 Register

Offset: 0x15c

Description

Interrupt status after masking & forcing for proc1

Table 313.

PROC1_INTS3

Register

Bits Name Description Type Reset

31:24 Reserved. - - -

23 GPIO29_EDGE_HIGH RO 0x0

22 GPIO29_EDGE_LOW RO 0x0

21 GPIO29_LEVEL_HIGH RO 0x0

20 GPIO29_LEVEL_LOW RO 0x0

RP2040 Datasheet

2.19. GPIO 275

Bits Name Description Type Reset

19 GPIO28_EDGE_HIGH RO 0x0

18 GPIO28_EDGE_LOW RO 0x0

17 GPIO28_LEVEL_HIGH RO 0x0

16 GPIO28_LEVEL_LOW RO 0x0

15 GPIO27_EDGE_HIGH RO 0x0

14 GPIO27_EDGE_LOW RO 0x0

13 GPIO27_LEVEL_HIGH RO 0x0

12 GPIO27_LEVEL_LOW RO 0x0

11 GPIO26_EDGE_HIGH RO 0x0

10 GPIO26_EDGE_LOW RO 0x0

9 GPIO26_LEVEL_HIGH RO 0x0

8 GPIO26_LEVEL_LOW RO 0x0

7 GPIO25_EDGE_HIGH RO 0x0

6 GPIO25_EDGE_LOW RO 0x0

5 GPIO25_LEVEL_HIGH RO 0x0

4 GPIO25_LEVEL_LOW RO 0x0

3 GPIO24_EDGE_HIGH RO 0x0

2 GPIO24_EDGE_LOW RO 0x0

1 GPIO24_LEVEL_HIGH RO 0x0

0 GPIO24_LEVEL_LOW RO 0x0

IO_BANK0: DORMANT_WAKE_INTE0 Register

Offset: 0x160

Description

Interrupt Enable for dormant_wake

Table 314.

DORMANT_WAKE_INT

E0 Register

Bits Name Description Type Reset

31 GPIO7_EDGE_HIGH RW 0x0

30 GPIO7_EDGE_LOW RW 0x0

29 GPIO7_LEVEL_HIGH RW 0x0

28 GPIO7_LEVEL_LOW RW 0x0

27 GPIO6_EDGE_HIGH RW 0x0

26 GPIO6_EDGE_LOW RW 0x0

25 GPIO6_LEVEL_HIGH RW 0x0

24 GPIO6_LEVEL_LOW RW 0x0

23 GPIO5_EDGE_HIGH RW 0x0

22 GPIO5_EDGE_LOW RW 0x0

RP2040 Datasheet

2.19. GPIO 276

Bits Name Description Type Reset

21 GPIO5_LEVEL_HIGH RW 0x0

20 GPIO5_LEVEL_LOW RW 0x0

19 GPIO4_EDGE_HIGH RW 0x0

18 GPIO4_EDGE_LOW RW 0x0

17 GPIO4_LEVEL_HIGH RW 0x0

16 GPIO4_LEVEL_LOW RW 0x0

15 GPIO3_EDGE_HIGH RW 0x0

14 GPIO3_EDGE_LOW RW 0x0

13 GPIO3_LEVEL_HIGH RW 0x0

12 GPIO3_LEVEL_LOW RW 0x0

11 GPIO2_EDGE_HIGH RW 0x0

10 GPIO2_EDGE_LOW RW 0x0

9 GPIO2_LEVEL_HIGH RW 0x0

8 GPIO2_LEVEL_LOW RW 0x0

7 GPIO1_EDGE_HIGH RW 0x0

6 GPIO1_EDGE_LOW RW 0x0

5 GPIO1_LEVEL_HIGH RW 0x0

4 GPIO1_LEVEL_LOW RW 0x0

3 GPIO0_EDGE_HIGH RW 0x0

2 GPIO0_EDGE_LOW RW 0x0

1 GPIO0_LEVEL_HIGH RW 0x0

0 GPIO0_LEVEL_LOW RW 0x0

IO_BANK0: DORMANT_WAKE_INTE1 Register

Offset: 0x164

Description

Interrupt Enable for dormant_wake

Table 315.

DORMANT_WAKE_INT

E1 Register

Bits Name Description Type Reset

31 GPIO15_EDGE_HIGH RW 0x0

30 GPIO15_EDGE_LOW RW 0x0

29 GPIO15_LEVEL_HIGH RW 0x0

28 GPIO15_LEVEL_LOW RW 0x0

27 GPIO14_EDGE_HIGH RW 0x0

26 GPIO14_EDGE_LOW RW 0x0

25 GPIO14_LEVEL_HIGH RW 0x0

24 GPIO14_LEVEL_LOW RW 0x0

RP2040 Datasheet

2.19. GPIO 277

Bits Name Description Type Reset

23 GPIO13_EDGE_HIGH RW 0x0

22 GPIO13_EDGE_LOW RW 0x0

21 GPIO13_LEVEL_HIGH RW 0x0

20 GPIO13_LEVEL_LOW RW 0x0

19 GPIO12_EDGE_HIGH RW 0x0

18 GPIO12_EDGE_LOW RW 0x0

17 GPIO12_LEVEL_HIGH RW 0x0

16 GPIO12_LEVEL_LOW RW 0x0

15 GPIO11_EDGE_HIGH RW 0x0

14 GPIO11_EDGE_LOW RW 0x0

13 GPIO11_LEVEL_HIGH RW 0x0

12 GPIO11_LEVEL_LOW RW 0x0

11 GPIO10_EDGE_HIGH RW 0x0

10 GPIO10_EDGE_LOW RW 0x0

9 GPIO10_LEVEL_HIGH RW 0x0

8 GPIO10_LEVEL_LOW RW 0x0

7 GPIO9_EDGE_HIGH RW 0x0

6 GPIO9_EDGE_LOW RW 0x0

5 GPIO9_LEVEL_HIGH RW 0x0

4 GPIO9_LEVEL_LOW RW 0x0

3 GPIO8_EDGE_HIGH RW 0x0

2 GPIO8_EDGE_LOW RW 0x0

1 GPIO8_LEVEL_HIGH RW 0x0

0 GPIO8_LEVEL_LOW RW 0x0

IO_BANK0: DORMANT_WAKE_INTE2 Register

Offset: 0x168

Description

Interrupt Enable for dormant_wake

Table 316.

DORMANT_WAKE_INT

E2 Register

Bits Name Description Type Reset

31 GPIO23_EDGE_HIGH RW 0x0

30 GPIO23_EDGE_LOW RW 0x0

29 GPIO23_LEVEL_HIGH RW 0x0

28 GPIO23_LEVEL_LOW RW 0x0

27 GPIO22_EDGE_HIGH RW 0x0

26 GPIO22_EDGE_LOW RW 0x0

RP2040 Datasheet

2.19. GPIO 278

Bits Name Description Type Reset

25 GPIO22_LEVEL_HIGH RW 0x0

24 GPIO22_LEVEL_LOW RW 0x0

23 GPIO21_EDGE_HIGH RW 0x0

22 GPIO21_EDGE_LOW RW 0x0

21 GPIO21_LEVEL_HIGH RW 0x0

20 GPIO21_LEVEL_LOW RW 0x0

19 GPIO20_EDGE_HIGH RW 0x0

18 GPIO20_EDGE_LOW RW 0x0

17 GPIO20_LEVEL_HIGH RW 0x0

16 GPIO20_LEVEL_LOW RW 0x0

15 GPIO19_EDGE_HIGH RW 0x0

14 GPIO19_EDGE_LOW RW 0x0

13 GPIO19_LEVEL_HIGH RW 0x0

12 GPIO19_LEVEL_LOW RW 0x0

11 GPIO18_EDGE_HIGH RW 0x0

10 GPIO18_EDGE_LOW RW 0x0

9 GPIO18_LEVEL_HIGH RW 0x0

8 GPIO18_LEVEL_LOW RW 0x0

7 GPIO17_EDGE_HIGH RW 0x0

6 GPIO17_EDGE_LOW RW 0x0

5 GPIO17_LEVEL_HIGH RW 0x0

4 GPIO17_LEVEL_LOW RW 0x0

3 GPIO16_EDGE_HIGH RW 0x0

2 GPIO16_EDGE_LOW RW 0x0

1 GPIO16_LEVEL_HIGH RW 0x0

0 GPIO16_LEVEL_LOW RW 0x0

IO_BANK0: DORMANT_WAKE_INTE3 Register

Offset: 0x16c

Description

Interrupt Enable for dormant_wake

Table 317.

DORMANT_WAKE_INT

E3 Register

Bits Name Description Type Reset

31:24 Reserved. - - -

23 GPIO29_EDGE_HIGH RW 0x0

22 GPIO29_EDGE_LOW RW 0x0

21 GPIO29_LEVEL_HIGH RW 0x0

RP2040 Datasheet

2.19. GPIO 279

Bits Name Description Type Reset

20 GPIO29_LEVEL_LOW RW 0x0

19 GPIO28_EDGE_HIGH RW 0x0

18 GPIO28_EDGE_LOW RW 0x0

17 GPIO28_LEVEL_HIGH RW 0x0

16 GPIO28_LEVEL_LOW RW 0x0

15 GPIO27_EDGE_HIGH RW 0x0

14 GPIO27_EDGE_LOW RW 0x0

13 GPIO27_LEVEL_HIGH RW 0x0

12 GPIO27_LEVEL_LOW RW 0x0

11 GPIO26_EDGE_HIGH RW 0x0

10 GPIO26_EDGE_LOW RW 0x0

9 GPIO26_LEVEL_HIGH RW 0x0

8 GPIO26_LEVEL_LOW RW 0x0

7 GPIO25_EDGE_HIGH RW 0x0

6 GPIO25_EDGE_LOW RW 0x0

5 GPIO25_LEVEL_HIGH RW 0x0

4 GPIO25_LEVEL_LOW RW 0x0

3 GPIO24_EDGE_HIGH RW 0x0

2 GPIO24_EDGE_LOW RW 0x0

1 GPIO24_LEVEL_HIGH RW 0x0

0 GPIO24_LEVEL_LOW RW 0x0

IO_BANK0: DORMANT_WAKE_INTF0 Register

Offset: 0x170

Description

Interrupt Force for dormant_wake

Table 318.

DORMANT_WAKE_INT

F0 Register

Bits Name Description Type Reset

31 GPIO7_EDGE_HIGH RW 0x0

30 GPIO7_EDGE_LOW RW 0x0

29 GPIO7_LEVEL_HIGH RW 0x0

28 GPIO7_LEVEL_LOW RW 0x0

27 GPIO6_EDGE_HIGH RW 0x0

26 GPIO6_EDGE_LOW RW 0x0

25 GPIO6_LEVEL_HIGH RW 0x0

24 GPIO6_LEVEL_LOW RW 0x0

23 GPIO5_EDGE_HIGH RW 0x0

RP2040 Datasheet

2.19. GPIO 280

Bits Name Description Type Reset

22 GPIO5_EDGE_LOW RW 0x0

21 GPIO5_LEVEL_HIGH RW 0x0

20 GPIO5_LEVEL_LOW RW 0x0

19 GPIO4_EDGE_HIGH RW 0x0

18 GPIO4_EDGE_LOW RW 0x0

17 GPIO4_LEVEL_HIGH RW 0x0

16 GPIO4_LEVEL_LOW RW 0x0

15 GPIO3_EDGE_HIGH RW 0x0

14 GPIO3_EDGE_LOW RW 0x0

13 GPIO3_LEVEL_HIGH RW 0x0

12 GPIO3_LEVEL_LOW RW 0x0

11 GPIO2_EDGE_HIGH RW 0x0

10 GPIO2_EDGE_LOW RW 0x0

9 GPIO2_LEVEL_HIGH RW 0x0

8 GPIO2_LEVEL_LOW RW 0x0

7 GPIO1_EDGE_HIGH RW 0x0

6 GPIO1_EDGE_LOW RW 0x0

5 GPIO1_LEVEL_HIGH RW 0x0

4 GPIO1_LEVEL_LOW RW 0x0

3 GPIO0_EDGE_HIGH RW 0x0

2 GPIO0_EDGE_LOW RW 0x0

1 GPIO0_LEVEL_HIGH RW 0x0

0 GPIO0_LEVEL_LOW RW 0x0

IO_BANK0: DORMANT_WAKE_INTF1 Register

Offset: 0x174

Description

Interrupt Force for dormant_wake

Table 319.

DORMANT_WAKE_INT

F1 Register

Bits Name Description Type Reset

31 GPIO15_EDGE_HIGH RW 0x0

30 GPIO15_EDGE_LOW RW 0x0

29 GPIO15_LEVEL_HIGH RW 0x0

28 GPIO15_LEVEL_LOW RW 0x0

27 GPIO14_EDGE_HIGH RW 0x0

26 GPIO14_EDGE_LOW RW 0x0

25 GPIO14_LEVEL_HIGH RW 0x0

RP2040 Datasheet

2.19. GPIO 281

Bits Name Description Type Reset

24 GPIO14_LEVEL_LOW RW 0x0

23 GPIO13_EDGE_HIGH RW 0x0

22 GPIO13_EDGE_LOW RW 0x0

21 GPIO13_LEVEL_HIGH RW 0x0

20 GPIO13_LEVEL_LOW RW 0x0

19 GPIO12_EDGE_HIGH RW 0x0

18 GPIO12_EDGE_LOW RW 0x0

17 GPIO12_LEVEL_HIGH RW 0x0

16 GPIO12_LEVEL_LOW RW 0x0

15 GPIO11_EDGE_HIGH RW 0x0

14 GPIO11_EDGE_LOW RW 0x0

13 GPIO11_LEVEL_HIGH RW 0x0

12 GPIO11_LEVEL_LOW RW 0x0

11 GPIO10_EDGE_HIGH RW 0x0

10 GPIO10_EDGE_LOW RW 0x0

9 GPIO10_LEVEL_HIGH RW 0x0

8 GPIO10_LEVEL_LOW RW 0x0

7 GPIO9_EDGE_HIGH RW 0x0

6 GPIO9_EDGE_LOW RW 0x0

5 GPIO9_LEVEL_HIGH RW 0x0

4 GPIO9_LEVEL_LOW RW 0x0

3 GPIO8_EDGE_HIGH RW 0x0

2 GPIO8_EDGE_LOW RW 0x0

1 GPIO8_LEVEL_HIGH RW 0x0

0 GPIO8_LEVEL_LOW RW 0x0

IO_BANK0: DORMANT_WAKE_INTF2 Register

Offset: 0x178

Description

Interrupt Force for dormant_wake

Table 320.

DORMANT_WAKE_INT

F2 Register

Bits Name Description Type Reset

31 GPIO23_EDGE_HIGH RW 0x0

30 GPIO23_EDGE_LOW RW 0x0

29 GPIO23_LEVEL_HIGH RW 0x0

28 GPIO23_LEVEL_LOW RW 0x0

27 GPIO22_EDGE_HIGH RW 0x0

RP2040 Datasheet

2.19. GPIO 282

Bits Name Description Type Reset

26 GPIO22_EDGE_LOW RW 0x0

25 GPIO22_LEVEL_HIGH RW 0x0

24 GPIO22_LEVEL_LOW RW 0x0

23 GPIO21_EDGE_HIGH RW 0x0

22 GPIO21_EDGE_LOW RW 0x0

21 GPIO21_LEVEL_HIGH RW 0x0

20 GPIO21_LEVEL_LOW RW 0x0

19 GPIO20_EDGE_HIGH RW 0x0

18 GPIO20_EDGE_LOW RW 0x0

17 GPIO20_LEVEL_HIGH RW 0x0

16 GPIO20_LEVEL_LOW RW 0x0

15 GPIO19_EDGE_HIGH RW 0x0

14 GPIO19_EDGE_LOW RW 0x0

13 GPIO19_LEVEL_HIGH RW 0x0

12 GPIO19_LEVEL_LOW RW 0x0

11 GPIO18_EDGE_HIGH RW 0x0

10 GPIO18_EDGE_LOW RW 0x0

9 GPIO18_LEVEL_HIGH RW 0x0

8 GPIO18_LEVEL_LOW RW 0x0

7 GPIO17_EDGE_HIGH RW 0x0

6 GPIO17_EDGE_LOW RW 0x0

5 GPIO17_LEVEL_HIGH RW 0x0

4 GPIO17_LEVEL_LOW RW 0x0

3 GPIO16_EDGE_HIGH RW 0x0

2 GPIO16_EDGE_LOW RW 0x0

1 GPIO16_LEVEL_HIGH RW 0x0

0 GPIO16_LEVEL_LOW RW 0x0

IO_BANK0: DORMANT_WAKE_INTF3 Register

Offset: 0x17c

Description

Interrupt Force for dormant_wake

Table 321.

DORMANT_WAKE_INT

F3 Register

Bits Name Description Type Reset

31:24 Reserved. - - -

23 GPIO29_EDGE_HIGH RW 0x0

22 GPIO29_EDGE_LOW RW 0x0

RP2040 Datasheet

2.19. GPIO 283

Bits Name Description Type Reset

21 GPIO29_LEVEL_HIGH RW 0x0

20 GPIO29_LEVEL_LOW RW 0x0

19 GPIO28_EDGE_HIGH RW 0x0

18 GPIO28_EDGE_LOW RW 0x0

17 GPIO28_LEVEL_HIGH RW 0x0

16 GPIO28_LEVEL_LOW RW 0x0

15 GPIO27_EDGE_HIGH RW 0x0

14 GPIO27_EDGE_LOW RW 0x0

13 GPIO27_LEVEL_HIGH RW 0x0

12 GPIO27_LEVEL_LOW RW 0x0

11 GPIO26_EDGE_HIGH RW 0x0

10 GPIO26_EDGE_LOW RW 0x0

9 GPIO26_LEVEL_HIGH RW 0x0

8 GPIO26_LEVEL_LOW RW 0x0

7 GPIO25_EDGE_HIGH RW 0x0

6 GPIO25_EDGE_LOW RW 0x0

5 GPIO25_LEVEL_HIGH RW 0x0

4 GPIO25_LEVEL_LOW RW 0x0

3 GPIO24_EDGE_HIGH RW 0x0

2 GPIO24_EDGE_LOW RW 0x0

1 GPIO24_LEVEL_HIGH RW 0x0

0 GPIO24_LEVEL_LOW RW 0x0

IO_BANK0: DORMANT_WAKE_INTS0 Register

Offset: 0x180

Description

Interrupt status after masking & forcing for dormant_wake

Table 322.

DORMANT_WAKE_INT

S0 Register

Bits Name Description Type Reset

31 GPIO7_EDGE_HIGH RO 0x0

30 GPIO7_EDGE_LOW RO 0x0

29 GPIO7_LEVEL_HIGH RO 0x0

28 GPIO7_LEVEL_LOW RO 0x0

27 GPIO6_EDGE_HIGH RO 0x0

26 GPIO6_EDGE_LOW RO 0x0

25 GPIO6_LEVEL_HIGH RO 0x0

24 GPIO6_LEVEL_LOW RO 0x0

RP2040 Datasheet

2.19. GPIO 284

Bits Name Description Type Reset

23 GPIO5_EDGE_HIGH RO 0x0

22 GPIO5_EDGE_LOW RO 0x0

21 GPIO5_LEVEL_HIGH RO 0x0

20 GPIO5_LEVEL_LOW RO 0x0

19 GPIO4_EDGE_HIGH RO 0x0

18 GPIO4_EDGE_LOW RO 0x0

17 GPIO4_LEVEL_HIGH RO 0x0

16 GPIO4_LEVEL_LOW RO 0x0

15 GPIO3_EDGE_HIGH RO 0x0

14 GPIO3_EDGE_LOW RO 0x0

13 GPIO3_LEVEL_HIGH RO 0x0

12 GPIO3_LEVEL_LOW RO 0x0

11 GPIO2_EDGE_HIGH RO 0x0

10 GPIO2_EDGE_LOW RO 0x0

9 GPIO2_LEVEL_HIGH RO 0x0

8 GPIO2_LEVEL_LOW RO 0x0

7 GPIO1_EDGE_HIGH RO 0x0

6 GPIO1_EDGE_LOW RO 0x0

5 GPIO1_LEVEL_HIGH RO 0x0

4 GPIO1_LEVEL_LOW RO 0x0

3 GPIO0_EDGE_HIGH RO 0x0

2 GPIO0_EDGE_LOW RO 0x0

1 GPIO0_LEVEL_HIGH RO 0x0

0 GPIO0_LEVEL_LOW RO 0x0

IO_BANK0: DORMANT_WAKE_INTS1 Register

Offset: 0x184

Description

Interrupt status after masking & forcing for dormant_wake

Table 323.

DORMANT_WAKE_INT

S1 Register

Bits Name Description Type Reset

31 GPIO15_EDGE_HIGH RO 0x0

30 GPIO15_EDGE_LOW RO 0x0

29 GPIO15_LEVEL_HIGH RO 0x0

28 GPIO15_LEVEL_LOW RO 0x0

27 GPIO14_EDGE_HIGH RO 0x0

26 GPIO14_EDGE_LOW RO 0x0

RP2040 Datasheet

2.19. GPIO 285

Bits Name Description Type Reset

25 GPIO14_LEVEL_HIGH RO 0x0

24 GPIO14_LEVEL_LOW RO 0x0

23 GPIO13_EDGE_HIGH RO 0x0

22 GPIO13_EDGE_LOW RO 0x0

21 GPIO13_LEVEL_HIGH RO 0x0

20 GPIO13_LEVEL_LOW RO 0x0

19 GPIO12_EDGE_HIGH RO 0x0

18 GPIO12_EDGE_LOW RO 0x0

17 GPIO12_LEVEL_HIGH RO 0x0

16 GPIO12_LEVEL_LOW RO 0x0

15 GPIO11_EDGE_HIGH RO 0x0

14 GPIO11_EDGE_LOW RO 0x0

13 GPIO11_LEVEL_HIGH RO 0x0

12 GPIO11_LEVEL_LOW RO 0x0

11 GPIO10_EDGE_HIGH RO 0x0

10 GPIO10_EDGE_LOW RO 0x0

9 GPIO10_LEVEL_HIGH RO 0x0

8 GPIO10_LEVEL_LOW RO 0x0

7 GPIO9_EDGE_HIGH RO 0x0

6 GPIO9_EDGE_LOW RO 0x0

5 GPIO9_LEVEL_HIGH RO 0x0

4 GPIO9_LEVEL_LOW RO 0x0

3 GPIO8_EDGE_HIGH RO 0x0

2 GPIO8_EDGE_LOW RO 0x0

1 GPIO8_LEVEL_HIGH RO 0x0

0 GPIO8_LEVEL_LOW RO 0x0

IO_BANK0: DORMANT_WAKE_INTS2 Register

Offset: 0x188

Description

Interrupt status after masking & forcing for dormant_wake

Table 324.

DORMANT_WAKE_INT

S2 Register

Bits Name Description Type Reset

31 GPIO23_EDGE_HIGH RO 0x0

30 GPIO23_EDGE_LOW RO 0x0

29 GPIO23_LEVEL_HIGH RO 0x0

28 GPIO23_LEVEL_LOW RO 0x0

RP2040 Datasheet

2.19. GPIO 286

Bits Name Description Type Reset

27 GPIO22_EDGE_HIGH RO 0x0

26 GPIO22_EDGE_LOW RO 0x0

25 GPIO22_LEVEL_HIGH RO 0x0

24 GPIO22_LEVEL_LOW RO 0x0

23 GPIO21_EDGE_HIGH RO 0x0

22 GPIO21_EDGE_LOW RO 0x0

21 GPIO21_LEVEL_HIGH RO 0x0

20 GPIO21_LEVEL_LOW RO 0x0

19 GPIO20_EDGE_HIGH RO 0x0

18 GPIO20_EDGE_LOW RO 0x0

17 GPIO20_LEVEL_HIGH RO 0x0

16 GPIO20_LEVEL_LOW RO 0x0

15 GPIO19_EDGE_HIGH RO 0x0

14 GPIO19_EDGE_LOW RO 0x0

13 GPIO19_LEVEL_HIGH RO 0x0

12 GPIO19_LEVEL_LOW RO 0x0

11 GPIO18_EDGE_HIGH RO 0x0

10 GPIO18_EDGE_LOW RO 0x0

9 GPIO18_LEVEL_HIGH RO 0x0

8 GPIO18_LEVEL_LOW RO 0x0

7 GPIO17_EDGE_HIGH RO 0x0

6 GPIO17_EDGE_LOW RO 0x0

5 GPIO17_LEVEL_HIGH RO 0x0

4 GPIO17_LEVEL_LOW RO 0x0

3 GPIO16_EDGE_HIGH RO 0x0

2 GPIO16_EDGE_LOW RO 0x0

1 GPIO16_LEVEL_HIGH RO 0x0

0 GPIO16_LEVEL_LOW RO 0x0

IO_BANK0: DORMANT_WAKE_INTS3 Register

Offset: 0x18c

Description

Interrupt status after masking & forcing for dormant_wake

Table 325.

DORMANT_WAKE_INT

S3 Register

Bits Name Description Type Reset

31:24 Reserved. - - -

23 GPIO29_EDGE_HIGH RO 0x0

RP2040 Datasheet

2.19. GPIO 287

Bits Name Description Type Reset

22 GPIO29_EDGE_LOW RO 0x0

21 GPIO29_LEVEL_HIGH RO 0x0

20 GPIO29_LEVEL_LOW RO 0x0

19 GPIO28_EDGE_HIGH RO 0x0

18 GPIO28_EDGE_LOW RO 0x0

17 GPIO28_LEVEL_HIGH RO 0x0

16 GPIO28_LEVEL_LOW RO 0x0

15 GPIO27_EDGE_HIGH RO 0x0

14 GPIO27_EDGE_LOW RO 0x0

13 GPIO27_LEVEL_HIGH RO 0x0

12 GPIO27_LEVEL_LOW RO 0x0

11 GPIO26_EDGE_HIGH RO 0x0

10 GPIO26_EDGE_LOW RO 0x0

9 GPIO26_LEVEL_HIGH RO 0x0

8 GPIO26_LEVEL_LOW RO 0x0

7 GPIO25_EDGE_HIGH RO 0x0

6 GPIO25_EDGE_LOW RO 0x0

5 GPIO25_LEVEL_HIGH RO 0x0

4 GPIO25_LEVEL_LOW RO 0x0

3 GPIO24_EDGE_HIGH RO 0x0

2 GPIO24_EDGE_LOW RO 0x0

1 GPIO24_LEVEL_HIGH RO 0x0

0 GPIO24_LEVEL_LOW RO 0x0

2.19.6.2. IO - QSPI Bank

The QSPI Bank IO registers start at a base address of 0x40018000 (defined as IO_QSPI_BASE in SDK).

Table 326. List of

IO_QSPI registers
Offset Name Info

0x00 GPIO_QSPI_SCLK_STATUS GPIO status

0x04 GPIO_QSPI_SCLK_CTRL GPIO control including function select and overrides.

0x08 GPIO_QSPI_SS_STATUS GPIO status

0x0c GPIO_QSPI_SS_CTRL GPIO control including function select and overrides.

0x10 GPIO_QSPI_SD0_STATUS GPIO status

0x14 GPIO_QSPI_SD0_CTRL GPIO control including function select and overrides.

0x18 GPIO_QSPI_SD1_STATUS GPIO status

0x1c GPIO_QSPI_SD1_CTRL GPIO control including function select and overrides.

RP2040 Datasheet

2.19. GPIO 288

Offset Name Info

0x20 GPIO_QSPI_SD2_STATUS GPIO status

0x24 GPIO_QSPI_SD2_CTRL GPIO control including function select and overrides.

0x28 GPIO_QSPI_SD3_STATUS GPIO status

0x2c GPIO_QSPI_SD3_CTRL GPIO control including function select and overrides.

0x30 INTR Raw Interrupts

0x34 PROC0_INTE Interrupt Enable for proc0

0x38 PROC0_INTF Interrupt Force for proc0

0x3c PROC0_INTS Interrupt status after masking & forcing for proc0

0x40 PROC1_INTE Interrupt Enable for proc1

0x44 PROC1_INTF Interrupt Force for proc1

0x48 PROC1_INTS Interrupt status after masking & forcing for proc1

0x4c DORMANT_WAKE_INTE Interrupt Enable for dormant_wake

0x50 DORMANT_WAKE_INTF Interrupt Force for dormant_wake

0x54 DORMANT_WAKE_INTS Interrupt status after masking & forcing for dormant_wake

IO_QSPI: GPIO_QSPI_SCLK_STATUS, GPIO_QSPI_SS_STATUS, …,

GPIO_QSPI_SD2_STATUS, GPIO_QSPI_SD3_STATUS Registers

Offsets: 0x00, 0x08, …, 0x20, 0x28

Description

GPIO status

Table 327.

GPIO_QSPI_SCLK_STA

TUS,

GPIO_QSPI_SS_STATU

S, …,

GPIO_QSPI_SD2_STAT

US,

GPIO_QSPI_SD3_STAT

US Registers

Bits Name Description Type Reset

31:27 Reserved. - - -

26 IRQTOPROC interrupt to processors, after override is applied RO 0x0

25 Reserved. - - -

24 IRQFROMPAD interrupt from pad before override is applied RO 0x0

23:20 Reserved. - - -

19 INTOPERI input signal to peripheral, after override is applied RO 0x0

18 Reserved. - - -

17 INFROMPAD input signal from pad, before override is applied RO 0x0

16:14 Reserved. - - -

13 OETOPAD output enable to pad after register override is applied RO 0x0

12 OEFROMPERI output enable from selected peripheral, before register

override is applied

RO 0x0

11:10 Reserved. - - -

9 OUTTOPAD output signal to pad after register override is applied RO 0x0

8 OUTFROMPERI output signal from selected peripheral, before register

override is applied

RO 0x0

RP2040 Datasheet

2.19. GPIO 289

Bits Name Description Type Reset

7:0 Reserved. - - -

IO_QSPI: GPIO_QSPI_SCLK_CTRL, GPIO_QSPI_SS_CTRL, …,

GPIO_QSPI_SD2_CTRL, GPIO_QSPI_SD3_CTRL Registers

Offsets: 0x04, 0x0c, …, 0x24, 0x2c

Description

GPIO control including function select and overrides.

Table 328.

GPIO_QSPI_SCLK_CTR

L,

GPIO_QSPI_SS_CTRL,

…,

GPIO_QSPI_SD2_CTRL,

GPIO_QSPI_SD3_CTRL

Registers

Bits Name Description Type Reset

31:30 Reserved. - - -

29:28 IRQOVER 0x0 → don’t invert the interrupt

0x1 → invert the interrupt

0x2 → drive interrupt low

0x3 → drive interrupt high

RW 0x0

27:18 Reserved. - - -

17:16 INOVER 0x0 → don’t invert the peri input

0x1 → invert the peri input

0x2 → drive peri input low

0x3 → drive peri input high

RW 0x0

15:14 Reserved. - - -

13:12 OEOVER 0x0 → drive output enable from peripheral signal selected

by funcsel

0x1 → drive output enable from inverse of peripheral

signal selected by funcsel

0x2 → disable output

0x3 → enable output

RW 0x0

11:10 Reserved. - - -

9:8 OUTOVER 0x0 → drive output from peripheral signal selected by

funcsel

0x1 → drive output from inverse of peripheral signal

selected by funcsel

0x2 → drive output low

0x3 → drive output high

RW 0x0

7:5 Reserved. - - -

4:0 FUNCSEL Function select. 31 == NULL. See GPIO function table for

available functions.

RW 0x1f

IO_QSPI: INTR Register

Offset: 0x30

Description

Raw Interrupts

Table 329. INTR

Register
Bits Name Description Type Reset

31:24 Reserved. - - -

RP2040 Datasheet

2.19. GPIO 290

Bits Name Description Type Reset

23 GPIO_QSPI_SD3_EDGE_HIGH WC 0x0

22 GPIO_QSPI_SD3_EDGE_LOW WC 0x0

21 GPIO_QSPI_SD3_LEVEL_HIGH RO 0x0

20 GPIO_QSPI_SD3_LEVEL_LOW RO 0x0

19 GPIO_QSPI_SD2_EDGE_HIGH WC 0x0

18 GPIO_QSPI_SD2_EDGE_LOW WC 0x0

17 GPIO_QSPI_SD2_LEVEL_HIGH RO 0x0

16 GPIO_QSPI_SD2_LEVEL_LOW RO 0x0

15 GPIO_QSPI_SD1_EDGE_HIGH WC 0x0

14 GPIO_QSPI_SD1_EDGE_LOW WC 0x0

13 GPIO_QSPI_SD1_LEVEL_HIGH RO 0x0

12 GPIO_QSPI_SD1_LEVEL_LOW RO 0x0

11 GPIO_QSPI_SD0_EDGE_HIGH WC 0x0

10 GPIO_QSPI_SD0_EDGE_LOW WC 0x0

9 GPIO_QSPI_SD0_LEVEL_HIGH RO 0x0

8 GPIO_QSPI_SD0_LEVEL_LOW RO 0x0

7 GPIO_QSPI_SS_EDGE_HIGH WC 0x0

6 GPIO_QSPI_SS_EDGE_LOW WC 0x0

5 GPIO_QSPI_SS_LEVEL_HIGH RO 0x0

4 GPIO_QSPI_SS_LEVEL_LOW RO 0x0

3 GPIO_QSPI_SCLK_EDGE_HIGH WC 0x0

2 GPIO_QSPI_SCLK_EDGE_LOW WC 0x0

1 GPIO_QSPI_SCLK_LEVEL_HIGH RO 0x0

0 GPIO_QSPI_SCLK_LEVEL_LOW RO 0x0

IO_QSPI: PROC0_INTE Register

Offset: 0x34

Description

Interrupt Enable for proc0

Table 330.

PROC0_INTE Register
Bits Name Description Type Reset

31:24 Reserved. - - -

23 GPIO_QSPI_SD3_EDGE_HIGH RW 0x0

22 GPIO_QSPI_SD3_EDGE_LOW RW 0x0

21 GPIO_QSPI_SD3_LEVEL_HIGH RW 0x0

20 GPIO_QSPI_SD3_LEVEL_LOW RW 0x0

19 GPIO_QSPI_SD2_EDGE_HIGH RW 0x0

RP2040 Datasheet

2.19. GPIO 291

Bits Name Description Type Reset

18 GPIO_QSPI_SD2_EDGE_LOW RW 0x0

17 GPIO_QSPI_SD2_LEVEL_HIGH RW 0x0

16 GPIO_QSPI_SD2_LEVEL_LOW RW 0x0

15 GPIO_QSPI_SD1_EDGE_HIGH RW 0x0

14 GPIO_QSPI_SD1_EDGE_LOW RW 0x0

13 GPIO_QSPI_SD1_LEVEL_HIGH RW 0x0

12 GPIO_QSPI_SD1_LEVEL_LOW RW 0x0

11 GPIO_QSPI_SD0_EDGE_HIGH RW 0x0

10 GPIO_QSPI_SD0_EDGE_LOW RW 0x0

9 GPIO_QSPI_SD0_LEVEL_HIGH RW 0x0

8 GPIO_QSPI_SD0_LEVEL_LOW RW 0x0

7 GPIO_QSPI_SS_EDGE_HIGH RW 0x0

6 GPIO_QSPI_SS_EDGE_LOW RW 0x0

5 GPIO_QSPI_SS_LEVEL_HIGH RW 0x0

4 GPIO_QSPI_SS_LEVEL_LOW RW 0x0

3 GPIO_QSPI_SCLK_EDGE_HIGH RW 0x0

2 GPIO_QSPI_SCLK_EDGE_LOW RW 0x0

1 GPIO_QSPI_SCLK_LEVEL_HIGH RW 0x0

0 GPIO_QSPI_SCLK_LEVEL_LOW RW 0x0

IO_QSPI: PROC0_INTF Register

Offset: 0x38

Description

Interrupt Force for proc0

Table 331.

PROC0_INTF Register
Bits Name Description Type Reset

31:24 Reserved. - - -

23 GPIO_QSPI_SD3_EDGE_HIGH RW 0x0

22 GPIO_QSPI_SD3_EDGE_LOW RW 0x0

21 GPIO_QSPI_SD3_LEVEL_HIGH RW 0x0

20 GPIO_QSPI_SD3_LEVEL_LOW RW 0x0

19 GPIO_QSPI_SD2_EDGE_HIGH RW 0x0

18 GPIO_QSPI_SD2_EDGE_LOW RW 0x0

17 GPIO_QSPI_SD2_LEVEL_HIGH RW 0x0

16 GPIO_QSPI_SD2_LEVEL_LOW RW 0x0

15 GPIO_QSPI_SD1_EDGE_HIGH RW 0x0

14 GPIO_QSPI_SD1_EDGE_LOW RW 0x0

RP2040 Datasheet

2.19. GPIO 292

Bits Name Description Type Reset

13 GPIO_QSPI_SD1_LEVEL_HIGH RW 0x0

12 GPIO_QSPI_SD1_LEVEL_LOW RW 0x0

11 GPIO_QSPI_SD0_EDGE_HIGH RW 0x0

10 GPIO_QSPI_SD0_EDGE_LOW RW 0x0

9 GPIO_QSPI_SD0_LEVEL_HIGH RW 0x0

8 GPIO_QSPI_SD0_LEVEL_LOW RW 0x0

7 GPIO_QSPI_SS_EDGE_HIGH RW 0x0

6 GPIO_QSPI_SS_EDGE_LOW RW 0x0

5 GPIO_QSPI_SS_LEVEL_HIGH RW 0x0

4 GPIO_QSPI_SS_LEVEL_LOW RW 0x0

3 GPIO_QSPI_SCLK_EDGE_HIGH RW 0x0

2 GPIO_QSPI_SCLK_EDGE_LOW RW 0x0

1 GPIO_QSPI_SCLK_LEVEL_HIGH RW 0x0

0 GPIO_QSPI_SCLK_LEVEL_LOW RW 0x0

IO_QSPI: PROC0_INTS Register

Offset: 0x3c

Description

Interrupt status after masking & forcing for proc0

Table 332.

PROC0_INTS Register
Bits Name Description Type Reset

31:24 Reserved. - - -

23 GPIO_QSPI_SD3_EDGE_HIGH RO 0x0

22 GPIO_QSPI_SD3_EDGE_LOW RO 0x0

21 GPIO_QSPI_SD3_LEVEL_HIGH RO 0x0

20 GPIO_QSPI_SD3_LEVEL_LOW RO 0x0

19 GPIO_QSPI_SD2_EDGE_HIGH RO 0x0

18 GPIO_QSPI_SD2_EDGE_LOW RO 0x0

17 GPIO_QSPI_SD2_LEVEL_HIGH RO 0x0

16 GPIO_QSPI_SD2_LEVEL_LOW RO 0x0

15 GPIO_QSPI_SD1_EDGE_HIGH RO 0x0

14 GPIO_QSPI_SD1_EDGE_LOW RO 0x0

13 GPIO_QSPI_SD1_LEVEL_HIGH RO 0x0

12 GPIO_QSPI_SD1_LEVEL_LOW RO 0x0

11 GPIO_QSPI_SD0_EDGE_HIGH RO 0x0

10 GPIO_QSPI_SD0_EDGE_LOW RO 0x0

9 GPIO_QSPI_SD0_LEVEL_HIGH RO 0x0

RP2040 Datasheet

2.19. GPIO 293

Bits Name Description Type Reset

8 GPIO_QSPI_SD0_LEVEL_LOW RO 0x0

7 GPIO_QSPI_SS_EDGE_HIGH RO 0x0

6 GPIO_QSPI_SS_EDGE_LOW RO 0x0

5 GPIO_QSPI_SS_LEVEL_HIGH RO 0x0

4 GPIO_QSPI_SS_LEVEL_LOW RO 0x0

3 GPIO_QSPI_SCLK_EDGE_HIGH RO 0x0

2 GPIO_QSPI_SCLK_EDGE_LOW RO 0x0

1 GPIO_QSPI_SCLK_LEVEL_HIGH RO 0x0

0 GPIO_QSPI_SCLK_LEVEL_LOW RO 0x0

IO_QSPI: PROC1_INTE Register

Offset: 0x40

Description

Interrupt Enable for proc1

Table 333.

PROC1_INTE Register
Bits Name Description Type Reset

31:24 Reserved. - - -

23 GPIO_QSPI_SD3_EDGE_HIGH RW 0x0

22 GPIO_QSPI_SD3_EDGE_LOW RW 0x0

21 GPIO_QSPI_SD3_LEVEL_HIGH RW 0x0

20 GPIO_QSPI_SD3_LEVEL_LOW RW 0x0

19 GPIO_QSPI_SD2_EDGE_HIGH RW 0x0

18 GPIO_QSPI_SD2_EDGE_LOW RW 0x0

17 GPIO_QSPI_SD2_LEVEL_HIGH RW 0x0

16 GPIO_QSPI_SD2_LEVEL_LOW RW 0x0

15 GPIO_QSPI_SD1_EDGE_HIGH RW 0x0

14 GPIO_QSPI_SD1_EDGE_LOW RW 0x0

13 GPIO_QSPI_SD1_LEVEL_HIGH RW 0x0

12 GPIO_QSPI_SD1_LEVEL_LOW RW 0x0

11 GPIO_QSPI_SD0_EDGE_HIGH RW 0x0

10 GPIO_QSPI_SD0_EDGE_LOW RW 0x0

9 GPIO_QSPI_SD0_LEVEL_HIGH RW 0x0

8 GPIO_QSPI_SD0_LEVEL_LOW RW 0x0

7 GPIO_QSPI_SS_EDGE_HIGH RW 0x0

6 GPIO_QSPI_SS_EDGE_LOW RW 0x0

5 GPIO_QSPI_SS_LEVEL_HIGH RW 0x0

4 GPIO_QSPI_SS_LEVEL_LOW RW 0x0

RP2040 Datasheet

2.19. GPIO 294

Bits Name Description Type Reset

3 GPIO_QSPI_SCLK_EDGE_HIGH RW 0x0

2 GPIO_QSPI_SCLK_EDGE_LOW RW 0x0

1 GPIO_QSPI_SCLK_LEVEL_HIGH RW 0x0

0 GPIO_QSPI_SCLK_LEVEL_LOW RW 0x0

IO_QSPI: PROC1_INTF Register

Offset: 0x44

Description

Interrupt Force for proc1

Table 334.

PROC1_INTF Register
Bits Name Description Type Reset

31:24 Reserved. - - -

23 GPIO_QSPI_SD3_EDGE_HIGH RW 0x0

22 GPIO_QSPI_SD3_EDGE_LOW RW 0x0

21 GPIO_QSPI_SD3_LEVEL_HIGH RW 0x0

20 GPIO_QSPI_SD3_LEVEL_LOW RW 0x0

19 GPIO_QSPI_SD2_EDGE_HIGH RW 0x0

18 GPIO_QSPI_SD2_EDGE_LOW RW 0x0

17 GPIO_QSPI_SD2_LEVEL_HIGH RW 0x0

16 GPIO_QSPI_SD2_LEVEL_LOW RW 0x0

15 GPIO_QSPI_SD1_EDGE_HIGH RW 0x0

14 GPIO_QSPI_SD1_EDGE_LOW RW 0x0

13 GPIO_QSPI_SD1_LEVEL_HIGH RW 0x0

12 GPIO_QSPI_SD1_LEVEL_LOW RW 0x0

11 GPIO_QSPI_SD0_EDGE_HIGH RW 0x0

10 GPIO_QSPI_SD0_EDGE_LOW RW 0x0

9 GPIO_QSPI_SD0_LEVEL_HIGH RW 0x0

8 GPIO_QSPI_SD0_LEVEL_LOW RW 0x0

7 GPIO_QSPI_SS_EDGE_HIGH RW 0x0

6 GPIO_QSPI_SS_EDGE_LOW RW 0x0

5 GPIO_QSPI_SS_LEVEL_HIGH RW 0x0

4 GPIO_QSPI_SS_LEVEL_LOW RW 0x0

3 GPIO_QSPI_SCLK_EDGE_HIGH RW 0x0

2 GPIO_QSPI_SCLK_EDGE_LOW RW 0x0

1 GPIO_QSPI_SCLK_LEVEL_HIGH RW 0x0

0 GPIO_QSPI_SCLK_LEVEL_LOW RW 0x0

IO_QSPI: PROC1_INTS Register

RP2040 Datasheet

2.19. GPIO 295

Offset: 0x48

Description

Interrupt status after masking & forcing for proc1

Table 335.

PROC1_INTS Register
Bits Name Description Type Reset

31:24 Reserved. - - -

23 GPIO_QSPI_SD3_EDGE_HIGH RO 0x0

22 GPIO_QSPI_SD3_EDGE_LOW RO 0x0

21 GPIO_QSPI_SD3_LEVEL_HIGH RO 0x0

20 GPIO_QSPI_SD3_LEVEL_LOW RO 0x0

19 GPIO_QSPI_SD2_EDGE_HIGH RO 0x0

18 GPIO_QSPI_SD2_EDGE_LOW RO 0x0

17 GPIO_QSPI_SD2_LEVEL_HIGH RO 0x0

16 GPIO_QSPI_SD2_LEVEL_LOW RO 0x0

15 GPIO_QSPI_SD1_EDGE_HIGH RO 0x0

14 GPIO_QSPI_SD1_EDGE_LOW RO 0x0

13 GPIO_QSPI_SD1_LEVEL_HIGH RO 0x0

12 GPIO_QSPI_SD1_LEVEL_LOW RO 0x0

11 GPIO_QSPI_SD0_EDGE_HIGH RO 0x0

10 GPIO_QSPI_SD0_EDGE_LOW RO 0x0

9 GPIO_QSPI_SD0_LEVEL_HIGH RO 0x0

8 GPIO_QSPI_SD0_LEVEL_LOW RO 0x0

7 GPIO_QSPI_SS_EDGE_HIGH RO 0x0

6 GPIO_QSPI_SS_EDGE_LOW RO 0x0

5 GPIO_QSPI_SS_LEVEL_HIGH RO 0x0

4 GPIO_QSPI_SS_LEVEL_LOW RO 0x0

3 GPIO_QSPI_SCLK_EDGE_HIGH RO 0x0

2 GPIO_QSPI_SCLK_EDGE_LOW RO 0x0

1 GPIO_QSPI_SCLK_LEVEL_HIGH RO 0x0

0 GPIO_QSPI_SCLK_LEVEL_LOW RO 0x0

IO_QSPI: DORMANT_WAKE_INTE Register

Offset: 0x4c

Description

Interrupt Enable for dormant_wake

Table 336.

DORMANT_WAKE_INT

E Register

Bits Name Description Type Reset

31:24 Reserved. - - -

23 GPIO_QSPI_SD3_EDGE_HIGH RW 0x0

RP2040 Datasheet

2.19. GPIO 296

Bits Name Description Type Reset

22 GPIO_QSPI_SD3_EDGE_LOW RW 0x0

21 GPIO_QSPI_SD3_LEVEL_HIGH RW 0x0

20 GPIO_QSPI_SD3_LEVEL_LOW RW 0x0

19 GPIO_QSPI_SD2_EDGE_HIGH RW 0x0

18 GPIO_QSPI_SD2_EDGE_LOW RW 0x0

17 GPIO_QSPI_SD2_LEVEL_HIGH RW 0x0

16 GPIO_QSPI_SD2_LEVEL_LOW RW 0x0

15 GPIO_QSPI_SD1_EDGE_HIGH RW 0x0

14 GPIO_QSPI_SD1_EDGE_LOW RW 0x0

13 GPIO_QSPI_SD1_LEVEL_HIGH RW 0x0

12 GPIO_QSPI_SD1_LEVEL_LOW RW 0x0

11 GPIO_QSPI_SD0_EDGE_HIGH RW 0x0

10 GPIO_QSPI_SD0_EDGE_LOW RW 0x0

9 GPIO_QSPI_SD0_LEVEL_HIGH RW 0x0

8 GPIO_QSPI_SD0_LEVEL_LOW RW 0x0

7 GPIO_QSPI_SS_EDGE_HIGH RW 0x0

6 GPIO_QSPI_SS_EDGE_LOW RW 0x0

5 GPIO_QSPI_SS_LEVEL_HIGH RW 0x0

4 GPIO_QSPI_SS_LEVEL_LOW RW 0x0

3 GPIO_QSPI_SCLK_EDGE_HIGH RW 0x0

2 GPIO_QSPI_SCLK_EDGE_LOW RW 0x0

1 GPIO_QSPI_SCLK_LEVEL_HIGH RW 0x0

0 GPIO_QSPI_SCLK_LEVEL_LOW RW 0x0

IO_QSPI: DORMANT_WAKE_INTF Register

Offset: 0x50

Description

Interrupt Force for dormant_wake

Table 337.

DORMANT_WAKE_INT

F Register

Bits Name Description Type Reset

31:24 Reserved. - - -

23 GPIO_QSPI_SD3_EDGE_HIGH RW 0x0

22 GPIO_QSPI_SD3_EDGE_LOW RW 0x0

21 GPIO_QSPI_SD3_LEVEL_HIGH RW 0x0

20 GPIO_QSPI_SD3_LEVEL_LOW RW 0x0

19 GPIO_QSPI_SD2_EDGE_HIGH RW 0x0

18 GPIO_QSPI_SD2_EDGE_LOW RW 0x0

RP2040 Datasheet

2.19. GPIO 297

Bits Name Description Type Reset

17 GPIO_QSPI_SD2_LEVEL_HIGH RW 0x0

16 GPIO_QSPI_SD2_LEVEL_LOW RW 0x0

15 GPIO_QSPI_SD1_EDGE_HIGH RW 0x0

14 GPIO_QSPI_SD1_EDGE_LOW RW 0x0

13 GPIO_QSPI_SD1_LEVEL_HIGH RW 0x0

12 GPIO_QSPI_SD1_LEVEL_LOW RW 0x0

11 GPIO_QSPI_SD0_EDGE_HIGH RW 0x0

10 GPIO_QSPI_SD0_EDGE_LOW RW 0x0

9 GPIO_QSPI_SD0_LEVEL_HIGH RW 0x0

8 GPIO_QSPI_SD0_LEVEL_LOW RW 0x0

7 GPIO_QSPI_SS_EDGE_HIGH RW 0x0

6 GPIO_QSPI_SS_EDGE_LOW RW 0x0

5 GPIO_QSPI_SS_LEVEL_HIGH RW 0x0

4 GPIO_QSPI_SS_LEVEL_LOW RW 0x0

3 GPIO_QSPI_SCLK_EDGE_HIGH RW 0x0

2 GPIO_QSPI_SCLK_EDGE_LOW RW 0x0

1 GPIO_QSPI_SCLK_LEVEL_HIGH RW 0x0

0 GPIO_QSPI_SCLK_LEVEL_LOW RW 0x0

IO_QSPI: DORMANT_WAKE_INTS Register

Offset: 0x54

Description

Interrupt status after masking & forcing for dormant_wake

Table 338.

DORMANT_WAKE_INT

S Register

Bits Name Description Type Reset

31:24 Reserved. - - -

23 GPIO_QSPI_SD3_EDGE_HIGH RO 0x0

22 GPIO_QSPI_SD3_EDGE_LOW RO 0x0

21 GPIO_QSPI_SD3_LEVEL_HIGH RO 0x0

20 GPIO_QSPI_SD3_LEVEL_LOW RO 0x0

19 GPIO_QSPI_SD2_EDGE_HIGH RO 0x0

18 GPIO_QSPI_SD2_EDGE_LOW RO 0x0

17 GPIO_QSPI_SD2_LEVEL_HIGH RO 0x0

16 GPIO_QSPI_SD2_LEVEL_LOW RO 0x0

15 GPIO_QSPI_SD1_EDGE_HIGH RO 0x0

14 GPIO_QSPI_SD1_EDGE_LOW RO 0x0

13 GPIO_QSPI_SD1_LEVEL_HIGH RO 0x0

RP2040 Datasheet

2.19. GPIO 298

Bits Name Description Type Reset

12 GPIO_QSPI_SD1_LEVEL_LOW RO 0x0

11 GPIO_QSPI_SD0_EDGE_HIGH RO 0x0

10 GPIO_QSPI_SD0_EDGE_LOW RO 0x0

9 GPIO_QSPI_SD0_LEVEL_HIGH RO 0x0

8 GPIO_QSPI_SD0_LEVEL_LOW RO 0x0

7 GPIO_QSPI_SS_EDGE_HIGH RO 0x0

6 GPIO_QSPI_SS_EDGE_LOW RO 0x0

5 GPIO_QSPI_SS_LEVEL_HIGH RO 0x0

4 GPIO_QSPI_SS_LEVEL_LOW RO 0x0

3 GPIO_QSPI_SCLK_EDGE_HIGH RO 0x0

2 GPIO_QSPI_SCLK_EDGE_LOW RO 0x0

1 GPIO_QSPI_SCLK_LEVEL_HIGH RO 0x0

0 GPIO_QSPI_SCLK_LEVEL_LOW RO 0x0

2.19.6.3. Pad Control - User Bank

The User Bank Pad Control registers start at a base address of 0x4001c000 (defined as PADS_BANK0_BASE in SDK).

Table 339. List of

PADS_BANK0

registers

Offset Name Info

0x00 VOLTAGE_SELECT Voltage select. Per bank control

0x04 GPIO0 Pad control register

0x08 GPIO1 Pad control register

0x0c GPIO2 Pad control register

0x10 GPIO3 Pad control register

0x14 GPIO4 Pad control register

0x18 GPIO5 Pad control register

0x1c GPIO6 Pad control register

0x20 GPIO7 Pad control register

0x24 GPIO8 Pad control register

0x28 GPIO9 Pad control register

0x2c GPIO10 Pad control register

0x30 GPIO11 Pad control register

0x34 GPIO12 Pad control register

0x38 GPIO13 Pad control register

0x3c GPIO14 Pad control register

0x40 GPIO15 Pad control register

0x44 GPIO16 Pad control register

RP2040 Datasheet

2.19. GPIO 299

Offset Name Info

0x48 GPIO17 Pad control register

0x4c GPIO18 Pad control register

0x50 GPIO19 Pad control register

0x54 GPIO20 Pad control register

0x58 GPIO21 Pad control register

0x5c GPIO22 Pad control register

0x60 GPIO23 Pad control register

0x64 GPIO24 Pad control register

0x68 GPIO25 Pad control register

0x6c GPIO26 Pad control register

0x70 GPIO27 Pad control register

0x74 GPIO28 Pad control register

0x78 GPIO29 Pad control register

0x7c SWCLK Pad control register

0x80 SWD Pad control register

PADS_BANK0: VOLTAGE_SELECT Register

Offset: 0x00

Table 340.

VOLTAGE_SELECT

Register

Bits Description Type Reset

31:1 Reserved. - -

0 Voltage select. Per bank control

0x0 → Set voltage to 3.3V (DVDD >= 2V5)

0x1 → Set voltage to 1.8V (DVDD <= 1V8)

RW 0x0

PADS_BANK0: GPIO0, GPIO1, …, GPIO28, GPIO29 Registers

Offsets: 0x04, 0x08, …, 0x74, 0x78

Description

Pad control register

Table 341. GPIO0,

GPIO1, …, GPIO28,

GPIO29 Registers

Bits Name Description Type Reset

31:8 Reserved. - - -

7 OD Output disable. Has priority over output enable from

peripherals

RW 0x0

6 IE Input enable RW 0x1

5:4 DRIVE Drive strength.

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

RW 0x1

3 PUE Pull up enable RW 0x0

RP2040 Datasheet

2.19. GPIO 300

Bits Name Description Type Reset

2 PDE Pull down enable RW 0x1

1 SCHMITT Enable schmitt trigger RW 0x1

0 SLEWFAST Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: SWCLK Register

Offset: 0x7c

Description

Pad control register

Table 342. SWCLK

Register
Bits Name Description Type Reset

31:8 Reserved. - - -

7 OD Output disable. Has priority over output enable from

peripherals

RW 0x1

6 IE Input enable RW 0x1

5:4 DRIVE Drive strength.

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

RW 0x1

3 PUE Pull up enable RW 0x1

2 PDE Pull down enable RW 0x0

1 SCHMITT Enable schmitt trigger RW 0x1

0 SLEWFAST Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_BANK0: SWD Register

Offset: 0x80

Description

Pad control register

Table 343. SWD

Register
Bits Name Description Type Reset

31:8 Reserved. - - -

7 OD Output disable. Has priority over output enable from

peripherals

RW 0x0

6 IE Input enable RW 0x1

5:4 DRIVE Drive strength.

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

RW 0x1

3 PUE Pull up enable RW 0x1

2 PDE Pull down enable RW 0x0

1 SCHMITT Enable schmitt trigger RW 0x1

RP2040 Datasheet

2.19. GPIO 301

Bits Name Description Type Reset

0 SLEWFAST Slew rate control. 1 = Fast, 0 = Slow RW 0x0

2.19.6.4. Pad Control - QSPI Bank

The QSPI Bank Pad Control registers start at a base address of 0x40020000 (defined as PADS_QSPI_BASE in SDK).

Table 344. List of

PADS_QSPI registers
Offset Name Info

0x00 VOLTAGE_SELECT Voltage select. Per bank control

0x04 GPIO_QSPI_SCLK Pad control register

0x08 GPIO_QSPI_SD0 Pad control register

0x0c GPIO_QSPI_SD1 Pad control register

0x10 GPIO_QSPI_SD2 Pad control register

0x14 GPIO_QSPI_SD3 Pad control register

0x18 GPIO_QSPI_SS Pad control register

PADS_QSPI: VOLTAGE_SELECT Register

Offset: 0x00

Table 345.

VOLTAGE_SELECT

Register

Bits Description Type Reset

31:1 Reserved. - -

0 Voltage select. Per bank control

0x0 → Set voltage to 3.3V (DVDD >= 2V5)

0x1 → Set voltage to 1.8V (DVDD <= 1V8)

RW 0x0

PADS_QSPI: GPIO_QSPI_SCLK Register

Offset: 0x04

Description

Pad control register

Table 346.

GPIO_QSPI_SCLK

Register

Bits Name Description Type Reset

31:8 Reserved. - - -

7 OD Output disable. Has priority over output enable from

peripherals

RW 0x0

6 IE Input enable RW 0x1

5:4 DRIVE Drive strength.

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

RW 0x1

3 PUE Pull up enable RW 0x0

2 PDE Pull down enable RW 0x1

1 SCHMITT Enable schmitt trigger RW 0x1

RP2040 Datasheet

2.19. GPIO 302

Bits Name Description Type Reset

0 SLEWFAST Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_QSPI: GPIO_QSPI_SD0, GPIO_QSPI_SD1, GPIO_QSPI_SD2,

GPIO_QSPI_SD3 Registers

Offsets: 0x08, 0x0c, 0x10, 0x14

Description

Pad control register

Table 347.

GPIO_QSPI_SD0,

GPIO_QSPI_SD1,

GPIO_QSPI_SD2,

GPIO_QSPI_SD3

Registers

Bits Name Description Type Reset

31:8 Reserved. - - -

7 OD Output disable. Has priority over output enable from

peripherals

RW 0x0

6 IE Input enable RW 0x1

5:4 DRIVE Drive strength.

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

RW 0x1

3 PUE Pull up enable RW 0x0

2 PDE Pull down enable RW 0x0

1 SCHMITT Enable schmitt trigger RW 0x1

0 SLEWFAST Slew rate control. 1 = Fast, 0 = Slow RW 0x0

PADS_QSPI: GPIO_QSPI_SS Register

Offset: 0x18

Description

Pad control register

Table 348.

GPIO_QSPI_SS

Register

Bits Name Description Type Reset

31:8 Reserved. - - -

7 OD Output disable. Has priority over output enable from

peripherals

RW 0x0

6 IE Input enable RW 0x1

5:4 DRIVE Drive strength.

0x0 → 2mA

0x1 → 4mA

0x2 → 8mA

0x3 → 12mA

RW 0x1

3 PUE Pull up enable RW 0x1

2 PDE Pull down enable RW 0x0

1 SCHMITT Enable schmitt trigger RW 0x1

0 SLEWFAST Slew rate control. 1 = Fast, 0 = Slow RW 0x0

RP2040 Datasheet

2.19. GPIO 303

2.20. Sysinfo

2.20.1. Overview

The sysinfo block contains system information. The first register contains the Chip ID, which allows the programmer to

know which version of the chip software is running on. The second register will always read as 1 on the device.

2.20.2. List of Registers

The sysinfo registers start at a base address of 0x40000000 (defined as SYSINFO_BASE in SDK).

Table 349. List of

SYSINFO registers
Offset Name Info

0x00 CHIP_ID JEDEC JEP-106 compliant chip identifier.

0x04 PLATFORM Platform register. Allows software to know what environment it

is running in.

0x40 GITREF_RP2040 Git hash of the chip source. Used to identify chip version.

SYSINFO: CHIP_ID Register

Offset: 0x00

Description

JEDEC JEP-106 compliant chip identifier.

Table 350. CHIP_ID

Register
Bits Name Description Type Reset

31:28 REVISION RO -

27:12 PART RO -

11:0 MANUFACTURER RO -

SYSINFO: PLATFORM Register

Offset: 0x04

Description

Platform register. Allows software to know what environment it is running in.

Table 351. PLATFORM

Register
Bits Name Description Type Reset

31:2 Reserved. - - -

1 ASIC RO 0x0

0 FPGA RO 0x0

SYSINFO: GITREF_RP2040 Register

Offset: 0x40

RP2040 Datasheet

2.20. Sysinfo 304

Table 352.

GITREF_RP2040

Register

Bits Description Type Reset

31:0 Git hash of the chip source. Used to identify chip version. RO -

2.21. Syscfg

2.21.1. Overview

The system config block controls miscellaneous chip settings including:

• NMI (Non-Maskable-Interrupt) mask to pick sources that generate the NMI

• Processor config

◦ DAP Instance ID (to change the address that the SWD uses to communicate with the core in debug)

◦ Processor status (If the processor is halted, which may be useful in debug)

• Processor IO config

◦ Input synchroniser control (to allow input synchronisers to be bypassed to reduce latency where clocks are

synchronous)

• Debug control

◦ Provides the ability to control the SWD interface from inside the chip. This means Core 0 could debug Core 1,

which may make debug connectivity easier.

• Memory power down (each memory can be powered down if not being used to save a small amount of extra

power).

2.21.2. List of Registers

The system config registers start at a base address of 0x40004000 (defined as SYSCFG_BASE in SDK).

Table 353. List of

SYSCFG registers
Offset Name Info

0x00 PROC0_NMI_MASK Processor core 0 NMI source mask

0x04 PROC1_NMI_MASK Processor core 1 NMI source mask

0x08 PROC_CONFIG Configuration for processors

0x0c PROC_IN_SYNC_BYPASS For each bit, if 1, bypass the input synchronizer between that

GPIO

and the GPIO input register in the SIO. The input synchronizers

should

generally be unbypassed, to avoid injecting metastabilities into

processors.

If you’re feeling brave, you can bypass to save two cycles of

input

latency. This register applies to GPIO 0…29.

RP2040 Datasheet

2.21. Syscfg 305

Offset Name Info

0x10 PROC_IN_SYNC_BYPASS_HI For each bit, if 1, bypass the input synchronizer between that

GPIO

and the GPIO input register in the SIO. The input synchronizers

should

generally be unbypassed, to avoid injecting metastabilities into

processors.

If you’re feeling brave, you can bypass to save two cycles of

input

latency. This register applies to GPIO 30…35 (the QSPI IOs).

0x14 DBGFORCE Directly control the SWD debug port of either processor

0x18 MEMPOWERDOWN Control power downs to memories. Set high to power down

memories.

Use with extreme caution

SYSCFG: PROC0_NMI_MASK Register

Offset: 0x00

Description

Processor core 0 NMI source mask

Table 354.

PROC0_NMI_MASK

Register

Bits Description Type Reset

31:0 Set a bit high to enable NMI from that IRQ RW 0x00000000

SYSCFG: PROC1_NMI_MASK Register

Offset: 0x04

Description

Processor core 1 NMI source mask

Table 355.

PROC1_NMI_MASK

Register

Bits Description Type Reset

31:0 Set a bit high to enable NMI from that IRQ RW 0x00000000

SYSCFG: PROC_CONFIG Register

Offset: 0x08

Description

Configuration for processors

Table 356.

PROC_CONFIG

Register

Bits Name Description Type Reset

31:28 PROC1_DAP_INST

ID

Configure proc1 DAP instance ID.

Recommend that this is NOT changed until you require

debug access in multi-chip environment

WARNING: do not set to 15 as this is reserved for

RescueDP

RW 0x1

27:24 PROC0_DAP_INST

ID

Configure proc0 DAP instance ID.

Recommend that this is NOT changed until you require

debug access in multi-chip environment

WARNING: do not set to 15 as this is reserved for

RescueDP

RW 0x0

RP2040 Datasheet

2.21. Syscfg 306

Bits Name Description Type Reset

23:2 Reserved. - - -

1 PROC1_HALTED Indication that proc1 has halted RO 0x0

0 PROC0_HALTED Indication that proc0 has halted RO 0x0

SYSCFG: PROC_IN_SYNC_BYPASS Register

Offset: 0x0c

Table 357.

PROC_IN_SYNC_BYPA

SS Register

Bits Description Type Reset

31:30 Reserved. - -

29:0 For each bit, if 1, bypass the input synchronizer between that GPIO

and the GPIO input register in the SIO. The input synchronizers should

generally be unbypassed, to avoid injecting metastabilities into processors.

If you’re feeling brave, you can bypass to save two cycles of input

latency. This register applies to GPIO 0…29.

RW 0x00000000

SYSCFG: PROC_IN_SYNC_BYPASS_HI Register

Offset: 0x10

Table 358.

PROC_IN_SYNC_BYPA

SS_HI Register

Bits Description Type Reset

31:6 Reserved. - -

5:0 For each bit, if 1, bypass the input synchronizer between that GPIO

and the GPIO input register in the SIO. The input synchronizers should

generally be unbypassed, to avoid injecting metastabilities into processors.

If you’re feeling brave, you can bypass to save two cycles of input

latency. This register applies to GPIO 30…35 (the QSPI IOs).

RW 0x00

SYSCFG: DBGFORCE Register

Offset: 0x14

Description

Directly control the SWD debug port of either processor

Table 359. DBGFORCE

Register
Bits Name Description Type Reset

31:8 Reserved. - - -

7 PROC1_ATTACH Attach processor 1 debug port to syscfg controls, and

disconnect it from external SWD pads.

RW 0x0

6 PROC1_SWCLK Directly drive processor 1 SWCLK, if PROC1_ATTACH is

set

RW 0x1

5 PROC1_SWDI Directly drive processor 1 SWDIO input, if PROC1_ATTACH

is set

RW 0x1

4 PROC1_SWDO Observe the value of processor 1 SWDIO output. RO -

3 PROC0_ATTACH Attach processor 0 debug port to syscfg controls, and

disconnect it from external SWD pads.

RW 0x0

2 PROC0_SWCLK Directly drive processor 0 SWCLK, if PROC0_ATTACH is

set

RW 0x1

RP2040 Datasheet

2.21. Syscfg 307

Bits Name Description Type Reset

1 PROC0_SWDI Directly drive processor 0 SWDIO input, if PROC0_ATTACH

is set

RW 0x1

0 PROC0_SWDO Observe the value of processor 0 SWDIO output. RO -

SYSCFG: MEMPOWERDOWN Register

Offset: 0x18

Description

Control power downs to memories. Set high to power down memories.

Use with extreme caution

Table 360.

MEMPOWERDOWN

Register

Bits Name Description Type Reset

31:8 Reserved. - - -

7 ROM RW 0x0

6 USB RW 0x0

5 SRAM5 RW 0x0

4 SRAM4 RW 0x0

3 SRAM3 RW 0x0

2 SRAM2 RW 0x0

1 SRAM1 RW 0x0

0 SRAM0 RW 0x0

2.22. TBMAN

TBMAN refers to the testbench manager, which is used during chip development simulations to verify the design.

During these simulations TBMAN allows software running on RP2040 to control the testbench and simulation

environment. On the real chip it has no effect other than providing a single PLATFORM register to indicate that this is the

real chip. This PLATFORM functionality is duplicated in the sysinfo (Section 2.20) registers.

2.22.1. List of Registers

The TBMAN registers start at a base address of 0x4006c000 (defined as TBMAN_BASE in SDK).

Table 361. List of

TBMAN registers
Offset Name Info

0x0 PLATFORM Indicates the type of platform in use

TBMAN: PLATFORM Register

Offset: 0x0

Description

Indicates the type of platform in use

Table 362. PLATFORM

Register
Bits Name Description Type Reset

31:2 Reserved. - - -

RP2040 Datasheet

2.22. TBMAN 308

Bits Name Description Type Reset

1 FPGA Indicates the platform is an FPGA RO 0x0

0 ASIC Indicates the platform is an ASIC RO 0x1

RP2040 Datasheet

2.22. TBMAN 309

Chapter 3. PIO

3.1. Overview

There are 2 identical PIO blocks in RP2040. Each PIO block has dedicated connections to the bus fabric, GPIO and

interrupt controller. The diagram for a single PIO block is show in Figure 38.

Figure 38. PIO block-

level diagram. There

are two PIO blocks

with four state

machines each. The

four state machines

simultaneously

execute programs

from a shared

instruction memory.

FIFO data queues

buffer data transferred

between PIO and the

system. GPIO mapping

logic allows each

state machine to

observe and

manipulate up to 30

GPIOs.

The programmable input/output block (PIO) is a versatile hardware interface. It can support a variety of IO standards,

including:

• 8080 and 6800 parallel bus

• I2C

• 3-pin I2S

• SDIO

• SPI, DSPI, QSPI

• UART

• DVI or VGA (via resistor DAC)

PIO is programmable in the same sense as a processor. There are two PIO blocks with four state machines each, that

can independently execute sequential programs to manipulate GPIOs and transfer data. Unlike a general purpose

processor, PIO state machines are highly specialised for IO, with a focus on determinism, precise timing, and close

integration with fixed-function hardware. Each state machine is equipped with:

• Two 32-bit shift registers – either direction, any shift count

• Two 32-bit scratch registers

• 4×32-bit bus FIFO in each direction (TX/RX), reconfigurable as 8×32 in a single direction

• Fractional clock divider (16 integer, 8 fractional bits)

RP2040 Datasheet

3.1. Overview 310

• Flexible GPIO mapping

• DMA interface, sustained throughput up to 1 word per clock from system DMA

• IRQ flag set/clear/status

Each state machine, along with its supporting hardware, occupies approximately the same silicon area as a standard

serial interface block, such as an SPI or I2C controller. However, PIO state machines can be configured and

reconfigured dynamically to implement numerous different interfaces.

Making state machines programmable in a software-like manner, rather than a fully configurable logic fabric like a

CPLD, allows more hardware interfaces to be offered in the same cost and power envelope. This also presents a more

familiar programming model, and simpler tool flow, to those who wish to exploit PIO’s full flexibility by programming it

directly, rather than using a premade interface from the PIO library.

PIO is highly performant as well as flexible, thanks to a carefully selected set of fixed-function hardware inside each

state machine. When outputting DPI, PIO can sustain 360Mbps during the active scanline period when running from a

48MHz system clock. In this example, one state machine is handling frame/scanline timing and generating the pixel

clock, while another is handling the pixel data, and unpacking run-length-encoded scanlines.

State machines' inputs and outputs are mapped to up to 32 GPIOs (limited to 30 GPIOs for RP2040), and all state

machines have independent, simultaneous access to any GPIO. For example, the standard UART code allows TX, RX,

CTS and RTS to be any four arbitrary GPIOs, and I2C permits the same for SDA and SCL. The amount of freedom

available depends on how exactly a given PIO program chooses to use PIO’s pin mapping resources, but at the

minimum, an interface can be freely shifted up or down by some number of GPIOs.

3.2. Programmer’s Model

The four state machines execute from a shared instruction memory. System software loads programs into this memory,

configures the state machines and IO mapping, and then sets the state machines running. PIO programs come from

various sources: assembled directly by the user, drawn from the PIO library, or generated programmatically by user

software.

From this point on, state machines are generally autonomous, and system software interacts through DMA, interrupts

and control registers, as with other peripherals on RP2040. For more complex interfaces, PIO provides a small but

flexible set of primitives which allow system software to be more hands-on with state machine control flow.

Figure 39. State

machine overview.

Data flows in and out

through a pair of

FIFOs. The state

machine executes a

program which

transfers data

between these FIFOs,

a set of internal

registers, and the pins.

The clock divider can

reduce the state

machine’s execution

speed by a constant

factor.

3.2.1. PIO Programs

PIO state machines execute short, binary programs.

Programs for common interfaces, such as UART, SPI, or I2C, are available in the PIO library, so in many cases, it is not

necessary to write PIO programs. However, the PIO is much more flexible when programmed directly, supporting a wide

RP2040 Datasheet

3.2. Programmer’s Model 311

variety of interfaces which may not have been foreseen by its designers.

The PIO has a total of nine instructions: JMP, WAIT, IN, OUT, PUSH, PULL, MOV, IRQ, and SET. See Section 3.4 for details on these

instructions.

Though the PIO only has a total of nine instructions, it would be difficult to edit PIO program binaries by hand. PIO

assembly is a textual format, describing a PIO program, where each command corresponds to one instruction in the

output binary. Below is an example program in PIO assembly:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/squarewave.pio Lines 7 - 12

 7 .program squarewave
 8 set pindirs, 1 ; Set pin to output
 9 again:
10 set pins, 1 [1] ; Drive pin high and then delay for one cycle
11 set pins, 0 ; Drive pin low
12 jmp again ; Set PC to label `again`

The PIO assembler is included with the SDK, and is called pioasm. This program processes a PIO assembly input text file,

which may contain multiple programs, and writes out the assembled programs ready for use. For the SDK these

assembled programs are emitted in form of C headers, containing constant arrays: For more information see Section

3.3

3.2.2. Control Flow

On every system clock cycle, each state machine fetches, decodes and executes one instruction. Each instruction takes

precisely one cycle, unless it explicitly stalls (such as the WAIT instruction). Instructions may also insert a delay of up to

31 cycles before the next instruction is executed to aid the writing of cycle-exact programs.

The program counter, or PC, points to the location in the instruction memory being executed on this cycle. Generally, PC

increments by one each cycle, wrapping at the end of the instruction memory. Jump instructions are an exception and

explicitly provide the next value that PC will take.

Our example assembly program (listed as .program squarewave above) shows both of these concepts in practice. It drives

a 50/50 duty cycle square wave onto a GPIO, with a period of four cycles. Using some other features (e.g. side-set) this

can be made as low as two cycles.

 NOTE

Side-set is where a state machine drives a small number of GPIOs in addition to the main side effects of the

instruction it executes. It’s described fully in Section 3.5.1.

The system has write-only access to the instruction memory, which is used to load programs:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/squarewave.c Lines 34 - 38

34 // Load the assembled program directly into the PIO's instruction memory.
35 // Each PIO instance has a 32-slot instruction memory, which all 4 state
36 // machines can see. The system has write-only access.
37 for (int i = 0; i < count_of(squarewave_program_instructions); ++i)
38 pio->instr_mem[i] = squarewave_program_instructions[i];

The clock divider slows the state machine’s execution by a constant factor, represented as a 16.8 fixed-point fractional

number. Using the above example, if a clock division of 2.5 were programmed, the square wave would have a period of

 cycles. This is useful for setting a precise baud rate for a serial interface, such as a UART.

RP2040 Datasheet

3.2. Programmer’s Model 312

https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/squarewave.pio#L7-L12
https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/squarewave.c#L34-L38

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/squarewave.c Lines 42 - 47

42 // Configure state machine 0 to run at sysclk/2.5. The state machines can
43 // run as fast as one instruction per clock cycle, but we can scale their
44 // speed down uniformly to meet some precise frequency target, e.g. for a
45 // UART baud rate. This register has 16 integer divisor bits and 8
46 // fractional divisor bits.
47 pio->sm[0].clkdiv = (uint32_t) (2.5f * (1 << 16));

The above code fragments are part of a complete code example which drives a 12.5MHz square wave out of GPIO 0 (or

any other pins we might choose to map). We can also use pins WAIT PIN instruction to stall a state machine’s execution

for some amount of time, or a JMP PIN instruction to branch on the state of a pin, so control flow can vary based on pin

state.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/squarewave.c Lines 51 - 59

51 // There are five pin mapping groups (out, in, set, side-set, jmp pin)
52 // which are used by different instructions or in different circumstances.
53 // Here we're just using SET instructions. Configure state machine 0 SETs
54 // to affect GPIO 0 only; then configure GPIO0 to be controlled by PIO0,
55 // as opposed to e.g. the processors.
56 pio->sm[0].pinctrl =
57 (1 << PIO_SM0_PINCTRL_SET_COUNT_LSB) |
58 (0 << PIO_SM0_PINCTRL_SET_BASE_LSB);
59 gpio_set_function(0, GPIO_FUNC_PIO0);

The system can start and stop each state machine at any time, via the CTRL register. Multiple state machines can be

started simultaneously, and the deterministic nature of PIO means they can stay perfectly synchronised.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/squarewave.c Lines 63 - 67

63 // Set the state machine running. The PIO CTRL register is global within a
64 // PIO instance, so you can start/stop multiple state machines
65 // simultaneously. We're using the register's hardware atomic set alias to
66 // make one bit high without doing a read-modify-write on the register.
67 hw_set_bits(&pio->ctrl, 1 << (PIO_CTRL_SM_ENABLE_LSB + 0));

Most instructions are executed from the instruction memory, but there are other sources, which can be freely mixed:

• Instructions written to a special configuration register (SMx INSTR) are immediately executed, momentarily

interrupting other execution. For example, a JMP instruction written to SMx INSTR will cause the state machine to start

executing from a different location.

• Instructions can be executed from a register, using the MOV EXEC instruction.

• Instructions can be executed from the output shifter, using the OUT EXEC instruction

The last of these is particularly versatile: instructions can be embedded in the stream of data passing through the FIFO.

The I2C example uses this to embed e.g. STOP and RESTART line conditions alongside normal data. In the case of MOV and

OUT EXEC, the MOV/OUT itself executes in one cycle, and the executee on the next.

3.2.3. Registers

Each state machine possesses a small number of internal registers. These hold input or output data, and temporary

values such as loop counter variables.

RP2040 Datasheet

3.2. Programmer’s Model 313

https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/squarewave.c#L42-L47
https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/squarewave.c#L51-L59
https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/squarewave.c#L63-L67

3.2.3.1. Output Shift Register (OSR)

Figure 40. Output Shift

Register (OSR). Data is

parcelled out 1…32

bits at a time, and

unused data is

recycled by a

bidirectional shifter.

Once empty, the OSR

is reloaded from the

TX FIFO.

The Output Shift Register (OSR) holds and shifts output data, between the TX FIFO and the pins (or other destinations,

such as the scratch registers).

• PULL instructions: remove a 32-bit word from the TX FIFO and place into the OSR.

• OUT instructions shift data from the OSR to other destinations, 1…32 bits at a time.

• The OSR fills with zeroes as data is shifted out

• The state machine will automatically refill the OSR from the FIFO on an OUT instruction, once some total shift count

threshold is reached, if autopull is enabled

• Shift direction can be left/right, configurable by the processor via configuration registers

For example, to stream data through the FIFO and output to the pins at a rate of one byte per two clocks:

1 .program pull_example1
2 loop:
3 out pins, 8
4 public entry_point:
5 pull
6 out pins, 8 [1]
7 out pins, 8 [1]
8 out pins, 8
9 jmp loop

Autopull (see Section 3.5.4) allows the hardware to automatically refill the OSR in the majority of cases, with the state

machine stalling if it tries to OUT from an empty OSR. This has two benefits:

• No instructions spent on explicitly pulling from FIFO at the right time

• Higher throughput: can output up to 32 bits on every single clock cycle, if the FIFO stays topped up

After configuring autopull, the above program can be simplified to the following, which behaves identically:

1 .program pull_example2
2
3 loop:
4 out pins, 8
5 public entry_point:
6 jmp loop

Program wrapping (Section 3.5.2) allows further simplification and, if desired, an output of 1 byte every system clock

cycle.

1 .program pull_example3
2
3 public entry_point:
4 .wrap_target
5 out pins, 8 [1]
6 .wrap

RP2040 Datasheet

3.2. Programmer’s Model 314

3.2.3.2. Input Shift Register (ISR)

Figure 41. Input Shift

Register (ISR). Data

enters 1…32 bits at a

time, and current

contents is shifted left

or right to make room.

Once full, contents is

written to the RX FIFO.

• IN instructions shift 1…32 bits at a time into the register.

• PUSH instructions write the ISR contents to the RX FIFO.

• The ISR is cleared to all-zeroes when pushed.

• The state machine will automatically push the ISR on an IN instruction, once some shift threshold is reached, if

autopush is enabled.

• Shift direction is configurable by the processor via configuration registers

Some peripherals, like UARTs, must shift in from the left to get correct bit order, since the wire order is LSB-first;

however, the processor may expect the resulting byte to be right-aligned. This is solved by the special null input source,

which allows the programmer to shift some number of zeroes into the ISR, following the data.

3.2.3.3. Shift Counters

State machines remember how many bits, in total, have been shifted out of the OSR via OUT instructions, and into the ISR

via IN instructions. This information is tracked at all times by a pair of hardware counters — the output shift counter and

the input shift counter — each capable of holding values from 0 to 32 inclusive. With each shift operation, the relevant

counter is incremented by the shift count, up to the maximum value of 32 (equal to the width of the shift register). The

state machine can be configured to perform certain actions when a counter reaches a configurable threshold:

• The OSR can be automatically refilled once some number of bits have been shifted out. See Section 3.5.4

• The ISR can be automatically emptied once some number of bits have been shifted in. See Section 3.5.4

• PUSH or PULL instructions can be conditioned on the input or output shift counter, respectively

On PIO reset, or the assertion of CTRL_SM_RESTART, the input shift counter is cleared to 0 (nothing yet shifted in), and the

output shift counter is initialised to 32 (nothing remaining to be shifted out; fully exhausted). Some other instructions

affect the shift counters:

• A successful PULL clears the output shift counter to 0

• A successful PUSH clears the input shift counter to 0

• MOV OSR, … (i.e. any MOV instruction that writes OSR) clears the output shift counter to 0

• MOV ISR, … (i.e. any MOV instruction that writes ISR) clears the input shift counter to 0

• OUT ISR, count sets the input shift counter to count

3.2.3.4. Scratch Registers

Each state machine has two 32-bit internal scratch registers, called X and Y.

They are used as:

• Source/destination for IN/OUT/SET/MOV

• Source for branch conditions

For example, suppose we wanted to produce a long pulse for "1" data bits, and a short pulse for "0" data bits:

RP2040 Datasheet

3.2. Programmer’s Model 315

 1 .program ws2812_led
 2
 3 public entry_point:
 4 pull
 5 set x, 23 ; Loop over 24 bits
 6 bitloop:
 7 set pins, 1 ; Drive pin high
 8 out y, 1 [5] ; Shift 1 bit out, and write it to y
 9 jmp !y skip ; Skip the extra delay if the bit was 0
10 nop [5]
11 skip:
12 set pins, 0 [5]
13 jmp x-- bitloop ; Jump if x nonzero, and decrement x
14 jmp entry_point

Here X is used as a loop counter, and Y is used as a temporary variable for branching on single bits from the OSR. This

program can be used to drive a WS2812 LED interface, although more compact implementations are possible (as few

as 3 instructions).

MOV allows the use of the scratch registers to save/restore the shift registers if, for example, you would like to repeatedly

shift out the same sequence.

 NOTE

A much more compact WS2812 example (4 instructions total) is shown in Section 3.6.2

3.2.3.5. FIFOs

Each state machine has a pair of 4-word deep FIFOs, one for data transfer from system to state machine (TX), and the

other for state machine to system (RX). The TX FIFO is written to by system busmasters, such as a processor or DMA

controller, and the RX FIFO is written to by the state machine. FIFOs decouple the timing of the PIO state machines and

the system bus, allowing state machines to go for longer periods without processor intervention.

FIFOs also generate data request (DREQ) signals, which allow a system DMA controller to pace its reads/writes based

on the presence of data in an RX FIFO, or space for new data in a TX FIFO. This allows a processor to set up a long

transaction, potentially involving many kilobytes of data, which will proceed with no further processor intervention.

Often, a state machine is only transferring data in one direction. In this case the SHIFTCTRL_FJOIN option can merge the

two FIFOs into a single 8-entry FIFO going in one direction only. This is useful for high-bandwidth interfaces such as DPI.

3.2.4. Stalling

State machines may momentarily pause execution for a number of reasons:

• A WAIT instruction’s condition is not yet met

• A blocking PULL when the TX FIFO is empty, or a blocking PUSH when the RX FIFO is full

• An IRQ WAIT instruction which has set an IRQ flag, and is waiting for it to clear

• An OUT instruction when autopull is enabled, and OSR has already reached its shift threshold

• An IN instruction when autopush is enabled, ISR reaches its shift threshold, and the RX FIFO is full

In this case, the program counter does not advance, and the state machine will continue executing this instruction on

the next cycle. If the instruction specifies some number of delay cycles before the next instruction starts, these do not

begin until after the stall clears.

RP2040 Datasheet

3.2. Programmer’s Model 316

 NOTE

Side-set (Section 3.5.1) is not affected by stalls, and always takes place on the first cycle of the attached instruction.

3.2.5. Pin Mapping

PIO controls the output level and direction of up to 32 GPIOs, and can observe their input levels. On every system clock

cycle, each state machine may do none, one, or both of the following:

• Change the level or direction of some GPIOs via an OUT or SET instruction, or read some GPIOs via an IN instruction

• Change the level or direction of some GPIOs via a side-set operation

Each of these operations is on one of four contiguous ranges of GPIOs, with the base and count of each range

configured via each state machine’s PINCTRL register. There is a range for each of OUT, SET, IN and side-set operations.

Each range can cover any of the GPIOs accessible to a given PIO block (on RP2040 this is the 30 user GPIOs), and the

ranges can overlap.

For each individual GPIO output (level and direction separately), PIO considers all 8 writes that may have occurred on

that cycle, and applies the write from the highest-numbered state machine. If the same state machine performs a SET

/OUT and a side-set on the same GPIO simultaneously, the side-set is used. If no state machine writes to this GPIO

output, its value does not change from the previous cycle.

Generally each state machine’s outputs are mapped to a distinct group of GPIOs, implementing some peripheral

interface.

3.2.6. IRQ Flags

IRQ flags are state bits which can be set or cleared by state machines or the system. There are 8 in total: all 8 are visible

to all state machines, and the lower 4 can also be masked into one of PIO’s interrupt request lines, via the IRQ0_INTE and

IRQ1_INTE control registers.

They have two main uses:

• Asserting system level interrupts from a state machine program, and optionally waiting for the interrupt to be

acknowledged

• Synchronising execution between two state machines

State machines interact with the flags via the IRQ and WAIT instructions.

3.2.7. Interactions Between State Machines

The instruction memory is implemented as a 1-write 4-read register file, so all four state machines can read an

instruction on the same cycle, without stalling.

There are three ways to apply the multiple state machines:

• Pointing multiple state machines at the same program

• Pointing multiple state machines at different programs

• Using multiple state machines to run different parts of the same interface, e.g. TX and RX side of a UART, or

clock/hsync and pixel data on a DPI display

State machines can not communicate data, but they can synchronise with one another by using the IRQ flags. There are

8 flags total (the lower four of which can be masked for use as system IRQs), and each state machine can set or clear

any flag using the IRQ instruction, and can wait for a flag to go high or low using the WAIT IRQ instruction. This allows

cycle-accurate synchronisation between state machines.

RP2040 Datasheet

3.2. Programmer’s Model 317

3.3. PIO Assembler (pioasm)

The PIO Assembler parses a PIO source file and outputs the assembled version ready for inclusion in an RP2040

application. This includes C and C++ applications built against the SDK, and Python programs running on the RP2040

MicroPython port.

This section briefly introduces the directives and instructions that can be used in pioasm input. A deeper discussion of

how to use pioasm, how it is integrated into the SDK build system, extended features such as code pass through, and the

various output formats it can produce, is given in the Raspberry Pi Pico C/C++ SDK book.

3.3.1. Directives

The following directives control the assembly of PIO programs:

Table 363. pioasm

directives
.define (PUBLIC) <symbol> <value> Define an integer symbol named <symbol> with the value <value> (see Section

3.3.2). If this .define appears before the first program in the input file, then the

define is global to all programs, otherwise it is local to the program in which it

occurs. If PUBLIC is specified the symbol will be emitted into the assembled

output for use by user code. For the SDK this takes the form of:

#define <program_name>_<symbol> value for program symbols or #define <symbol>

value for global symbols

.program <name> Start a new program with the name <name>. Note that that name is used in

code so should be alphanumeric/underscore not starting with a digit. The

program lasts until another .program directive or the end of the source file. PIO

instructions are only allowed within a program

.origin <offset> Optional directive to specify the PIO instruction memory offset at which the

program must load. Most commonly this is used for programs that must load

at offset 0, because they use data based JMPs with the (absolute) jmp target

being stored in only a few bits. This directive is invalid outside of a program

.side_set <count> (opt) (pindirs) If this directive is present, <count> indicates the number of side-set bits to be

used. Additionally opt may be specified to indicate that a side <value> is

optional for instructions (note this requires stealing an extra bit — in addition

to the <count> bits — from those available for the instruction delay). Finally,

pindirs may be specified to indicate that the side set values should be applied

to the PINDIRs and not the PINs. This directive is only valid within a program

before the first instruction

.wrap_target Place prior to an instruction, this directive specifies the instruction where

execution continues due to program wrapping. This directive is invalid outside

of a program, may only be used once within a program, and if not specified

defaults to the start of the program

.wrap Placed after an instruction, this directive specifies the instruction after which,

in normal control flow (i.e. jmp with false condition, or no jmp), the program

wraps (to .wrap_target instruction). This directive is invalid outside of a

program, may only be used once within a program, and if not specified

defaults to after the last program instruction.

.lang_opt <lang> <name> <option> Specifies an option for the program related to a particular language generator.

(See Language generators). This directive is invalid outside of a program

.word <value> Stores a raw 16-bit value as an instruction in the program. This directive is

invalid outside of a program.

RP2040 Datasheet

3.3. PIO Assembler (pioasm) 318

https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf#pioasm_language_generators

3.3.2. Values

The following types of values can be used to define integer numbers or branch targets

Table 364. Values in

pioasm, i.e. <value>
integer An integer value e.g. 3 or -7

hex A hexadecimal value e.g. 0xf

binary A binary value e.g. 0b1001

symbol A value defined by a .define (see [pioasm_define])

<label> The instruction offset of the label within the program. This makes most sense when used with

a JMP instruction (see Section 3.4.2)

(<expression>) An expression to be evaluated; see expressions. Note that the parentheses are necessary.

3.3.3. Expressions

Expressions may be freely used within pioasm values.

Table 365.

Expressions in pioasm

i.e. <expression>

<expression> + <expression> The sum of two expressions

<expression> - <expression> The difference of two expressions

<expression> * <expression> The multiplication of two expressions

<expression> / <expression> The integer division of two expressions

- <expression> The negation of another expression

:: <expression> The bit reverse of another expression

<value> Any value (see Section 3.3.2)

3.3.4. Comments

Line comments are supported with // or ;

C-style block comments are supported via /* and */

3.3.5. Labels

Labels are of the form:

<symbol>:

or

PUBLIC <symbol>:

at the start of a line.

RP2040 Datasheet

3.3. PIO Assembler (pioasm) 319

 TIP

A label is really just an automatic .define with a value set to the current program instruction offset. A PUBLIC label is

exposed to the user code in the same way as a PUBLIC .define.

3.3.6. Instructions

All pioasm instructions follow a common pattern:

<instruction> (side <side_set_value>) ([<delay_value>])

where:

<instruction> Is an assembly instruction detailed in the following sections. (See Section 3.4)

<side_set_value> Is a value (see Section 3.3.2) to apply to the side_set pins at the start of the instruction. Note that

the rules for a side-set value via side <side_set_value> are dependent on the .side_set (see

[pioasm_side_set]) directive for the program. If no .side_set is specified then the side

<side_set_value> is invalid, if an optional number of sideset pins is specified then side

<side_set_value> may be present, and if a non-optional number of sideset pins is specified, then

side <side_set_value> is required. The <side_set_value> must fit within the number of side-set bits

specified in the .side_set directive.

<delay_value> Specifies the number of cycles to delay after the instruction completes. The delay_value is

specified as a value (see Section 3.3.2), and in general is between 0 and 31 inclusive (a 5-bit

value), however the number of bits is reduced when sideset is enabled via the .side_set (see

[pioasm_side_set]) directive. If the <delay_value> is not present, then the instruction has no delay

 NOTE

pioasm instruction names, keywords and directives are case insensitive; lower case is used in the Assembly Syntax

sections below as this is the style used in the SDK.

 NOTE

Commas appear in some Assembly Syntax sections below, but are entirely optional, e.g. out pins, 3 may be written

out pins 3, and jmp x-- label may be written as jmp x--, label. The Assembly Syntax sections below uses the first

style in each case as this is the style used in the SDK.

3.3.7. Pseudoinstructions

Currently pioasm provides one pseudoinstruction, as a convenience:

nop Assembles to mov y, y. "No operation", has no particular side effect, but a useful vehicle for a side-set

operation or an extra delay.

3.4. Instruction Set

3.4.1. Summary

PIO instructions are 16 bits long, and have the following encoding:

RP2040 Datasheet

3.4. Instruction Set 320

Table 366. PIO

instruction encoding
Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JMP 0 0 0 Delay/side-set Condition Address

WAIT 0 0 1 Delay/side-set Pol Source Index

IN 0 1 0 Delay/side-set Source Bit count

OUT 0 1 1 Delay/side-set Destination Bit count

PUSH 1 0 0 Delay/side-set 0 IfF Blk 0 0 0 0 0

PULL 1 0 0 Delay/side-set 1 IfE Blk 0 0 0 0 0

MOV 1 0 1 Delay/side-set Destination Op Source

IRQ 1 1 0 Delay/side-set 0 Clr Wait Index

SET 1 1 1 Delay/side-set Destination Data

All PIO instructions execute in one clock cycle.

The function of the 5-bit Delay/side-set field depends on the state machine’s SIDESET_COUNT configuration:

• Up to 5 LSBs (5 minus SIDESET_COUNT) encode a number of idle cycles inserted between this instruction and the next.

• Up to 5 MSBs, set by SIDESET_COUNT, encode a side-set (Section 3.5.1), which can assert a constant onto some

GPIOs, concurrently with main instruction execution.

3.4.2. JMP

3.4.2.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JMP 0 0 0 Delay/side-set Condition Address

3.4.2.2. Operation

Set program counter to Address if Condition is true, otherwise no operation.

Delay cycles on a JMP always take effect, whether Condition is true or false, and they take place after Condition is

evaluated and the program counter is updated.

• Condition:

◦ 000: (no condition): Always

◦ 001: !X: scratch X zero

◦ 010: X--: scratch X non-zero, prior to decrement

◦ 011: !Y: scratch Y zero

◦ 100: Y--: scratch Y non-zero, prior to decrement

◦ 101: X!=Y: scratch X not equal scratch Y

◦ 110: PIN: branch on input pin

◦ 111: !OSRE: output shift register not empty

• Address: Instruction address to jump to. In the instruction encoding this is an absolute address within the PIO

instruction memory.

RP2040 Datasheet

3.4. Instruction Set 321

JMP PIN branches on the GPIO selected by EXECCTRL_JMP_PIN, a configuration field which selects one out of the maximum

of 32 GPIO inputs visible to a state machine, independently of the state machine’s other input mapping. The branch is

taken if the GPIO is high.

!OSRE compares the bits shifted out since the last PULL with the shift count threshold configured by SHIFTCTRL_PULL_THRESH.

This is the same threshold used by autopull (Section 3.5.4).

JMP X-- and JMP Y-- always decrement scratch register X or Y, respectively. The decrement is not conditional on the

current value of the scratch register. The branch is conditioned on the initial value of the register, i.e. before the

decrement took place: if the register is initially nonzero, the branch is taken.

3.4.2.3. Assembler Syntax

jmp (<cond>) <target>

where:

<cond> Is an optional condition listed above (e.g. !x for scratch X zero). If a condition code is not specified,

the branch is always taken

<target> Is a program label or value (see Section 3.3.2) representing instruction offset within the program (the

first instruction being offset 0). Note that because the PIO JMP instruction uses absolute addresses

in the PIO instruction memory, JMPs need to be adjusted based on the program load offset at

runtime. This is handled for you when loading a program with the SDK, but care should be taken when

encoding JMP instructions for use by OUT EXEC

3.4.3. WAIT

3.4.3.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WAIT 0 0 1 Delay/side-set Pol Source Index

3.4.3.2. Operation

Stall until some condition is met.

Like all stalling instructions (Section 3.2.4), delay cycles begin after the instruction completes. That is, if any delay

cycles are present, they do not begin counting until after the wait condition is met.

• Polarity:

◦ 1: wait for a 1.

◦ 0: wait for a 0.

• Source: what to wait on. Values are:

◦ 00: GPIO: System GPIO input selected by Index. This is an absolute GPIO index, and is not affected by the state

machine’s input IO mapping.

◦ 01: PIN: Input pin selected by Index. This state machine’s input IO mapping is applied first, and then Index

selects which of the mapped bits to wait on. In other words, the pin is selected by adding Index to the

PINCTRL_IN_BASE configuration, modulo 32.

◦ 10: IRQ: PIO IRQ flag selected by Index

RP2040 Datasheet

3.4. Instruction Set 322

◦ 11: Reserved

• Index: which pin or bit to check.

WAIT x IRQ behaves slightly differently from other WAIT sources:

• If Polarity is 1, the selected IRQ flag is cleared by the state machine upon the wait condition being met.

• The flag index is decoded in the same way as the IRQ index field: if the MSB is set, the state machine ID (0…3) is

added to the IRQ index, by way of modulo-4 addition on the two LSBs. For example, state machine 2 with a flag

value of '0x11' will wait on flag 3, and a flag value of '0x13' will wait on flag 1. This allows multiple state machines

running the same program to synchronise with each other.

 CAUTION

WAIT 1 IRQ x should not be used with IRQ flags presented to the interrupt controller, to avoid a race condition with a

system interrupt handler

3.4.3.3. Assembler Syntax

wait <polarity> gpio <gpio_num>

wait <polarity> pin <pin_num>

wait <polarity> irq <irq_num> (rel)

where:

<polarity> Is a value (see Section 3.3.2) specifying the polarity (either 0 or 1)

<pin_num> Is a value (see Section 3.3.2) specifying the input pin number (as mapped by the SM input pin

mapping)

<gpio_num> Is a value (see Section 3.3.2) specifying the actual GPIO pin number

<irq_num> (rel) Is a value (see Section 3.3.2) specifying The irq number to wait on (0-7). If rel is present, then the

actual irq number used is calculating by replacing the low two bits of the irq number (irq_num10)

with the low two bits of the sum (irq_num10 + sm_num10) where sm_num10 is the state machine

number

3.4.4. IN

3.4.4.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IN 0 1 0 Delay/side-set Source Bit count

3.4.4.2. Operation

Shift Bit count bits from Source into the Input Shift Register (ISR). Shift direction is configured for each state machine by

SHIFTCTRL_IN_SHIFTDIR. Additionally, increase the input shift count by Bit count, saturating at 32.

• Source:

◦ 000: PINS

◦ 001: X (scratch register X)

RP2040 Datasheet

3.4. Instruction Set 323

◦ 010: Y (scratch register Y)

◦ 011: NULL (all zeroes)

◦ 100: Reserved

◦ 101: Reserved

◦ 110: ISR

◦ 111: OSR

• Bit count: How many bits to shift into the ISR. 1…32 bits, 32 is encoded as 00000.

If automatic push is enabled, IN will also push the ISR contents to the RX FIFO if the push threshold is reached

(SHIFTCTRL_PUSH_THRESH). IN still executes in one cycle, whether an automatic push takes place or not. The state machine

will stall if the RX FIFO is full when an automatic push occurs. An automatic push clears the ISR contents to all-zeroes,

and clears the input shift count. See Section 3.5.4.

IN always uses the least significant Bit count bits of the source data. For example, if PINCTRL_IN_BASE is set to 5, the

instruction IN PINS, 3 will take the values of pins 5, 6 and 7, and shift these into the ISR. First the ISR is shifted to the left

or right to make room for the new input data, then the input data is copied into the gap this leaves. The bit order of the

input data is not dependent on the shift direction.

NULL can be used for shifting the ISR’s contents. For example, UARTs receive the LSB first, so must shift to the right.

After 8 IN PINS, 1 instructions, the input serial data will occupy bits 31…24 of the ISR. An IN NULL, 24 instruction will shift

in 24 zero bits, aligning the input data at ISR bits 7…0. Alternatively, the processor or DMA could perform a byte read

from FIFO address + 3, which would take bits 31…24 of the FIFO contents.

3.4.4.3. Assembler Syntax

in <source>, <bit_count>

where:

<source> Is one of the sources specified above.

<bit_count> Is a value (see Section 3.3.2) specifying the number of bits to shift (valid range 1-32)

3.4.5. OUT

3.4.5.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OUT 0 1 1 Delay/side-set Destination Bit count

3.4.5.2. Operation

Shift Bit count bits out of the Output Shift Register (OSR), and write those bits to Destination. Additionally, increase the

output shift count by Bit count, saturating at 32.

• Destination:

◦ 000: PINS

◦ 001: X (scratch register X)

◦ 010: Y (scratch register Y)

RP2040 Datasheet

3.4. Instruction Set 324

◦ 011: NULL (discard data)

◦ 100: PINDIRS

◦ 101: PC

◦ 110: ISR (also sets ISR shift counter to Bit count)

◦ 111: EXEC (Execute OSR shift data as instruction)

• Bit count: how many bits to shift out of the OSR. 1…32 bits, 32 is encoded as 00000.

A 32-bit value is written to Destination: the lower Bit count bits come from the OSR, and the remainder are zeroes. This

value is the least significant Bit count bits of the OSR if SHIFTCTRL_OUT_SHIFTDIR is to the right, otherwise it is the most

significant bits.

PINS and PINDIRS use the OUT pin mapping, as described in Section 3.5.6.

If automatic pull is enabled, the OSR is automatically refilled from the TX FIFO if the pull threshold, SHIFTCTRL_PULL_THRESH,

is reached. The output shift count is simultaneously cleared to 0. In this case, the OUT will stall if the TX FIFO is empty,

but otherwise still executes in one cycle. The specifics are given in Section 3.5.4.

OUT EXEC allows instructions to be included inline in the FIFO datastream. The OUT itself executes on one cycle, and the

instruction from the OSR is executed on the next cycle. There are no restrictions on the types of instructions which can

be executed by this mechanism. Delay cycles on the initial OUT are ignored, but the executee may insert delay cycles as

normal.

OUT PC behaves as an unconditional jump to an address shifted out from the OSR.

3.4.5.3. Assembler Syntax

out <destination>, <bit_count>

where:

<destination> Is one of the destinations specified above.

<bit_count> Is a value (see Section 3.3.2) specifying the number of bits to shift (valid range 1-32)

3.4.6. PUSH

3.4.6.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PUSH 1 0 0 Delay/side-set 0 IfF Blk 0 0 0 0 0

3.4.6.2. Operation

Push the contents of the ISR into the RX FIFO, as a single 32-bit word. Clear ISR to all-zeroes.

• IfFull: If 1, do nothing unless the total input shift count has reached its threshold, SHIFTCTRL_PUSH_THRESH (the same

as for autopush; see Section 3.5.4).

• Block: If 1, stall execution if RX FIFO is full.

PUSH IFFULL helps to make programs more compact, like autopush. It is useful in cases where the IN would stall at an

inappropriate time if autopush were enabled, e.g. if the state machine is asserting some external control signal at this

point.

RP2040 Datasheet

3.4. Instruction Set 325

The PIO assembler sets the Block bit by default. If the Block bit is not set, the PUSH does not stall on a full RX FIFO, instead

continuing immediately to the next instruction. The FIFO state and contents are unchanged when this happens. The ISR

is still cleared to all-zeroes, and the FDEBUG_RXSTALL flag is set (the same as a blocking PUSH or autopush to a full RX FIFO)

to indicate data was lost.

3.4.6.3. Assembler Syntax

push (iffull)

push (iffull) block

push (iffull) noblock

where:

iffull Is equivalent to IfFull == 1 above. i.e. the default if this is not specified is IfFull == 0

block Is equivalent to Block == 1 above. This is the default if neither block nor noblock are specified

noblock Is equivalent to Block == 0 above.

3.4.7. PULL

3.4.7.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PULL 1 0 0 Delay/side-set 1 IfE Blk 0 0 0 0 0

3.4.7.2. Operation

Load a 32-bit word from the TX FIFO into the OSR.

• IfEmpty: If 1, do nothing unless the total output shift count has reached its threshold, SHIFTCTRL_PULL_THRESH (the

same as for autopull; see Section 3.5.4).

• Block: If 1, stall if TX FIFO is empty. If 0, pulling from an empty FIFO copies scratch X to OSR.

Some peripherals (UART, SPI…) should halt when no data is available, and pick it up as it comes in; others (I2S) should

clock continuously, and it is better to output placeholder or repeated data than to stop clocking. This can be achieved

with the Block parameter.

A nonblocking PULL on an empty FIFO has the same effect as MOV OSR, X. The program can either preload scratch register

X with a suitable default, or execute a MOV X, OSR after each PULL NOBLOCK, so that the last valid FIFO word will be recycled

until new data is available.

PULL IFEMPTY is useful if an OUT with autopull would stall in an inappropriate location when the TX FIFO is empty. IfEmpty

permits some of the same program simplifications as autopull — for example, the elimination of an outer loop

counter — but the stall occurs at a controlled point in the program.

RP2040 Datasheet

3.4. Instruction Set 326

 NOTE

When autopull is enabled, any PULL instruction is a no-op when the OSR is full, so that the PULL instruction behaves as

a barrier. OUT NULL, 32 can be used to explicitly discard the OSR contents. See Section 3.5.4.2 for more detail.

3.4.7.3. Assembler Syntax

pull (ifempty)

pull (ifempty) block

pull (ifempty) noblock

where:

ifempty Is equivalent to IfEmpty == 1 above. i.e. the default if this is not specified is IfEmpty == 0

block Is equivalent to Block == 1 above. This is the default if neither block nor noblock are specified

noblock Is equivalent to Block == 0 above.

3.4.8. MOV

3.4.8.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOV 1 0 1 Delay/side-set Destination Op Source

3.4.8.2. Operation

Copy data from Source to Destination.

• Destination:

◦ 000: PINS (Uses same pin mapping as OUT)

◦ 001: X (Scratch register X)

◦ 010: Y (Scratch register Y)

◦ 011: Reserved

◦ 100: EXEC (Execute data as instruction)

◦ 101: PC

◦ 110: ISR (Input shift counter is reset to 0 by this operation, i.e. empty)

◦ 111: OSR (Output shift counter is reset to 0 by this operation, i.e. full)

• Operation:

◦ 00: None

◦ 01: Invert (bitwise complement)

◦ 10: Bit-reverse

◦ 11: Reserved

RP2040 Datasheet

3.4. Instruction Set 327

• Source:

◦ 000: PINS (Uses same pin mapping as IN)

◦ 001: X

◦ 010: Y

◦ 011: NULL

◦ 100: Reserved

◦ 101: STATUS

◦ 110: ISR

◦ 111: OSR

MOV PC causes an unconditional jump. MOV EXEC has the same behaviour as OUT EXEC (Section 3.4.5), and allows register

contents to be executed as an instruction. The MOV itself executes in 1 cycle, and the instruction in Source on the next

cycle. Delay cycles on MOV EXEC are ignored, but the executee may insert delay cycles as normal.

The STATUS source has a value of all-ones or all-zeroes, depending on some state machine status such as FIFO

full/empty, configured by EXECCTRL_STATUS_SEL.

MOV can manipulate the transferred data in limited ways, specified by the Operation argument. Invert sets each bit in

Destination to the logical NOT of the corresponding bit in Source, i.e. 1 bits become 0 bits, and vice versa. Bit reverse sets

each bit n in Destination to bit 31 - n in Source, assuming the bits are numbered 0 to 31.

MOV dst, PINS reads pins using the IN pin mapping, and writes the full 32-bit value to the destination without masking.

The LSB of the read value is the pin indicated by PINCTRL_IN_BASE, and each successive bit comes from a higher-

numbered pin, wrapping after 31.

3.4.8.3. Assembler Syntax

mov <destination>, (op) <source>

where:

<destination> Is one of the destinations specified above.

<op> If present, is:

! or ~ for NOT (Note: this is always a bitwise NOT)

:: for bit reverse

<source> Is one of the sources specified above.

3.4.9. IRQ

3.4.9.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IRQ 1 1 0 Delay/side-set 0 Clr Wait Index

RP2040 Datasheet

3.4. Instruction Set 328

3.4.9.2. Operation

Set or clear the IRQ flag selected by Index argument.

• Clear: if 1, clear the flag selected by Index, instead of raising it. If Clear is set, the Wait bit has no effect.

• Wait: if 1, halt until the raised flag is lowered again, e.g. if a system interrupt handler has acknowledged the flag.

• Index:

◦ The 3 LSBs specify an IRQ index from 0-7. This IRQ flag will be set/cleared depending on the Clear bit.

◦ If the MSB is set, the state machine ID (0…3) is added to the IRQ index, by way of modulo-4 addition on the

two LSBs. For example, state machine 2 with a flag value of 0x11 will raise flag 3, and a flag value of 0x13 will

raise flag 1.

IRQ flags 4-7 are visible only to the state machines; IRQ flags 0-3 can be routed out to system level interrupts, on either

of the PIO’s two external interrupt request lines, configured by IRQ0_INTE and IRQ1_INTE.

The modulo addition bit allows relative addressing of 'IRQ' and 'WAIT' instructions, for synchronising state machines

which are running the same program. Bit 2 (the third LSB) is unaffected by this addition.

If Wait is set, Delay cycles do not begin until after the wait period elapses.

3.4.9.3. Assembler Syntax

irq <irq_num> (rel)

irq set <irq_num> (rel)

irq nowait <irq_num> (rel)

irq wait <irq_num> (rel)

irq clear <irq_num> (rel)

where:

<irq_num> (rel) Is a value (see Section 3.3.2) specifying The irq number to wait on (0-7). If rel is present, then the

actual irq number used is calculating by replacing the low two bits of the irq number (irq_num10)

with the low two bits of the sum (irq_num10 + sm_num10) where sm_num10 is the state machine

number

irq Means set the IRQ without waiting

irq set Also means set the IRQ without waiting

irq nowait Again, means set the IRQ without waiting

irq wait Means set the IRQ and wait for it to be cleared before proceeding

irq clear Means clear the IRQ

3.4.10. SET

3.4.10.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SET 1 1 1 Delay/side-set Destination Data

RP2040 Datasheet

3.4. Instruction Set 329

3.4.10.2. Operation

Write immediate value Data to Destination.

• Destination:

◦ 000: PINS

◦ 001: X (scratch register X) 5 LSBs are set to Data, all others cleared to 0.

◦ 010: Y (scratch register Y) 5 LSBs are set to Data, all others cleared to 0.

◦ 011: Reserved

◦ 100: PINDIRS

◦ 101: Reserved

◦ 110: Reserved

◦ 111: Reserved

• Data: 5-bit immediate value to drive to pins or register.

This can be used to assert control signals such as a clock or chip select, or to initialise loop counters. As Data is 5 bits in

size, scratch registers can be SET to values from 0-31, which is sufficient for a 32-iteration loop.

The mapping of SET and OUT onto pins is configured independently. They may be mapped to distinct locations, for

example if one pin is to be used as a clock signal, and another for data. They may also be overlapping ranges of pins: a

UART transmitter might use SET to assert start and stop bits, and OUT instructions to shift out FIFO data to the same pins.

3.4.10.3. Assembler Syntax

set <destination>, <value>

where:

<destination> Is one of the destinations specified above.

<value> The value (see Section 3.3.2) to set (valid range 0-31)

3.5. Functional Details

3.5.1. Side-set

Side-set is a feature that allows state machines to change the level or direction of up to 5 pins, concurrently with the

main execution of the instruction.

One example where this is necessary is a fast SPI interface: here a clock transition (toggling 1→0 or 0→1) must be

simultaneous with a data transition, where a new data bit is shifted from the OSR to a GPIO. In this case an OUT with a

side-set would achieve both of these at once.

This makes the timing of the interface more precise, reduces the overall program size (as a separate SET instruction is

not needed to toggle the clock pin), and also increases the maximum frequency the SPI can run at.

Side-set also makes GPIO mapping much more flexible, as its mapping is independent from SET. The example I2C code

allows SDA and SCL to be mapped to any two arbitrary pins, if clock stretching is disabled. Normally, SCL toggles to

synchronise data transfer, and SDA contains the data bits being shifted out. However, some particular I2C sequences

such as Start and Stop line conditions, need a fixed pattern to be driven on SDA as well as SCL. The mapping I2C uses to

achieve this is:

RP2040 Datasheet

3.5. Functional Details 330

• Side-set → SCL

• OUT → SDA

• SET → SDA

This lets the state machine serve the two use cases of data on SDA and clock on SCL, or fixed transitions on both SDA

and SCL, while still allowing SDA and SCL to be mapped to any two GPIOs of choice.

The side-set data is encoded in the Delay/side-set field of each instruction. Any instruction can be combined with side-

set, including instructions which write to the pins, such as OUT PINS or SET PINS. Side-set’s pin mapping is independent

from OUT and SET mappings, though it may overlap. If side-set and an OUT or SET write to the same pin simultaneously, the

side-set data is used.

 NOTE

If an instruction stalls, the side-set still takes effect immediately.

1 .program spi_tx_fast
2 .side_set 1
3
4 loop:
5 out pins, 1 side 0
6 jmp loop side 1

The spi_tx_fast example shows two benefits of this: data and clock transitions can be more precisely co-aligned, and

programs can be made faster overall, with an output of one bit per two system clock cycles in this case. Programs can

also be made smaller.

There are four things to configure when using side-set:

1. The number of MSBs of the Delay/side-set field to use for side-set rather than delay. This is configured by

PINCTRL_SIDESET_COUNT. If this is set to 5, delay cycles are not available. If set to 0, no side-set will take place.

2. Whether to use the most significant of these bits as an enable. Side-set takes place on instructions where the

enable is high. If there is no enable bit, every instruction on that state machine will perform a side-set, if

SIDESET_COUNT is nonzero. This is configured by EXECCTRL_SIDE_EN.

3. The GPIO number to map the least-significant side-set bit to. Configured by PINCTRL_SIDESET_BASE.

4. Whether side-set writes to GPIO levels or GPIO directions. Configured by EXECCTRL_SIDE_PINDIR

In the above example, we have only one side-set data bit, and every instruction performs a side-set, so no enable bit is

required. SIDESET_COUNT would be 1, SIDE_EN would be false. SIDE_PINDIR would also be false, as we want to drive the clock

high and low, not high- and low-impedance. SIDESET_BASE would select the GPIO the clock is driven from.

3.5.2. Program Wrapping

PIO programs often have an "outer loop": they perform the same sequence of steps, repetitively, as they transfer a

stream of data between the FIFOs and the outside world. The square wave program from the introduction is a minimal

example of this:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/squarewave.pio Lines 7 - 12

 7 .program squarewave
 8 set pindirs, 1 ; Set pin to output
 9 again:
10 set pins, 1 [1] ; Drive pin high and then delay for one cycle
11 set pins, 0 ; Drive pin low

RP2040 Datasheet

3.5. Functional Details 331

https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/squarewave.pio#L7-L12

12 jmp again ; Set PC to label `again`

The main body of the program drives a pin high, and then low, producing one period of a square wave. The entire

program then loops, driving a periodic output. The jump itself takes one cycle, as does each set instruction, so to keep

the high and low periods of the same duration, the set pins, 1 has a single delay cycle added, which makes the state

machine idle for one cycle before executing the set pins, 0 instruction. In total, each loop takes four cycles. There are

two frustrations here:

• The JMP takes up space in the instruction memory that could be used for other programs

• The extra cycle taken to execute the JMP ends up halving the maximum output rate

As the Program Counter (PC) naturally wraps to 0 when incremented past 31, we could solve the second of these by

filling the entire instruction memory with a repeating pattern of set pins, 1 and set pins, 0, but this is wasteful. State

machines have a hardware feature, configured via their EXECCTRL control register, which solves this common case.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/squarewave_wrap.pio Lines 11 - 19

11 .program squarewave_wrap
12 ; Like squarewave, but use the state machine's .wrap hardware instead of an
13 ; explicit jmp. This is a free (0-cycle) unconditional jump.
14
15 set pindirs, 1 ; Set pin to output
16 .wrap_target
17 set pins, 1 [1] ; Drive pin high and then delay for one cycle
18 set pins, 0 [1] ; Drive pin low and then delay for one cycle
19 .wrap

After executing an instruction from the program memory, state machines use the following logic to update PC:

1. If the current instruction is a JMP, and the Condition is true, set PC to the Target

2. Otherwise, if PC matches EXECCTRL_WRAP_TOP, set PC to EXECCTRL_WRAP_BOTTOM

3. Otherwise, increment PC, or set to 0 if the current value is 31.

The .wrap_target and .wrap assembly directives in pioasm are essentially labels. They export constants which can be

written to the WRAP_BOTTOM and WRAP_TOP control fields, respectively:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/generated/squarewave_wrap.pio.h

 1 // -- //
 2 // This file is autogenerated by pioasm; do not edit! //
 3 // -- //
 4
 5 #pragma once
 6
 7 #if !PICO_NO_HARDWARE
 8 #include "hardware/pio.h"
 9 #endif
10
11 // --------------- //
12 // squarewave_wrap //
13 // --------------- //
14
15 #define squarewave_wrap_wrap_target 1
16 #define squarewave_wrap_wrap 2
17
18 static const uint16_t squarewave_wrap_program_instructions[] = {
19 0xe081, // 0: set pindirs, 1
20 // .wrap_target
21 0xe101, // 1: set pins, 1 [1]

RP2040 Datasheet

3.5. Functional Details 332

https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/squarewave_wrap.pio#L11-L19
https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/generated/squarewave_wrap.pio.h

22 0xe100, // 2: set pins, 0 [1]
23 // .wrap
24 };
25
26 #if !PICO_NO_HARDWARE
27 static const struct pio_program squarewave_wrap_program = {
28 .instructions = squarewave_wrap_program_instructions,
29 .length = 3,
30 .origin = -1,
31 };
32
33 static inline pio_sm_config squarewave_wrap_program_get_default_config(uint offset) {
34 pio_sm_config c = pio_get_default_sm_config();
35 sm_config_set_wrap(&c, offset + squarewave_wrap_wrap_target, offset +
 squarewave_wrap_wrap);
36 return c;
37 }
38 #endif

This is raw output from the PIO assembler, pioasm, which has created a default pio_sm_config object containing the WRAP

register values from the program listing. The control register fields could also be initialised directly.

 NOTE

WRAP_BOTTOM and WRAP_TOP are absolute addresses in the PIO instruction memory. If a program is loaded at an offset,

the wrap addresses must be adjusted accordingly.

The squarewave_wrap example has delay cycles inserted, so that it behaves identically to the original squarewave program.

Thanks to program wrapping, these can now be removed, so that the output toggles twice as fast, while maintaining an

even balance of high and low periods.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/squarewave_fast.pio Lines 12 - 18

12 .program squarewave_fast
13 ; Like squarewave_wrap, but remove the delay cycles so we can run twice as fast.
14 set pindirs, 1 ; Set pin to output
15 .wrap_target
16 set pins, 1 ; Drive pin high
17 set pins, 0 ; Drive pin low
18 .wrap

3.5.3. FIFO Joining

By default, each state machine possesses a 4-entry FIFO in each direction: one for data transfer from system to state

machine (TX), the other for the reverse direction (RX). However, many applications do not require bidirectional data

transfer between the system and an individual state machine, but may benefit from deeper FIFOs: in particular, high-

bandwidth interfaces such as DPI. For these cases, SHIFTCTRL_FJOIN can merge the two 4-entry FIFOs into a single 8-entry

FIFO.

RP2040 Datasheet

3.5. Functional Details 333

https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/squarewave_fast.pio#L12-L18

Figure 42. Joinable

dual FIFO. A pair of

four-entry FIFOs,

implemented with four

data registers, a 1:4

decoder and a 4:1

multiplexer. Additional

multiplexing allows

write data and read

data to cross between

the TX and RX lanes,

so that all 8 entries

are accessible from

both ports

Another example is a UART: because the TX/CTS and RX/RTS parts a of a UART are asynchronous, they are

implemented on two separate state machines. It would be wasteful to leave half of each state machine’s FIFO

resources idle. The ability to join the two halves into just a TX FIFO for the TX/CTS state machine, or just an RX FIFO in

the case of the RX/RTS state machine, allows full utilisation. A UART equipped with an 8-deep FIFO can be left alone for

twice as long between interrupts as one with only a 4-deep FIFO.

When one FIFO is increased in size (from 4 to 8), the other FIFO on that state machine is reduced to zero. For example, if

joining to TX, the RX FIFO is unavailable, and any PUSH instruction will stall. The RX FIFO will appear both RXFULL and

RXEMPTY in the FSTAT register. The converse is true if joining to RX: the TX FIFO is unavailable, and the TXFULL and TXEMPTY

bits for this state machine will both be set in FSTAT. Setting both FJOIN_RX and FJOIN_TX makes both FIFOs unavailable.

8 FIFO entries is sufficient for 1 word per clock through the RP2040 system DMA, provided the DMA is not slowed by

contention with other masters.

 CAUTION

Changing FJOIN discards any data present in the state machine’s FIFOs. If this data is irreplaceable, it must be

drained beforehand.

3.5.4. Autopush and Autopull

With each OUT instruction, the OSR gradually empties, as data is shifted out. Once empty, it must be refilled: for example,

a PULL transfers one word of data from the TX FIFO to the OSR. Similarly, the ISR must be emptied once full. One

approach to this is a loop which performs a PULL after an appropriate amount of data has been shifted:

 1 .program manual_pull
 2 .side_set 1 opt
 3
 4 .wrap_target
 5 set x, 2 ; X = bit count - 2
 6 pull side 1 [1] ; Stall here if no TX data
 7 bitloop:
 8 out pins, 1 side 0 [1] ; Shift out data bit and toggle clock low
 9 jmp x-- bitloop side 1 [1] ; Loop runs 3 times
10 out pins, 1 side 0 ; Shift out last bit before reloading X
11 .wrap

This program shifts out 4 bits from each FIFO word, with an accompanying bit clock, at a constant rate of 1 bit per 4

cycles. When the TX FIFO is empty, it stalls with the clock high (noting that side-set still takes place on cycles where the

RP2040 Datasheet

3.5. Functional Details 334

instruction stalls). Figure 43 shows how a state machine would execute this program.

System Clock

0 2 3 432

2 1 0 2-1

1

Instruction

Scratch X

Clock pin (side -set)

OSR shift count

PULLSET OUT JMP OUT JMP OUT JMP SETOUT PULL

Bit 0 Bit 1 Bit 2 Bit 3Data pin (OUT)

Figure 43. Execution

of manual_pull

program. X is used as

a loop counter. On

each iteration, one

data bit is shifted out,

and the clock is

asserted low, then

high. A delay cycle on

each instruction

brings the total up to

four cycles per

iteration. After the

third loop, a fourth bit

is shifted out, and the

state machine

immediately returns to

the start of the

program to reload the

loop counter and pull

fresh data, while

maintaining the 4

cycles/bit cadence.

This program has some limitations:

• It occupies 5 instruction slots, but only 2 of these are immediately useful (out pins, 1 set 0 and … set 1), for

outputting serial data and a clock.

• Its throughput is limited to system clock over 4, due to the extra cycles required to pull in new data, and reload the

loop counter

This is a common type of problem for PIO, so each state machine has some extra hardware to handle it. State machines

keep track of the total shift count OUT of the OSR and IN to the ISR, and trigger certain actions once these counters reach

a programmable threshold.

• On an OUT instruction which reaches or exceeds the pull threshold, the state machine can simultaneously refill the

OSR from the TX FIFO, if data is available.

• On an IN instruction which reaches or exceeds the push threshold, the state machine can write the shift result

directly to the RX FIFO, and clear the ISR.

The manual_pull example can be rewritten to take advantage of automatic pull (autopull):

1 .program autopull
2 .side_set 1
3
4 .wrap_target
5 out pins, 1 side 0 [1]
6 nop side 1 [1]
7 .wrap

This is shorter and simpler than the original, and can run twice as fast, if the delay cycles are removed, since the

hardware refills the OSR "for free". Note that the program does not determine the total number of bits to be shifted

before the next pull; the hardware automatically pulls once the programmable threshold, SHIFCTRL_PULL_THRESH, is reached,

so the same program could also shift out e.g. 16 or 32 bits from each FIFO word.

Finally, note that the above program is not exactly the same as the original, since it stalls with the clock output low,

rather than high. We can change the location of the stall, using the PULL IFEMPTY instruction, which uses the same

configurable threshold as autopull:

1 .program somewhat_manual_pull
2 .side_set 1
3
4 .wrap_target
5 out pins, 1 side 0 [1]
6 pull ifempty side 1 [1]
7 .wrap

Below is a complete example (PIO program, plus a C program to load and run it) which illustrates autopull and autopush

both enabled on the same state machine. It programs state machine 0 to loopback data from the TX FIFO to the RX

FIFO, with a throughput of one word per two clocks. It also demonstrates how the state machine will stall if it tries to OUT

when both the OSR and TX FIFO are empty.

RP2040 Datasheet

3.5. Functional Details 335

1 .program auto_push_pull
2
3 .wrap_target
4 out x, 32
5 in x, 32
6 .wrap

 1 #include "tb.h" // TODO this is built against existing sw tree, so that we get printf etc
 2
 3 #include "platform.h"
 4 #include "pio_regs.h"
 5 #include "system.h"
 6 #include "hardware.h"
 7
 8 #include "auto_push_pull.pio.h"
 9
10 int main()
11 {
12 tb_init();
13
14 // Load program and configure state machine 0 for autopush/pull with
15 // threshold of 32, and wrapping on program boundary. A threshold of 32 is
16 // encoded by a register value of 00000.
17 for (int i = 0; i < count_of(auto_push_pull_program); ++i)
18 mm_pio->instr_mem[i] = auto_push_pull_program[i];
19 mm_pio->sm[0].shiftctrl =
20 (1u << PIO_SM0_SHIFTCTRL_AUTOPUSH_LSB) |
21 (1u << PIO_SM0_SHIFTCTRL_AUTOPULL_LSB) |
22 (0u << PIO_SM0_SHIFTCTRL_PUSH_THRESH_LSB) |
23 (0u << PIO_SM0_SHIFTCTRL_PULL_THRESH_LSB);
24 mm_pio->sm[0].execctrl =
25 (auto_push_pull_wrap_target << PIO_SM0_EXECCTRL_WRAP_BOTTOM_LSB) |
26 (auto_push_pull_wrap << PIO_SM0_EXECCTRL_WRAP_TOP_LSB);
27
28 // Start state machine 0
29 hw_set_bits(&mm_pio->ctrl, 1u << (PIO_CTRL_SM_ENABLE_LSB + 0));
30
31 // Push data into TX FIFO, and pop from RX FIFO
32 for (int i = 0; i < 5; ++i)
33 mm_pio->txf[0] = i;
34 for (int i = 0; i < 5; ++i)
35 printf("%d\n", mm_pio->rxf[0]);
36
37 return 0;
38 }

Figure 44 shows how the state machine executes the example program. Initially the OSR is empty, so the state machine

stalls on the first OUT instruction. Once data is available in the TX FIFO, the state machine transfers this into the OSR. On

the next cycle, the OUT can execute using the data in the OSR (in this case, transferring this data to the X scratch

register), and the state machine simultaneously refills the OSR with fresh data from the FIFO. Since every IN instruction

immediately fills the ISR, the ISR remains empty, and IN transfers data directly from scratch X to the RX FIFO.

RP2040 Datasheet

3.5. Functional Details 336

clock

0 0 0 0 3232 0

0 0 0 0 00

2 3 4 51

Current Instruction

Stall

TX FIFO Empty

TX FIFO Pop

OSR Count (0=full)

RX FIFO Push

ISR Count (0=empty)

RX FIFO Push

INOUT OUT IN OUT IN OUT IN INOUT OUT

Figure 44. Execution

of auto_push_pull

program. The state

machine stalls on an

OUT until data has

travelled through the

TX FIFO into the OSR.

Subsequently, the OSR

is refilled

simultaneously with

each OUT operation

(due to bit count of

32), and IN data

bypasses the ISR and

goes straight to the RX

FIFO. The state

machine stalls again

when the FIFO has

drained, and the OSR

is once again empty.

To trigger automatic push or pull at the correct time, the state machine tracks the total shift count of the ISR and OSR,

using a pair of saturating 6-bit counters.

• At reset, or upon CTRL_SM_RESTART assertion, ISR shift counter is set to 0 (nothing shifted in), and OSR to 32 (nothing

left to be shifted out)

• An OUT instruction increases the OSR shift counter by Bit count

• An IN instruction increases the ISR shift counter by Bit count

• A PULL instruction or autopull clears the OSR counter to 0

• A PUSH instruction or autopush clears the ISR counter to 0

• A MOV OSR, x or MOV ISR, x clears the OSR or ISR shift counter to 0, respectively

• A OUT ISR, n instruction sets the ISR shift counter to n

On any OUT or IN instruction, the state machine compares the shift counters to the values of SHIFTCTRL_PULL_THRESH and

SHIFTCTRL_PUSH_THRESH to decide whether action is required. Autopull and autopush are individually enabled by the

SHIFTCTRL_AUTOPULL and SHIFTCTRL_AUTOPUSH fields.

3.5.4.1. Autopush Details

Pseudocode for an 'IN' with autopush enabled:

 1 isr = shift_in(isr, input())
 2 isr count = saturate(isr count + in count)
 3
 4 if rx count >= threshold:
 5 if rx fifo is full:
 6 stall
 7 else:
 8 push(isr)
 9 isr = 0
10 isr count = 0

Note that the hardware performs the above steps in a single machine clock cycle (unless there is a stall).

Threshold is configurable from 1 to 32.

3.5.4.2. Autopull Details

On non-'OUT' cycles, the hardware performs the equivalent of the following pseudocode:

RP2040 Datasheet

3.5. Functional Details 337

1 if MOV or PULL:
2 osr count = 0
3
4 if osr count >= threshold:
5 if tx fifo not empty:
6 osr = pull()
7 osr count = 0

An autopull can therefore occur at any point between two 'OUT' s, depending on when the data arrives in the FIFO.

On 'OUT' cycles, the sequence is a little different:

 1 if osr count >= threshold:
 2 if tx fifo not empty:
 3 osr = pull()
 4 osr count = 0
 5 stall
 6 else:
 7 output(osr)
 8 osr = shift(osr, out count)
 9 osr count = saturate(osr count + out count)
10
11 if osr count >= threshold:
12 if tx fifo not empty:
13 osr = pull()
14 osr count = 0

The hardware is capable of refilling the OSR simultaneously with shifting out the last of the shift data, as these two

operations can proceed in parallel. However, it cannot fill an empty OSR and 'OUT' it on the same cycle, due to the long

logic path this would create.

The refill is somewhat asynchronous to your program, but an 'OUT' behaves as a data fence, and the state machine will

never 'OUT' data which you didn’t write into the FIFO.

Note that a 'MOV' from the OSR is undefined whilst autopull is enabled; you will read either any residual data that has

not been shifted out, or a fresh word from the FIFO, depending on a race against system DMA. Likewise, a 'MOV' to the

OSR may overwrite data which has just been autopulled. However, data which you 'MOV' into the OSR will never be

overwritten, since 'MOV' updates the shift counter.

If you do need to read the OSR contents, you should perform an explicit 'PULL' of some kind. The nondeterminism

described above is the cost of the hardware managing pulls automatically. When autopull is enabled, the behaviour of

'PULL' is altered: it becomes a no-op if the OSR is full. This is to avoid a race condition against the system DMA. It

behaves as a fence: either an autopull has already taken place, in which case the 'PULL' has no effect, or the program

will stall on the 'PULL' until data becomes available in the FIFO.

'PUSH' does not need a similar behaviour, because autopush does not have the same nondeterminism.

3.5.5. Clock Dividers

PIO runs off the system clock, but this is simply too fast for many interfaces, and the number of Delay cycles which can

be inserted is limited. Some devices, such as UART, require the signalling rate to be precisely controlled and varied, and

ideally multiple state machines can be varied independently while running identical programs. Each state machine is

equipped with a clock divider, for this purpose.

Rather than slowing the system clock itself, the clock divider redefines how many system clock periods are considered

to be "one cycle", for execution purposes. It does this by generating a clock enable signal, which can pause and resume

execution on a per-system-clock-cycle basis. The clock divider generates clock enable pulses at regular intervals, so

RP2040 Datasheet

3.5. Functional Details 338

that the state machine runs at some steady pace, potentially much slower than the system clock.

Implementing the clock dividers in this way allows interfacing between the state machines and the system to be

simpler, lower-latency, and with a smaller footprint. The state machine is completely idle on cycles where clock enable

is low, though the system can still access the state machine’s FIFOs and change its configuration.

The clock dividers are 16-bit integer, 8-bit fractional, with first-order delta-sigma for the fractional divider. The clock

divisor can vary between 1 and 65536, in increments of .

If the clock divisor is set to 1, the state machine runs on every cycle, i.e. full speed:

System Clock

CLKDIV_INT

CLKDIV_FRAC

Clock Enable

CTRL_SM_ENABLE

1

.0

Figure 45. State

machine operation

with a clock divisor of

1. Once the state

machine is enabled via

the CTRL register, its

clock enable is

asserted on every

cycle.
In general, an integer clock divisor of n will cause the state machine to run 1 cycle in every n, giving an effective clock

speed of .

System Clock

CLKDIV_INT

CLKDIV_FRAC

Clock Enable

CTRL_SM_ENABLE

2

.0

Figure 46. Integer

clock divisors yield a

periodic clock enable.

The clock divider

repeatedly counts

down from n, and

emits an enable pulse

when it reaches 1. Fractional division will maintain a steady state division rate of , where n and f are the integer and fractional

fields of this state machine’s CLKDIV register. It does this by selectively extending some division periods from cycles to

.

System Clock

CLKDIV_INT

CLKDIV_FRAC

Clock Enable

CTRL_SM_ENABLE

2

.5

Figure 47. Fractional

clock division with an

average divisor of 2.5.

The clock divider

maintains a running

total of the fractional

value from each

division period, and

every time this value

wraps through 1, the

integer divisor is

increased by one for

the next division

period.

For small n, the jitter introduced by a fractional divider may be unacceptable. However, for larger values, this effect is

much less apparent.

 NOTE

For fast asynchronous serial, it is recommended to use even divisions or multiples of 1 Mbaud where possible,

rather than the traditional multiples of 300, to avoid unnecessary jitter.

3.5.6. GPIO Mapping

Internally, PIO has a 32-bit register for the output levels of each GPIO it can drive, and another register for the output

enables (Hi/Lo-Z). On every system clock cycle, each state machine can write to some or all of the GPIOs in each of

these registers.

RP2040 Datasheet

3.5. Functional Details 339

Figure 48. The state

machine has two

independent output

channels, one shared

by OUT/SET, and

another used by side-

set (which can happen

at any time). Three

independent mappings

(first GPIO, number of

GPIOs) control which

GPIOs OUT, SET and

side-set are directed

to. Input data is

rotated according to

which GPIO is mapped

to the LSB of the IN

data.

The write data and write masks for the output level and output enable registers come from the following sources:

• An OUT instruction writes to up to 32 bits. Depending on the instruction’s Destination field, this is applied to either

pins or pindirs. The least-significant bit of OUT data is mapped to PINCTRL_OUT_BASE, and this mapping continues for

PINCTRL_OUT_COUNT bits, wrapping after GPIO31.

• A SET instruction writes up to 5 bits. Depending on the instruction’s Destination field, this is applied to either pins or

pindirs. The least-significant bit of SET data is mapped to PINCTRL_SET_BASE, and this mapping continues for

PINCTRL_SET_COUNT bits, wrapping after GPIO31.

• A side-set operation writes up to 5 bits. Depending on the register field EXECCTRL_SIDE_PINDIR, this is applied to either

pins or pindirs. The least-significant bit of side-set data is mapped to PINCTRL_SIDESET_BASE, continuing for

PINCTRL_SIDESET_COUNT pins, minus one if EXECCTRL_SIDE_EN is set.

Each OUT/SET/side-set operation writes to a contiguous range of pins, but each of these ranges is independently sized

and positioned in the 32-bit GPIO space. This is sufficiently flexible for many applications. For example, if one state

machine is implementing some interface such as an SPI on a group of pins, another state machine can run the same

program, mapped to a different group of pins, and provide a second SPI interface.

On any given clock cycle, the state machine may perform an OUT or a SET, and may simultaneously perform a side-set.

The pin mapping logic generates a 32-bit write mask and write data bus for the output level and output enable registers,

based on this request, and the pin mapping configuration.

If a side-set overlaps with an OUT/SET performed by that state machine on the same cycle, the side-set takes precedence

in the overlapping region.

3.5.6.1. Output Priority

Figure 49. Per-GPIO

priority select of write

masks from each

state machine. Each

GPIO considers level

and direction writes

from each of the four

state machines, and

applies the value from

the highest-numbered

state machine.

Each state machine may assert an OUT/SET and a side-set through its pin mapping hardware on each cycle. This

generates 32 bits of write data and write mask for the GPIO output level and output enable registers, from each state

machine.

For each GPIO, PIO collates the writes from all four state machines, and applies the write from the highest-numbered

RP2040 Datasheet

3.5. Functional Details 340

state machine. This occurs separately for output levels and output values — it is possible for a state machine to change

both the level and direction of the same pin on the same cycle (e.g. via simultaneous SET and side-set), or for one state

machine to change a GPIO’s direction while another changes that GPIO’s level. If no state machine asserts a write to a

GPIO’s level or direction, the value does not change.

3.5.6.2. Input Mapping

The data observed by IN instructions is mapped such that the LSB is the GPIO selected by PINCTRL_IN_BASE, and

successively more-significant bits come from successively higher-numbered GPIOs, wrapping after 31.

In other words, the IN bus is a right-rotate of the GPIO input values, by PINCTRL_IN_BASE. If fewer than 32 GPIOs are

present, the PIO input is padded with zeroes up to 32 bits.

Some instructions, such as WAIT GPIO, use an absolute GPIO number, rather than an index into the IN data bus. In this

case, the right-rotate is not applied.

3.5.6.3. Input Synchronisers

To protect PIO from metastabilities, each GPIO input is equipped with a standard 2-flipflop synchroniser. This adds two

cycles of latency to input sampling, but the benefit is that state machines can perform an IN PINS at any point, and will

see only a clean high or low level, not some intermediate value that could disturb the state machine circuitry. This is

absolutely necessary for asynchronous interfaces such as UART RX.

It is possible to bypass these synchronisers, on a per-GPIO basis. This reduces input latency, but it is then up to the user

to guarantee that the state machine does not sample its inputs at inappropriate times. Generally this is only possible for

synchronous interfaces such as SPI. Synchronisers are bypassed by setting the corresponding bit in INPUT_SYNC_BYPASS.

 WARNING

Sampling a metastable input can lead to unpredictable state machine behaviour. This should be avoided.

3.5.7. Forced and EXEC’d Instructions

Besides the instruction memory, state machines can execute instructions from 3 other sources:

• MOV EXEC which executes an instruction from some register Source

• OUT EXEC which executes data shifted out from the OSR

• The SMx_INSTR control registers, to which the system can write instructions for immediate execution

 1 .program exec_example
 2
 3 hang:
 4 jmp hang
 5 execute:
 6 out exec, 32
 7 jmp execute
 8
 9 .program instructions_to_push
10
11 out x, 32
12 in x, 32
13 push

RP2040 Datasheet

3.5. Functional Details 341

 1 #include "tb.h" // TODO this is built against existing sw tree, so that we get printf etc
 2
 3 #include "platform.h"
 4 #include "pio_regs.h"
 5 #include "system.h"
 6 #include "hardware.h"
 7
 8 #include "exec_example.pio.h"
 9
10 int main()
11 {
12 tb_init();
13
14 for (int i = 0; i < count_of(exec_example_program); ++i)
15 mm_pio->instr_mem[i] = exec_example_program[i];
16
17 // Enable autopull, threshold of 32
18 mm_pio->sm[0].shiftctrl = (1u << PIO_SM0_SHIFTCTRL_AUTOPULL_LSB);
19
20 // Start state machine 0 -- will sit in "hang" loop
21 hw_set_bits(&mm_pio->ctrl, 1u << (PIO_CTRL_SM_ENABLE_LSB + 0));
22
23 // Force a jump to program location 1
24 mm_pio->sm[0].instr = 0x0000 | 0x1; // jmp execute
25
26 // Feed a mixture of instructions and data into FIFO
27 mm_pio->txf[0] = instructions_to_push_program[0]; // out x, 32
28 mm_pio->txf[0] = 12345678; // data to be OUTed
29 mm_pio->txf[0] = instructions_to_push_program[1]; // in x, 32
30 mm_pio->txf[0] = instructions_to_push_program[2]; // push
31
32 // The program pushed into TX FIFO will return some data in RX FIFO
33 while (mm_pio->fstat & (1u << PIO_FSTAT_RXEMPTY_LSB))
34 ;
35
36 printf("%d\n", mm_pio->rxf[0]);
37
38 return 0;
39 }

Here we load an example program into the state machine, which does two things:

• Enters an infinite loop

• Enters a loop which repeatedly pulls 32 bits of data from the TX FIFO, and executes the lower 16 bits as an

instruction

The C program sets the state machine running, at which point it enters the hang loop. While the state machine is still

running, the C program forces in a jmp instruction, which causes the state machine to break out of the loop.

When an instruction is written to the INSTR register, the state machine immediately decodes and executes that

instruction, rather than the instruction it would have fetched from the PIO’s instruction memory. The program counter

does not advance, so on the next cycle (assuming the instruction forced into the INSTR interface did not stall) the state

machine continues to execute its current program from the point where it left off, unless the written instruction itself

manipulated PC.

Delay cycles are ignored on instructions written to the INSTR register, and execute immediately, ignoring the state

machine clock divider. This interface is provided for performing initial setup and effecting control flow changes, so it

executes instructions in a timely manner, no matter how the state machine is configured.

Instructions written to the INSTR register are permitted to stall, in which case the state machine will latch this instruction

internally until it completes. This is signified by the EXECCTRL_EXEC_STALLED flag. This can be cleared by restarting the state

RP2040 Datasheet

3.5. Functional Details 342

machine, or writing a NOP to INSTR.

In the second phase of the example state machine program, the OUT EXEC instruction is used. The OUT itself occupies one

execution cycle, and the instruction which the OUT executes is on the next execution cycle. Note that one of the

instructions we execute is also an OUT — the state machine is only capable of executing one OUT instruction on any given

cycle.

OUT EXEC works by writing the OUT shift data to an internal instruction latch. On the next cycle, the state machine

remembers it must execute from this latch rather than the instruction memory, and also knows to not advance PC on this

second cycle.

This program will print "12345678" when run.

 CAUTION

If an instruction written to INSTR stalls, it is stored in the same instruction latch used by OUT EXEC and MOV EXEC, and will

overwrite an in-progress instruction there. If EXEC instructions are used, instructions written to INSTR must not stall.

3.6. Examples

These examples illustrate some of PIO’s hardware features, by implementing common I/O interfaces.

Looking to get started?

The Raspberry Pi Pico C/C++ SDK book has a comprehensive PIO chapter, which walks through writing

and building a first PIO application, and goes on to walk through some programs line-by-line. It also

covers broader topics such as using PIO with DMA, and goes into much more depth on how PIO can be

integrated into your software.

3.6.1. Duplex SPI

RP2040 Datasheet

3.6. Examples 343

https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf

Figure 50. In SPI, a

host and device

exchange data over a

bidirectional pair of

serial data lines,

synchronous with a

clock (SCK). Two

flags, CPOL and

CPHA, specify the

clock’s behaviour.

CPOL is the idle state

of the clock: 0 for low,

1 for high. The clock

pulses a number of

times, transferring one

bit in each direction

per pulse, but always

returns to its idle

state. CPHA

determines on which

edge of the clock data

is captured: 0 for

leading edge, and 1 for

trailing edge. The

arrows in the figure

show the clock edge

where data is captured

by both the host and

device.

SPI is a common serial interface with a twisty history. The following program implements full-duplex (i.e. transferring

data in both directions simultaneously) SPI, with a CPHA parameter of 0.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/spi/spi.pio Lines 14 - 32

14 .program spi_cpha0
15 .side_set 1
16
17 ; Pin assignments:
18 ; - SCK is side-set pin 0
19 ; - MOSI is OUT pin 0
20 ; - MISO is IN pin 0
21 ;
22 ; Autopush and autopull must be enabled, and the serial frame size is set by
23 ; configuring the push/pull threshold. Shift left/right is fine, but you must
24 ; justify the data yourself. This is done most conveniently for frame sizes of
25 ; 8 or 16 bits by using the narrow store replication and narrow load byte
26 ; picking behaviour of RP2040's IO fabric.
27
28 ; Clock phase = 0: data is captured on the leading edge of each SCK pulse, and
29 ; transitions on the trailing edge, or some time before the first leading edge.
30
31 out pins, 1 side 0 [1] ; Stall here on empty (sideset proceeds even if
32 in pins, 1 side 1 [1] ; instruction stalls, so we stall with SCK low)

This code uses autopush and autopull to continuously stream data from the FIFOs. The entire program runs once for

every bit that is transferred, and then loops. The state machine tracks how many bits have been shifted in/out, and

automatically pushes/pulls the FIFOs at the correct point. A similar program handles the CPHA=1 case:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/spi/spi.pio Lines 34 - 42

34 .program spi_cpha1
35 .side_set 1
36
37 ; Clock phase = 1: data transitions on the leading edge of each SCK pulse, and
38 ; is captured on the trailing edge.
39
40 out x, 1 side 0 ; Stall here on empty (keep SCK deasserted)
41 mov pins, x side 1 [1] ; Output data, assert SCK (mov pins uses OUT mapping)
42 in pins, 1 side 0 ; Input data, deassert SCK

RP2040 Datasheet

3.6. Examples 344

https://github.com/raspberrypi/pico-examples/blob/master/pio/spi/spi.pio#L14-L32
https://github.com/raspberrypi/pico-examples/blob/master/pio/spi/spi.pio#L34-L42

 NOTE

These programs do not control the chip select line; chip select is often implemented as a software-controlled GPIO,

due to wildly different behaviour between different SPI hardware. The full spi.pio source linked above contains some

examples how PIO can implement a hardware chip select line.

A C helper function configures the state machine, connects the GPIOs, and sets the state machine running. Note that

the SPI frame size — that is, the number of bits transferred for each FIFO record — can be programmed to any value

from 1 to 32, without modifying the program. Once configured, the state machine is set running.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/spi/spi.pio Lines 46 - 72

46 static inline void pio_spi_init(PIO pio, uint sm, uint prog_offs, uint n_bits,
47 float clkdiv, bool cpha, bool cpol, uint pin_sck, uint pin_mosi, uint pin_miso) {
48 pio_sm_config c = cpha ? spi_cpha1_program_get_default_config(prog_offs) :
 spi_cpha0_program_get_default_config(prog_offs);
49 sm_config_set_out_pins(&c, pin_mosi, 1);
50 sm_config_set_in_pins(&c, pin_miso);
51 sm_config_set_sideset_pins(&c, pin_sck);
52 // Only support MSB-first in this example code (shift to left, auto push/pull,
 threshold=nbits)
53 sm_config_set_out_shift(&c, false, true, n_bits);
54 sm_config_set_in_shift(&c, false, true, n_bits);
55 sm_config_set_clkdiv(&c, clkdiv);
56
57 // MOSI, SCK output are low, MISO is input
58 pio_sm_set_pins_with_mask(pio, sm, 0, (1u << pin_sck) | (1u << pin_mosi));
59 pio_sm_set_pindirs_with_mask(pio, sm, (1u << pin_sck) | (1u << pin_mosi), (1u << pin_sck)
 | (1u << pin_mosi) | (1u << pin_miso));
60 pio_gpio_init(pio, pin_mosi);
61 pio_gpio_init(pio, pin_miso);
62 pio_gpio_init(pio, pin_sck);
63
64 // The pin muxes can be configured to invert the output (among other things
65 // and this is a cheesy way to get CPOL=1
66 gpio_set_outover(pin_sck, cpol ? GPIO_OVERRIDE_INVERT : GPIO_OVERRIDE_NORMAL);
67 // SPI is synchronous, so bypass input synchroniser to reduce input delay.
68 hw_set_bits(&pio->input_sync_bypass, 1u << pin_miso);
69
70 pio_sm_init(pio, sm, prog_offs, &c);
71 pio_sm_set_enabled(pio, sm, true);
72 }

The state machine will now immediately begin to shift out any data appearing in the TX FIFO, and push received data

into the RX FIFO.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/spi/pio_spi.c Lines 18 - 34

18 void __time_critical_func(pio_spi_write8_blocking)(const pio_spi_inst_t *spi, const uint8_t
 *src, size_t len) {
19 size_t tx_remain = len, rx_remain = len;
20 // Do 8 bit accesses on FIFO, so that write data is byte-replicated. This
21 // gets us the left-justification for free (for MSB-first shift-out)
22 io_rw_8 *txfifo = (io_rw_8 *) &spi->pio->txf[spi->sm];
23 io_rw_8 *rxfifo = (io_rw_8 *) &spi->pio->rxf[spi->sm];
24 while (tx_remain || rx_remain) {
25 if (tx_remain && !pio_sm_is_tx_fifo_full(spi->pio, spi->sm)) {
26 *txfifo = *src++;
27 --tx_remain;
28 }

RP2040 Datasheet

3.6. Examples 345

https://github.com/raspberrypi/pico-examples/blob/master/pio/spi/spi.pio#L46-L72
https://github.com/raspberrypi/pico-examples/blob/master/pio/spi/pio_spi.c#L18-L34

29 if (rx_remain && !pio_sm_is_rx_fifo_empty(spi->pio, spi->sm)) {
30 (void) *rxfifo;
31 --rx_remain;
32 }
33 }
34 }

Putting this all together, this complete C program will loop back some data through a PIO SPI at 1MHz, with all four

CPOL/CPHA combinations:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/spi/spi_loopback.c

 1 /**
 2 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
 3 *
 4 * SPDX-License-Identifier: BSD-3-Clause
 5 */
 6
 7 #include <stdlib.h>
 8 #include <stdio.h>
 9
10 #include "pico/stdlib.h"
11 #include "pio_spi.h"
12
13 // This program instantiates a PIO SPI with each of the four possible
14 // CPOL/CPHA combinations, with the serial input and output pin mapped to the
15 // same GPIO. Any data written into the state machine's TX FIFO should then be
16 // serialised, deserialised, and reappear in the state machine's RX FIFO.
17
18 #define PIN_SCK 18
19 #define PIN_MOSI 16
20 #define PIN_MISO 16 // same as MOSI, so we get loopback
21
22 #define BUF_SIZE 20
23
24 void test(const pio_spi_inst_t *spi) {
25 static uint8_t txbuf[BUF_SIZE];
26 static uint8_t rxbuf[BUF_SIZE];
27 printf("TX:");
28 for (int i = 0; i < BUF_SIZE; ++i) {
29 txbuf[i] = rand() >> 16;
30 rxbuf[i] = 0;
31 printf(" %02x", (int) txbuf[i]);
32 }
33 printf("\n");
34
35 pio_spi_write8_read8_blocking(spi, txbuf, rxbuf, BUF_SIZE);
36
37 printf("RX:");
38 bool mismatch = false;
39 for (int i = 0; i < BUF_SIZE; ++i) {
40 printf(" %02x", (int) rxbuf[i]);
41 mismatch = mismatch || rxbuf[i] != txbuf[i];
42 }
43 if (mismatch)
44 printf("\nNope\n");
45 else
46 printf("\nOK\n");
47 }
48
49 int main() {
50 stdio_init_all();

RP2040 Datasheet

3.6. Examples 346

https://github.com/raspberrypi/pico-examples/blob/master/pio/spi/spi_loopback.c

51
52 pio_spi_inst_t spi = {
53 .pio = pio0,
54 .sm = 0
55 };
56 float clkdiv = 31.25f; // 1 MHz @ 125 clk_sys
57 uint cpha0_prog_offs = pio_add_program(spi.pio, &spi_cpha0_program);
58 uint cpha1_prog_offs = pio_add_program(spi.pio, &spi_cpha1_program);
59
60 for (int cpha = 0; cpha <= 1; ++cpha) {
61 for (int cpol = 0; cpol <= 1; ++cpol) {
62 printf("CPHA = %d, CPOL = %d\n", cpha, cpol);
63 pio_spi_init(spi.pio, spi.sm,
64 cpha ? cpha1_prog_offs : cpha0_prog_offs,
65 8, // 8 bits per SPI frame
66 clkdiv,
67 cpha,
68 cpol,
69 PIN_SCK,
70 PIN_MOSI,
71 PIN_MISO
72);
73 test(&spi);
74 sleep_ms(10);
75 }
76 }
77 }

3.6.2. WS2812 LEDs

WS2812 LEDs are driven by a proprietary pulse-width serial format, with a wide positive pulse representing a "1" bit, and

narrow positive pulse a "0". Each LED has a serial input and a serial output; LEDs are connected in a chain, with each

serial input connected to the previous LED’s serial output.

Symbol

Output

1 0 0 1 Latch
Figure 51. WS2812

line format. Wide

positive pulse for 1,

narrow positive pulse

for 0, very long

negative pulse for

latch enable

LEDs consume 24 bits of pixel data, then pass any additional input data on to their output. In this way a single serial

burst can individually program the colour of each LED in a chain. A long negative pulse latches the pixel data into the

LEDs.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.pio Lines 7 - 26

 7 .program ws2812
 8 .side_set 1
 9
10 .define public T1 2
11 .define public T2 5
12 .define public T3 3
13
14 .lang_opt python sideset_init = pico.PIO.OUT_HIGH
15 .lang_opt python out_init = pico.PIO.OUT_HIGH
16 .lang_opt python out_shiftdir = 1
17
18 .wrap_target
19 bitloop:
20 out x, 1 side 0 [T3 - 1] ; Side-set still takes place when instruction stalls
21 jmp !x do_zero side 1 [T1 - 1] ; Branch on the bit we shifted out. Positive pulse
22 do_one:

RP2040 Datasheet

3.6. Examples 347

https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.pio#L7-L26

23 jmp bitloop side 1 [T2 - 1] ; Continue driving high, for a long pulse
24 do_zero:
25 nop side 0 [T2 - 1] ; Or drive low, for a short pulse
26 .wrap

This program shifts bits from the OSR into X, and produces a wide or narrow pulse on side-set pin 0, based on the value

of each data bit. Autopull must be configured, with a threshold of 24. Software can then write 24-bit pixel values into the

FIFO, and these will be serialised to a chain of WS2812 LEDs. The .pio file contains a C helper function to set this up:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.pio Lines 31 - 47

31 static inline void ws2812_program_init(PIO pio, uint sm, uint offset, uint pin, float freq,
 bool rgbw) {
32
33 pio_gpio_init(pio, pin);
34 pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);
35
36 pio_sm_config c = ws2812_program_get_default_config(offset);
37 sm_config_set_sideset_pins(&c, pin);
38 sm_config_set_out_shift(&c, false, true, rgbw ? 32 : 24);
39 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);
40
41 int cycles_per_bit = ws2812_T1 + ws2812_T2 + ws2812_T3;
42 float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit);
43 sm_config_set_clkdiv(&c, div);
44
45 pio_sm_init(pio, sm, offset, &c);
46 pio_sm_set_enabled(pio, sm, true);
47 }

Because the shift is MSB-first, and our pixels aren’t a power of two size (so we can’t rely on the narrow write replication

behaviour on RP2040 to fan out the bits for us), we need to preshift the values written to the TX FIFO.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c Lines 25 - 27

25 static inline void put_pixel(uint32_t pixel_grb) {
26 pio_sm_put_blocking(pio0, 0, pixel_grb << 8u);
27 }

To DMA the pixels, we could instead set the autopull threshold to 8 bits, set the DMA transfer size to 8 bits, and write a

byte at a time into the FIFO. Each pixel would be 3 one-byte transfers. Because of how the bus fabric and DMA on

RP2040 work, each byte the DMA transfers will appear replicated four times when written to a 32-bit IO register, so

effectively your data is at both ends of the shift register, and you can shift in either direction without worry.

More detail?

The WS2812 example is the subject of a tutorial in the Raspberry Pi Pico C/C++ SDK document, in the

PIO chapter. The tutorial dissects the ws2812 program line by line, traces through how the program

executes, and shows wave diagrams of the GPIO output at every point in the program.

3.6.3. UART TX

RP2040 Datasheet

3.6. Examples 348

https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.pio#L31-L47
https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c#L25-L27
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf

Bit Clock

TX

State

10 2 3 4 5 6 7

Start StopData (LSB first)Idle

Figure 52. UART serial

format. The line is

high when idle. The

transmitter pulls the

line down for one bit

period to signify the

start of a serial frame

(the "start bit"), and a

small, fixed number of

data bits follows. The

line returns to the idle

state for at least one

bit period (the "stop

bit") before the next

serial frame can

begin.

This program implements the transmit component of a universal asynchronous receive/transmit (UART) serial

peripheral. Perhaps it would be more correct to refer to this as a UAT.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/uart_tx/uart_tx.pio Lines 7 - 17

 7 .program uart_tx
 8 .side_set 1 opt
 9
10 ; An 8n1 UART transmit program.
11 ; OUT pin 0 and side-set pin 0 are both mapped to UART TX pin.
12
13 pull side 1 [7] ; Assert stop bit, or stall with line in idle state
14 set x, 7 side 0 [7] ; Preload bit counter, assert start bit for 8 clocks
15 bitloop: ; This loop will run 8 times (8n1 UART)
16 out pins, 1 ; Shift 1 bit from OSR to the first OUT pin
17 jmp x-- bitloop [6] ; Each loop iteration is 8 cycles.

As written, it will:

• Stall with the pin driven high until data appears (noting that side-set takes effect even when the state machine is

stalled)

• Assert a start bit, for 8 SM execution cycles

• Shift out 8 data bits, each lasting for 8 cycles

• Return to the idle line state for at least 8 cycles before asserting the next start bit

If the state machine’s clock divider is configured to run at 8 times the desired baud rate, this program will transmit well-

formed UART serial frames, whenever data is pushed to the TX FIFO either by software or the system DMA. To extend

the program to cover different frame sizes (different numbers of data bits), the set x, 7 could be replaced with mov x, y,

so that the y scratch register becomes a per-SM configuration register for UART frame size.

The .pio file in the SDK also contains this function, for configuring the pins and the state machine, once the program

has been loaded into the PIO instruction memory:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/uart_tx/uart_tx.pio Lines 23 - 50

23 static inline void uart_tx_program_init(PIO pio, uint sm, uint offset, uint pin_tx, uint
 baud) {
24 // Tell PIO to initially drive output-high on the selected pin, then map PIO
25 // onto that pin with the IO muxes.
26 pio_sm_set_pins_with_mask(pio, sm, 1u << pin_tx, 1u << pin_tx);
27 pio_sm_set_pindirs_with_mask(pio, sm, 1u << pin_tx, 1u << pin_tx);
28 pio_gpio_init(pio, pin_tx);
29
30 pio_sm_config c = uart_tx_program_get_default_config(offset);
31
32 // OUT shifts to right, no autopull
33 sm_config_set_out_shift(&c, true, false, 32);
34
35 // We are mapping both OUT and side-set to the same pin, because sometimes
36 // we need to assert user data onto the pin (with OUT) and sometimes
37 // assert constant values (start/stop bit)
38 sm_config_set_out_pins(&c, pin_tx, 1);
39 sm_config_set_sideset_pins(&c, pin_tx);
40
41 // We only need TX, so get an 8-deep FIFO!

RP2040 Datasheet

3.6. Examples 349

https://github.com/raspberrypi/pico-examples/blob/master/pio/uart_tx/uart_tx.pio#L7-L17
https://github.com/raspberrypi/pico-examples/blob/master/pio/uart_tx/uart_tx.pio#L23-L50

42 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);
43
44 // SM transmits 1 bit per 8 execution cycles.
45 float div = (float)clock_get_hz(clk_sys) / (8 * baud);
46 sm_config_set_clkdiv(&c, div);
47
48 pio_sm_init(pio, sm, offset, &c);
49 pio_sm_set_enabled(pio, sm, true);
50 }

The state machine is configured to shift right in out instructions, because UARTs typically send data LSB-first. Once

configured, the state machine will print any characters pushed to the TX FIFO.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/uart_tx/uart_tx.pio Lines 52 - 54

52 static inline void uart_tx_program_putc(PIO pio, uint sm, char c) {
53 pio_sm_put_blocking(pio, sm, (uint32_t)c);
54 }

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/uart_tx/uart_tx.pio Lines 56 - 59

56 static inline void uart_tx_program_puts(PIO pio, uint sm, const char *s) {
57 while (*s)
58 uart_tx_program_putc(pio, sm, *s++);
59 }

The example program in the SDK will configure one PIO state machine as a UART TX peripheral, and use it to print a

message on GPIO 0 at 115200 baud once per second.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/uart_tx/uart_tx.c

 1 /**
 2 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
 3 *
 4 * SPDX-License-Identifier: BSD-3-Clause
 5 */
 6
 7 #include "pico/stdlib.h"
 8 #include "hardware/pio.h"
 9 #include "uart_tx.pio.h"
10
11 int main() {
12 // We're going to use PIO to print "Hello, world!" on the same GPIO which we
13 // normally attach UART0 to.
14 const uint PIN_TX = 0;
15 // This is the same as the default UART baud rate on Pico
16 const uint SERIAL_BAUD = 115200;
17
18 PIO pio = pio0;
19 uint sm = 0;
20 uint offset = pio_add_program(pio, &uart_tx_program);
21 uart_tx_program_init(pio, sm, offset, PIN_TX, SERIAL_BAUD);
22
23 while (true) {
24 uart_tx_program_puts(pio, sm, "Hello, world! (from PIO!)\n");
25 sleep_ms(1000);
26 }

RP2040 Datasheet

3.6. Examples 350

https://github.com/raspberrypi/pico-examples/blob/master/pio/uart_tx/uart_tx.pio#L52-L54
https://github.com/raspberrypi/pico-examples/blob/master/pio/uart_tx/uart_tx.pio#L56-L59
https://github.com/raspberrypi/pico-examples/blob/master/pio/uart_tx/uart_tx.c

27 }

With the two PIO instances on RP2040, this could be extended to 8 additional UART TX interfaces, on 8 different pins,

with 8 different baud rates.

3.6.4. UART RX

Recalling Figure 52 showing the format of an 8n1 UART:

Bit Clock

TX

State

10 2 3 4 5 6 7

Start StopData (LSB first)Idle

We can recover the data by waiting for the start bit, sampling 8 times with the correct timing, and pushing the result to

the RX FIFO. Below is possibly the shortest program which can do this:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/uart_rx/uart_rx.pio Lines 7 - 18

 7 .program uart_rx_mini
 8
 9 ; Minimum viable 8n1 UART receiver. Wait for the start bit, then sample 8 bits
10 ; with the correct timing.
11 ; IN pin 0 is mapped to the GPIO used as UART RX.
12 ; Autopush must be enabled, with a threshold of 8.
13
14 wait 0 pin 0 ; Wait for start bit
15 set x, 7 [10] ; Preload bit counter, delay until eye of first data bit
16 bitloop: ; Loop 8 times
17 in pins, 1 ; Sample data
18 jmp x-- bitloop [6] ; Each iteration is 8 cycles

This works, but it has some annoying characteristics, like repeatedly outputting NUL characters if the line is stuck low.

Ideally, we would want to drop data that is not correctly framed by a start and stop bit (and set some sticky flag to

indicate this has happened), and pause receiving when the line is stuck low for long periods. We can add these to our

program, at the cost of a few more instructions.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/uart_rx/uart_rx.pio Lines 43 - 62

43 .program uart_rx
44
45 ; Slightly more fleshed-out 8n1 UART receiver which handles framing errors and
46 ; break conditions more gracefully.
47 ; IN pin 0 and JMP pin are both mapped to the GPIO used as UART RX.
48
49 start:
50 wait 0 pin 0 ; Stall until start bit is asserted
51 set x, 7 [10] ; Preload bit counter, then delay until halfway through
52 bitloop: ; the first data bit (12 cycles incl wait, set).
53 in pins, 1 ; Shift data bit into ISR
54 jmp x-- bitloop [6] ; Loop 8 times, each loop iteration is 8 cycles
55 jmp pin good_stop ; Check stop bit (should be high)
56
57 irq 4 rel ; Either a framing error or a break. Set a sticky flag,
58 wait 1 pin 0 ; and wait for line to return to idle state.
59 jmp start ; Don't push data if we didn't see good framing.
60
61 good_stop: ; No delay before returning to start; a little slack is

RP2040 Datasheet

3.6. Examples 351

https://github.com/raspberrypi/pico-examples/blob/master/pio/uart_rx/uart_rx.pio#L7-L18
https://github.com/raspberrypi/pico-examples/blob/master/pio/uart_rx/uart_rx.pio#L43-L62

62 push ; important in case the TX clock is slightly too fast.

The second example does not use autopush (Section 3.5.4), preferring instead to use an explicit push instruction, so that

it can condition the push on whether a correct stop bit is seen. The .pio file includes a helper function which configures

the state machine and connects it to a GPIO with the pull-up enabled:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/uart_rx/uart_rx.pio Lines 66 - 84

66 static inline void uart_rx_program_init(PIO pio, uint sm, uint offset, uint pin, uint baud) {
67 pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, false);
68 pio_gpio_init(pio, pin);
69 gpio_pull_up(pin);
70
71 pio_sm_config c = uart_rx_program_get_default_config(offset);
72 sm_config_set_in_pins(&c, pin); // for WAIT, IN
73 sm_config_set_jmp_pin(&c, pin); // for JMP
74 // Shift to right, autopush disabled
75 sm_config_set_in_shift(&c, true, false, 32);
76 // Deeper FIFO as we're not doing any TX
77 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_RX);
78 // SM transmits 1 bit per 8 execution cycles.
79 float div = (float)clock_get_hz(clk_sys) / (8 * baud);
80 sm_config_set_clkdiv(&c, div);
81
82 pio_sm_init(pio, sm, offset, &c);
83 pio_sm_set_enabled(pio, sm, true);
84 }

To correctly receive data which is sent LSB-first, the ISR is configured to shift to the right. After shifting in 8 bits, this

unfortunately leaves our 8 data bits in bits 31:24 of the ISR, with 24 zeroes in the LSBs. One option here is an in null, 24

instruction to shuffle the ISR contents down to 7:0. Another is to read from the FIFO at an offset of 3 bytes, with an 8-bit

read, so that the processor’s bus hardware (or the DMA’s) picks out the relevant byte for free:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/uart_rx/uart_rx.pio Lines 86 - 92

86 static inline char uart_rx_program_getc(PIO pio, uint sm) {
87 // 8-bit read from the uppermost byte of the FIFO, as data is left-justified
88 io_rw_8 *rxfifo_shift = (io_rw_8*)&pio->rxf[sm] + 3;
89 while (pio_sm_is_rx_fifo_empty(pio, sm))
90 tight_loop_contents();
91 return (char)*rxfifo_shift;
92 }

An example program shows how this UART RX program can be used to receive characters sent by one of the hardware

UARTs on RP2040. A wire must be connected from GPIO4 to GPIO3 for this program to function. To make the wrangling

of 3 different serial ports a little easier, this program uses core 1 to print out a string on the test UART (UART 1), and the

code running on core 0 will pull out characters from the PIO state machine, and pass them along to the UART used for

the debug console (UART 0). Another approach here would be interrupt-based IO, using PIO’s FIFO IRQs. If the

SM0_RXNEMPTY bit is set in the IRQ0_INTE register, then PIO will raise its first interrupt request line whenever there is a

character in state machine 0’s RX FIFO.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/uart_rx/uart_rx.c

 1 /**
 2 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
 3 *
 4 * SPDX-License-Identifier: BSD-3-Clause

RP2040 Datasheet

3.6. Examples 352

https://github.com/raspberrypi/pico-examples/blob/master/pio/uart_rx/uart_rx.pio#L66-L84
https://github.com/raspberrypi/pico-examples/blob/master/pio/uart_rx/uart_rx.pio#L86-L92
https://github.com/raspberrypi/pico-examples/blob/master/pio/uart_rx/uart_rx.c

 5 */
 6
 7 #include <stdio.h>
 8
 9 #include "pico/stdlib.h"
10 #include "pico/multicore.h"
11 #include "hardware/pio.h"
12 #include "hardware/uart.h"
13 #include "uart_rx.pio.h"
14
15 // This program
16 // - Uses UART1 (the spare UART, by default) to transmit some text
17 // - Uses a PIO state machine to receive that text
18 // - Prints out the received text to the default console (UART0)
19 // This might require some reconfiguration on boards where UART1 is the
20 // default UART.
21
22 #define SERIAL_BAUD PICO_DEFAULT_UART_BAUD_RATE
23 #define HARD_UART_INST uart1
24
25 // You'll need a wire from GPIO4 -> GPIO3
26 #define HARD_UART_TX_PIN 4
27 #define PIO_RX_PIN 3
28
29 // Ask core 1 to print a string, to make things easier on core 0
30 void core1_main() {
31 const char *s = (const char *) multicore_fifo_pop_blocking();
32 uart_puts(HARD_UART_INST, s);
33 }
34
35 int main() {
36 // Console output (also a UART, yes it's confusing)
37 setup_default_uart();
38 printf("Starting PIO UART RX example\n");
39
40 // Set up the hard UART we're going to use to print characters
41 uart_init(HARD_UART_INST, SERIAL_BAUD);
42 gpio_set_function(HARD_UART_TX_PIN, GPIO_FUNC_UART);
43
44 // Set up the state machine we're going to use to receive them.
45 PIO pio = pio0;
46 uint sm = 0;
47 uint offset = pio_add_program(pio, &uart_rx_program);
48 uart_rx_program_init(pio, sm, offset, PIO_RX_PIN, SERIAL_BAUD);
49
50 // Tell core 1 to print some text to uart1 as fast as it can
51 multicore_launch_core1(core1_main);
52 const char *text = "Hello, world from PIO! (Plus 2 UARTs and 2 cores, for complex
 reasons)\n";
53 multicore_fifo_push_blocking((uint32_t) text);
54
55 // Echo characters received from PIO to the console
56 while (true) {
57 char c = uart_rx_program_getc(pio, sm);
58 putchar(c);
59 }
60 }

RP2040 Datasheet

3.6. Examples 353

3.6.5. Manchester Serial TX and RX

Figure 53. Manchester

serial line code. Each

data bit is represented

by either a high pulse

followed by a low

pulse (representing a

'0' bit) or a low pulse

followed by a high

pulse (a '1' bit).

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/manchester_encoding/manchester_encoding.pio Lines 7 - 29

 7 .program manchester_tx
 8 .side_set 1 opt
 9
10 ; Transmit one bit every 12 cycles. a '0' is encoded as a high-low sequence
11 ; (each part lasting half a bit period, or 6 cycles) and a '1' is encoded as a
12 ; low-high sequence.
13 ;
14 ; Side-set bit 0 must be mapped to the GPIO used for TX.
15 ; Autopull must be enabled -- this program does not care about the threshold.
16 ; The program starts at the public label 'start'.
17
18 .wrap_target
19 do_1:
20 nop side 0 [5] ; Low for 6 cycles (5 delay, +1 for nop)
21 jmp get_bit side 1 [3] ; High for 4 cycles. 'get_bit' takes another 2 cycles
22 do_0:
23 nop side 1 [5] ; Output high for 6 cycles
24 nop side 0 [3] ; Output low for 4 cycles
25 public start:
26 get_bit:
27 out x, 1 ; Always shift out one bit from OSR to X, so we can
28 jmp !x do_0 ; branch on it. Autopull refills the OSR when empty.
29 .wrap

Starting from the label called start, this program shifts one data bit at a time into the X register, so that it can branch on

the value. Depending on the outcome, it uses side-set to drive either a 1-0 or 0-1 sequence onto the chosen GPIO. This

program uses autopull (Section 3.5.4.2) to automatically replenish the OSR from the TX FIFO once a certain amount of

data has been shifted out, without interrupting program control flow or timing. This feature is enabled by a helper

function in the .pio file which configures and starts the state machine:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/manchester_encoding/manchester_encoding.pio Lines 32 - 45

32 static inline void manchester_tx_program_init(PIO pio, uint sm, uint offset, uint pin, float
 div) {
33 pio_sm_set_pins_with_mask(pio, sm, 0, 1u << pin);
34 pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);
35 pio_gpio_init(pio, pin);
36
37 pio_sm_config c = manchester_tx_program_get_default_config(offset);
38 sm_config_set_sideset_pins(&c, pin);
39 sm_config_set_out_shift(&c, true, true, 32);
40 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);
41 sm_config_set_clkdiv(&c, div);
42 pio_sm_init(pio, sm, offset + manchester_tx_offset_start, &c);
43
44 pio_sm_set_enabled(pio, sm, true);
45 }

Another state machine can be programmed to recover the original data from the transmitted signal:

RP2040 Datasheet

3.6. Examples 354

https://github.com/raspberrypi/pico-examples/blob/master/pio/manchester_encoding/manchester_encoding.pio#L7-L29
https://github.com/raspberrypi/pico-examples/blob/master/pio/manchester_encoding/manchester_encoding.pio#L32-L45

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/manchester_encoding/manchester_encoding.pio Lines 48 - 70

48 .program manchester_rx
49
50 ; Assumes line is idle low, first bit is 0
51 ; One bit is 12 cycles
52 ; a '0' is encoded as 10
53 ; a '1' is encoded as 01
54 ;
55 ; Both the IN base and the JMP pin mapping must be pointed at the GPIO used for RX.
56 ; Autopush must be enabled.
57 ; Before enabling the SM, it should be placed in a 'wait 1, pin` state, so that
58 ; it will not start sampling until the initial line idle state ends.
59
60 start_of_0: ; We are 0.25 bits into a 0 - signal is high
61 wait 0 pin 0 ; Wait for the 1->0 transition - at this point we are 0.5 into the bit
62 in y, 1 [8] ; Emit a 0, sleep 3/4 of a bit
63 jmp pin start_of_0 ; If signal is 1 again, it's another 0 bit, otherwise it's a 1
64
65 .wrap_target
66 start_of_1: ; We are 0.25 bits into a 1 - signal is 1
67 wait 1 pin 0 ; Wait for the 0->1 transition - at this point we are 0.5 into the bit
68 in x, 1 [8] ; Emit a 1, sleep 3/4 of a bit
69 jmp pin start_of_0 ; If signal is 0 again, it's another 1 bit otherwise it's a 0
70 .wrap

The main complication here is staying aligned to the input transitions, as the transmitter’s and receiver’s clocks may

drift relative to one another. In Manchester code there is always a transition in the centre of the symbol, and based on

the initial line state (high or low) we know the direction of this transition, so we can use a wait instruction to

resynchronise to the line transitions on every data bit.

This program expects the X and Y registers to be initialised with the values 1 and 0 respectively, so that a constant 1 or

0 can be provided to the in instruction. The code that configures the state machine initialises these registers by

executing some set instructions before setting the program running.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/manchester_encoding/manchester_encoding.pio Lines 73 - 93

73 static inline void manchester_rx_program_init(PIO pio, uint sm, uint offset, uint pin, float
 div) {
74 pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, false);
75 pio_gpio_init(pio, pin);
76
77 pio_sm_config c = manchester_rx_program_get_default_config(offset);
78 sm_config_set_in_pins(&c, pin); // for WAIT
79 sm_config_set_jmp_pin(&c, pin); // for JMP
80 sm_config_set_in_shift(&c, true, true, 32);
81 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_RX);
82 sm_config_set_clkdiv(&c, div);
83 pio_sm_init(pio, sm, offset, &c);
84
85 // X and Y are set to 0 and 1, to conveniently emit these to ISR/FIFO.
86 pio_sm_exec(pio, sm, pio_encode_set(pio_x, 1));
87 pio_sm_exec(pio, sm, pio_encode_set(pio_y, 0));
88 // Assume line is idle low, and first transmitted bit is 0. Put SM in a
89 // wait state before enabling. RX will begin once the first 0 symbol is
90 // detected.
91 pio_sm_exec(pio, sm, pio_encode_wait_pin(1, 0) | pio_encode_delay(2));
92 pio_sm_set_enabled(pio, sm, true);
93 }

RP2040 Datasheet

3.6. Examples 355

https://github.com/raspberrypi/pico-examples/blob/master/pio/manchester_encoding/manchester_encoding.pio#L48-L70
https://github.com/raspberrypi/pico-examples/blob/master/pio/manchester_encoding/manchester_encoding.pio#L73-L93

The example C program in the SDK will transmit Manchester serial data from GPIO2 to GPIO3 at approximately 10Mbps

(assuming a system clock of 125MHz).

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/manchester_encoding/manchester_encoding.c Lines 20 - 43

20 int main() {
21 stdio_init_all();
22
23 PIO pio = pio0;
24 uint sm_tx = 0;
25 uint sm_rx = 1;
26
27 uint offset_tx = pio_add_program(pio, &manchester_tx_program);
28 uint offset_rx = pio_add_program(pio, &manchester_rx_program);
29 printf("Transmit program loaded at %d\n", offset_tx);
30 printf("Receive program loaded at %d\n", offset_rx);
31
32 manchester_tx_program_init(pio, sm_tx, offset_tx, pin_tx, 1.f);
33 manchester_rx_program_init(pio, sm_rx, offset_rx, pin_rx, 1.f);
34
35 pio_sm_set_enabled(pio, sm_tx, false);
36 pio_sm_put_blocking(pio, sm_tx, 0);
37 pio_sm_put_blocking(pio, sm_tx, 0x0ff0a55a);
38 pio_sm_put_blocking(pio, sm_tx, 0x12345678);
39 pio_sm_set_enabled(pio, sm_tx, true);
40
41 for (int i = 0; i < 3; ++i)
42 printf("%08x\n", pio_sm_get_blocking(pio, sm_rx));
43 }

3.6.6. Differential Manchester (BMC) TX and RX

Figure 54. Differential

Manchester serial line

code, also known as

biphase mark code

(BMC). The line

transitions at the start

of every bit period.

The presence of a

transition in the centre

of the bit period

signifies a 1 data bit,

and the absence, a 0

bit. These encoding

rules are the same

whether the line has

an initial high or low

state.

The transmit program is similar to the Manchester example: it repeatedly shifts a bit from the OSR into X (relying on

autopull to refill the OSR in the background), branches, and drives a GPIO up and down based on the value of this bit.

The added complication is that the pattern we drive onto the pin depends not just on the value of the data bit, as with

vanilla Manchester encoding, but also on the state the line was left in at the end of the last bit period. This is illustrated

in Figure 54, where the pattern is inverted if the line is initially high. To cope with this, there are two copies of the test-

and-drive code, one for each initial line state, and these are linked together in the correct order by a sequence of jumps.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/differential_manchester/differential_manchester.pio Lines 7 - 34

 7 .program differential_manchester_tx
 8 .side_set 1 opt
 9
10 ; Transmit one bit every 16 cycles. In each bit period:
11 ; - A '0' is encoded as a transition at the start of the bit period
12 ; - A '1' is encoded as a transition at the start *and* in the middle
13 ;
14 ; Side-set bit 0 must be mapped to the data output pin.
15 ; Autopull must be enabled.
16
17 public start:
18 initial_high:
19 out x, 1 ; Start of bit period: always assert transition
20 jmp !x high_0 side 1 [6] ; Test the data bit we just shifted out of OSR

RP2040 Datasheet

3.6. Examples 356

https://github.com/raspberrypi/pico-examples/blob/master/pio/manchester_encoding/manchester_encoding.c#L20-L43
https://github.com/raspberrypi/pico-examples/blob/master/pio/differential_manchester/differential_manchester.pio#L7-L34

21 high_1:
22 nop
23 jmp initial_high side 0 [6] ; For `1` bits, also transition in the middle
24 high_0:
25 jmp initial_low [7] ; Otherwise, the line is stable in the middle
26
27 initial_low:
28 out x, 1 ; Always shift 1 bit from OSR to X so we can
29 jmp !x low_0 side 0 [6] ; branch on it. Autopull refills OSR for us.
30 low_1:
31 nop
32 jmp initial_low side 1 [6] ; If there are two transitions, return to
33 low_0:
34 jmp initial_high [7] ; the initial line state is flipped!

The .pio file also includes a helper function to initialise a state machine for differential Manchester TX, and connect it to

a chosen GPIO. We arbitrarily choose a 32-bit frame size and LSB-first serialisation (shift_to_right is true in

sm_config_set_out_shift), but as the program operates on one bit at a time, we could change this by reconfiguring the

state machine.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/differential_manchester/differential_manchester.pio Lines 37 - 52

37 static inline void differential_manchester_tx_program_init(PIO pio, uint sm, uint offset,
 uint pin, float div) {
38 pio_sm_set_pins_with_mask(pio, sm, 0, 1u << pin);
39 pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);
40 pio_gpio_init(pio, pin);
41
42 pio_sm_config c = differential_manchester_tx_program_get_default_config(offset);
43 sm_config_set_sideset_pins(&c, pin);
44 sm_config_set_out_shift(&c, true, true, 32);
45 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);
46 sm_config_set_clkdiv(&c, div);
47 pio_sm_init(pio, sm, offset + differential_manchester_tx_offset_start, &c);
48
49 // Execute a blocking pull so that we maintain the initial line state until data is
 available
50 pio_sm_exec(pio, sm, pio_encode_pull(false, true));
51 pio_sm_set_enabled(pio, sm, true);
52 }

The RX program uses the following strategy:

• Wait until the initial transition at the start of the bit period, so we stay aligned to the transmit clock

• Then wait 3/4 of the configured bit period, so that we are centred on the second half-bit-period (see Figure 54)

• Sample the line at this point to determine whether there are one or two transitions in this bit period

• Repeat

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/differential_manchester/differential_manchester.pio Lines 54 - 84

54 .program differential_manchester_rx
55
56 ; Assumes line is idle low
57 ; One bit is 16 cycles. In each bit period:
58 ; - A '0' is encoded as a transition at time 0
59 ; - A '1' is encoded as a transition at time 0 and a transition at time T/2
60 ;
61 ; The IN mapping and the JMP pin select must both be mapped to the GPIO used for

RP2040 Datasheet

3.6. Examples 357

https://github.com/raspberrypi/pico-examples/blob/master/pio/differential_manchester/differential_manchester.pio#L37-L52
https://github.com/raspberrypi/pico-examples/blob/master/pio/differential_manchester/differential_manchester.pio#L54-L84

62 ; RX data. Autopush must be enabled.
63
64 public start:
65 initial_high: ; Find rising edge at start of bit period
66 wait 1 pin, 0 [11] ; Delay to eye of second half-period (i.e 3/4 of way
67 jmp pin high_0 ; through bit) and branch on RX pin high/low.
68 high_1:
69 in x, 1 ; Second transition detected (a `1` data symbol)
70 jmp initial_high
71 high_0:
72 in y, 1 [1] ; Line still high, no centre transition (data is `0`)
73 ; Fall-through
74
75 .wrap_target
76 initial_low: ; Find falling edge at start of bit period
77 wait 0 pin, 0 [11] ; Delay to eye of second half-period
78 jmp pin low_1
79 low_0:
80 in y, 1 ; Line still low, no centre transition (data is `0`)
81 jmp initial_high
82 low_1: ; Second transition detected (data is `1`)
83 in x, 1 [1]
84 .wrap

This code assumes that X and Y have the values 1 and 0, respectively. This is arranged for by the included C helper

function:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/differential_manchester/differential_manchester.pio Lines 87 - 103

 87 static inline void differential_manchester_rx_program_init(PIO pio, uint sm, uint offset,
 uint pin, float div) {
 88 pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, false);
 89 pio_gpio_init(pio, pin);
 90
 91 pio_sm_config c = differential_manchester_rx_program_get_default_config(offset);
 92 sm_config_set_in_pins(&c, pin); // for WAIT
 93 sm_config_set_jmp_pin(&c, pin); // for JMP
 94 sm_config_set_in_shift(&c, true, true, 32);
 95 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_RX);
 96 sm_config_set_clkdiv(&c, div);
 97 pio_sm_init(pio, sm, offset, &c);
 98
 99 // X and Y are set to 0 and 1, to conveniently emit these to ISR/FIFO.
100 pio_sm_exec(pio, sm, pio_encode_set(pio_x, 1));
101 pio_sm_exec(pio, sm, pio_encode_set(pio_y, 0));
102 pio_sm_set_enabled(pio, sm, true);
103 }

All the pieces now exist to loopback some serial data over a wire between two GPIOs.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/differential_manchester/differential_manchester.c

 1 /**
 2 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
 3 *
 4 * SPDX-License-Identifier: BSD-3-Clause
 5 */
 6
 7 #include <stdio.h>
 8

RP2040 Datasheet

3.6. Examples 358

https://github.com/raspberrypi/pico-examples/blob/master/pio/differential_manchester/differential_manchester.pio#L87-L103
https://github.com/raspberrypi/pico-examples/blob/master/pio/differential_manchester/differential_manchester.c

 9 #include "pico/stdlib.h"
10 #include "hardware/pio.h"
11 #include "differential_manchester.pio.h"
12
13 // Differential serial transmit/receive example
14 // Need to connect a wire from GPIO2 -> GPIO3
15
16 const uint pin_tx = 2;
17 const uint pin_rx = 3;
18
19 int main() {
20 stdio_init_all();
21
22 PIO pio = pio0;
23 uint sm_tx = 0;
24 uint sm_rx = 1;
25
26 uint offset_tx = pio_add_program(pio, &differential_manchester_tx_program);
27 uint offset_rx = pio_add_program(pio, &differential_manchester_rx_program);
28 printf("Transmit program loaded at %d\n", offset_tx);
29 printf("Receive program loaded at %d\n", offset_rx);
30
31 // Configure state machines, set bit rate at 5 Mbps
32 differential_manchester_tx_program_init(pio, sm_tx, offset_tx, pin_tx, 125.f / (16 * 5));
33 differential_manchester_rx_program_init(pio, sm_rx, offset_rx, pin_rx, 125.f / (16 * 5));
34
35 pio_sm_set_enabled(pio, sm_tx, false);
36 pio_sm_put_blocking(pio, sm_tx, 0);
37 pio_sm_put_blocking(pio, sm_tx, 0x0ff0a55a);
38 pio_sm_put_blocking(pio, sm_tx, 0x12345678);
39 pio_sm_set_enabled(pio, sm_tx, true);
40
41 for (int i = 0; i < 3; ++i)
42 printf("%08x\n", pio_sm_get_blocking(pio, sm_rx));
43 }

3.6.7. I2C

RP2040 Datasheet

3.6. Examples 359

Figure 55. A 1-byte I2C

read transfer. In the

idle state, both lines

float high. The initiator

drives SDA low (a

Start condition),

followed by 7 address

bits A6-A0, and a

direction bit

(Read/nWrite). The

target drives SDA low

to acknowledge the

address (ACK). Data

bytes follow. The

target serialises data

on SDA, clocked out

by SCL. Every 9th

clock, the initiator

pulls SDA low to

acknowledge the data,

except on the last

byte, where it leaves

the line high (NAK).

Releasing SDA whilst

SCL is high is a Stop

condition, returning

the bus to idle.

I2C is an ubiquitous serial bus first described in the Dead Sea Scrolls, and later used by Philips Semiconductor. Two

wires with pull-up resistors form an open-drain bus, and multiple agents address and signal one another over this bus by

driving the bus lines low, or releasing them to be pulled high. It has a number of unusual attributes:

• SCL can be held low at any time, for any duration, by any member of the bus (not necessarily the target or initiator

of the transfer). This is known as clock stretching. The bus does not advance until all drivers release the clock.

• Members of the bus can be a target of one transfer and initiate other transfers (the master/slave roles are not

fixed). However this is poorly supported by most I2C hardware.

• SCL is not an edge-sensitive clock, rather SDA must be valid the entire time SCL is high

• In spite of the transparency of SDA against SCL, transitions of SDA whilst SCL is high are used to mark beginning

and end of transfers (Start/Stop), or a new address phase within one (Restart)

The PIO program listed below handles serialisation, clock stretching, and checking of ACKs in the initiator role. It

provides a mechanism for escaping PIO instructions in the FIFO datastream, to issue Start/Stop/Restart sequences at

appropriate times. Provided no unexpected NAKs are received, this can perform long sequences of I2C transfers from a

DMA buffer, without processor intervention.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/i2c/i2c.pio Lines 7 - 72

 7 .program i2c
 8 .side_set 1 opt pindirs
 9
10 ; TX Encoding:
11 ; | 15:10 | 9 | 8:1 | 0 |
12 ; | Instr | Final | Data | NAK |
13 ;
14 ; If Instr has a value n > 0, then this FIFO word has no
15 ; data payload, and the next n + 1 words will be executed as instructions.
16 ; Otherwise, shift out the 8 data bits, followed by the ACK bit.
17 ;
18 ; The Instr mechanism allows stop/start/repstart sequences to be programmed
19 ; by the processor, and then carried out by the state machine at defined points
20 ; in the datastream.
21 ;
22 ; The "Final" field should be set for the final byte in a transfer.
23 ; This tells the state machine to ignore a NAK: if this field is not
24 ; set, then any NAK will cause the state machine to halt and interrupt.
25 ;
26 ; Autopull should be enabled, with a threshold of 16.
27 ; Autopush should be enabled, with a threshold of 8.
28 ; The TX FIFO should be accessed with halfword writes, to ensure
29 ; the data is immediately available in the OSR.
30 ;
31 ; Pin mapping:
32 ; - Input pin 0 is SDA, 1 is SCL (if clock stretching used)
33 ; - Jump pin is SDA
34 ; - Side-set pin 0 is SCL
35 ; - Set pin 0 is SDA
36 ; - OUT pin 0 is SDA
37 ; - SCL must be SDA + 1 (for wait mapping)
38 ;
39 ; The OE outputs should be inverted in the system IO controls!
40 ; (It's possible for the inversion to be done in this program,
41 ; but costs 2 instructions: 1 for inversion, and one to cope
42 ; with the side effect of the MOV on TX shift counter.)
43

RP2040 Datasheet

3.6. Examples 360

https://github.com/raspberrypi/pico-examples/blob/master/pio/i2c/i2c.pio#L7-L72

44 do_nack:
45 jmp y-- entry_point ; Continue if NAK was expected
46 irq wait 0 rel ; Otherwise stop, ask for help
47
48 do_byte:
49 set x, 7 ; Loop 8 times
50 bitloop:
51 out pindirs, 1 [7] ; Serialise write data (all-ones if reading)
52 nop side 1 [2] ; SCL rising edge
53 wait 1 pin, 1 [4] ; Allow clock to be stretched
54 in pins, 1 [7] ; Sample read data in middle of SCL pulse
55 jmp x-- bitloop side 0 [7] ; SCL falling edge
56
57 ; Handle ACK pulse
58 out pindirs, 1 [7] ; On reads, we provide the ACK.
59 nop side 1 [7] ; SCL rising edge
60 wait 1 pin, 1 [7] ; Allow clock to be stretched
61 jmp pin do_nack side 0 [2] ; Test SDA for ACK/NAK, fall through if ACK
62
63 public entry_point:
64 .wrap_target
65 out x, 6 ; Unpack Instr count
66 out y, 1 ; Unpack the NAK ignore bit
67 jmp !x do_byte ; Instr == 0, this is a data record.
68 out null, 32 ; Instr > 0, remainder of this OSR is invalid
69 do_exec:
70 out exec, 16 ; Execute one instruction per FIFO word
71 jmp x-- do_exec ; Repeat n + 1 times
72 .wrap

The IO mapping required by the I2C program is quite complex, due to the different ways that the two serial lines must be

driven and sampled. One interesting feature is that state machine must drive the output enable high when the output is

low, since the bus is open-drain, so the sense of the data is inverted. This could be handled in the PIO program (e.g. mov

osr, ~osr), but instead we can use the IO controls on RP2040 to perform this inversion in the GPIO muxes, saving an

instruction.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/i2c/i2c.pio Lines 80 - 120

 80 static inline void i2c_program_init(PIO pio, uint sm, uint offset, uint pin_sda, uint
 pin_scl) {
 81 assert(pin_scl == pin_sda + 1);
 82 pio_sm_config c = i2c_program_get_default_config(offset);
 83
 84 // IO mapping
 85 sm_config_set_out_pins(&c, pin_sda, 1);
 86 sm_config_set_set_pins(&c, pin_sda, 1);
 87 sm_config_set_in_pins(&c, pin_sda);
 88 sm_config_set_sideset_pins(&c, pin_scl);
 89 sm_config_set_jmp_pin(&c, pin_sda);
 90
 91 sm_config_set_out_shift(&c, false, true, 16);
 92 sm_config_set_in_shift(&c, false, true, 8);
 93
 94 float div = (float)clock_get_hz(clk_sys) / (32 * 100000);
 95 sm_config_set_clkdiv(&c, div);
 96
 97 // Try to avoid glitching the bus while connecting the IOs. Get things set
 98 // up so that pin is driven down when PIO asserts OE low, and pulled up
 99 // otherwise.
100 gpio_pull_up(pin_scl);
101 gpio_pull_up(pin_sda);

RP2040 Datasheet

3.6. Examples 361

https://github.com/raspberrypi/pico-examples/blob/master/pio/i2c/i2c.pio#L80-L120

102 uint32_t both_pins = (1u << pin_sda) | (1u << pin_scl);
103 pio_sm_set_pins_with_mask(pio, sm, both_pins, both_pins);
104 pio_sm_set_pindirs_with_mask(pio, sm, both_pins, both_pins);
105 pio_gpio_init(pio, pin_sda);
106 gpio_set_oeover(pin_sda, GPIO_OVERRIDE_INVERT);
107 pio_gpio_init(pio, pin_scl);
108 gpio_set_oeover(pin_scl, GPIO_OVERRIDE_INVERT);
109 pio_sm_set_pins_with_mask(pio, sm, 0, both_pins);
110
111 // Clear IRQ flag before starting, and make sure flag doesn't actually
112 // assert a system-level interrupt (we're using it as a status flag)
113 pio_set_irq0_source_enabled(pio, (enum pio_interrupt_source) ((uint) pis_interrupt0 +
 sm), false);
114 pio_set_irq1_source_enabled(pio, (enum pio_interrupt_source) ((uint) pis_interrupt0 +
 sm), false);
115 pio_interrupt_clear(pio, sm);
116
117 // Configure and start SM
118 pio_sm_init(pio, sm, offset + i2c_offset_entry_point, &c);
119 pio_sm_set_enabled(pio, sm, true);
120 }

We can also use the PIO assembler to generate a table of instructions for passing through the FIFO, for

Start/Stop/Restart conditions.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/i2c/i2c.pio Lines 125 - 135

125 .program set_scl_sda
126 .side_set 1 opt
127
128 ; Assemble a table of instructions which software can select from, and pass
129 ; into the FIFO, to issue START/STOP/RSTART. This isn't intended to be run as
130 ; a complete program.
131
132 set pindirs, 0 side 0 [7] ; SCL = 0, SDA = 0
133 set pindirs, 1 side 0 [7] ; SCL = 0, SDA = 1
134 set pindirs, 0 side 1 [7] ; SCL = 1, SDA = 0
135 set pindirs, 1 side 1 [7] ; SCL = 1, SDA = 1

The example code does blocking software IO on the state machine’s FIFOs, to avoid the extra complexity of setting up

the system DMA. For example, an I2C start condition is enqueued like so:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/i2c/pio_i2c.c Lines 69 - 73

69 void pio_i2c_start(PIO pio, uint sm) {
70 pio_i2c_put_or_err(pio, sm, 1u << PIO_I2C_ICOUNT_LSB); // Escape code for 2 instruction
 sequence
71 pio_i2c_put_or_err(pio, sm, set_scl_sda_program_instructions[I2C_SC1_SD0]); // We are
 already in idle state, just pull SDA low
72 pio_i2c_put_or_err(pio, sm, set_scl_sda_program_instructions[I2C_SC0_SD0]); // Also
 pull clock low so we can present data
73 }

Because I2C can go wrong at so many points, we need to be able to check the error flag asserted by the state machine,

clear the halt and restart it, before asserting a Stop condition and releasing the bus.

RP2040 Datasheet

3.6. Examples 362

https://github.com/raspberrypi/pico-examples/blob/master/pio/i2c/i2c.pio#L125-L135
https://github.com/raspberrypi/pico-examples/blob/master/pio/i2c/pio_i2c.c#L69-L73

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/i2c/pio_i2c.c Lines 15 - 17

15 bool pio_i2c_check_error(PIO pio, uint sm) {
16 return pio_interrupt_get(pio, sm);
17 }

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/i2c/pio_i2c.c Lines 19 - 23

19 void pio_i2c_resume_after_error(PIO pio, uint sm) {
20 pio_sm_drain_tx_fifo(pio, sm);
21 pio_sm_exec(pio, sm, (pio->sm[sm].execctrl & PIO_SM0_EXECCTRL_WRAP_BOTTOM_BITS) >>
 PIO_SM0_EXECCTRL_WRAP_BOTTOM_LSB);
22 pio_interrupt_clear(pio, sm);
23 }

We need some higher-level functions to pass correctly-formatted data though the FIFOs and insert Starts, Stops, NAKs

and so on at the correct points. This is enough to present a similar interface to the other hardware I2Cs on RP2040.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/i2c/i2c_bus_scan.c Lines 13 - 42

13 int main() {
14 stdio_init_all();
15
16 PIO pio = pio0;
17 uint sm = 0;
18 uint offset = pio_add_program(pio, &i2c_program);
19 i2c_program_init(pio, sm, offset, PIN_SDA, PIN_SCL);
20
21 printf("\nPIO I2C Bus Scan\n");
22 printf(" 0 1 2 3 4 5 6 7 8 9 A B C D E F\n");
23
24 for (int addr = 0; addr < (1 << 7); ++addr) {
25 if (addr % 16 == 0) {
26 printf("%02x ", addr);
27 }
28 // Perform a 0-byte read from the probe address. The read function
29 // returns a negative result NAK'd any time other than the last data
30 // byte. Skip over reserved addresses.
31 int result;
32 if (reserved_addr(addr))
33 result = -1;
34 else
35 result = pio_i2c_read_blocking(pio, sm, addr, NULL, 0);
36
37 printf(result < 0 ? "." : "@");
38 printf(addr % 16 == 15 ? "\n" : " ");
39 }
40 printf("Done.\n");
41 return 0;
42 }

3.6.8. PWM

RP2040 Datasheet

3.6. Examples 363

https://github.com/raspberrypi/pico-examples/blob/master/pio/i2c/pio_i2c.c#L15-L17
https://github.com/raspberrypi/pico-examples/blob/master/pio/i2c/pio_i2c.c#L19-L23
https://github.com/raspberrypi/pico-examples/blob/master/pio/i2c/i2c_bus_scan.c#L13-L42

Figure 56. Pulse width

modulation (PWM).

The state machine

outputs positive

voltage pulses at

regular intervals. The

width of these pulses

is controlled, so that

the line is high for

some controlled

fraction of the time

(the duty cycle). One

use of this is to

smoothly vary the

brightness of an LED,

by pulsing it faster

than human

persistence of vision.

This program repeatedly counts down to 0 with the Y register, whilst comparing the Y count to a pulse width held in the

X register. The output is asserted low before counting begins, and asserted high when the value in Y reaches X. Once Y

reaches 0, the process repeats, and the output is once more driven low. The fraction of time that the output is high is

therefore proportional to the pulse width stored in X.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/pwm/pwm.pio Lines 9 - 21

 9 .program pwm
10 .side_set 1 opt
11
12 pull noblock side 0 ; Pull from FIFO to OSR if available, else copy X to OSR.
13 mov x, osr ; Copy most-recently-pulled value back to scratch X
14 mov y, isr ; ISR contains PWM period. Y used as counter.
15 countloop:
16 jmp x!=y noset ; Set pin high if X == Y, keep the two paths length matched
17 jmp skip side 1
18 noset:
19 nop ; Single dummy cycle to keep the two paths the same length
20 skip:
21 jmp y-- countloop ; Loop until Y hits 0, then pull a fresh PWM value from FIFO

Often, a PWM can be left at a particular pulse width for thousands of pulses, rather than supplying a new pulse width

each time. This example highlights how a nonblocking PULL (Section 3.4.7) can achieve this: if the TX FIFO is empty, a

nonblocking PULL will copy X to the OSR. After pulling, the program copies the OSR into X, so that it can be compared to

the count value in Y. The net effect is that, if a new duty cycle value has not been supplied through the TX FIFO at the

start of this period, the duty cycle from the previous period (which has been copied from X to OSR via the failed PULL, and

then back to X via the MOV) is reused, for as many periods as necessary.

Another useful technique shown here is using the ISR as a configuration register, if IN instructions are not required.

System software can load an arbitrary 32-bit value into the ISR (by executing instructions directly on the state machine),

and the program will copy this value into Y each time it begins counting. The ISR can be used to configure the range of

PWM counting, and the state machine’s clock divider controls the rate of counting.

To start modulating some pulses, we first need to map the state machine’s side-set pins to the GPIO we want to output

PWM on, and tell the state machine where the program is loaded in the PIO instruction memory:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/pwm/pwm.pio Lines 24 - 30

24 static inline void pwm_program_init(PIO pio, uint sm, uint offset, uint pin) {
25 pio_gpio_init(pio, pin);
26 pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);
27 pio_sm_config c = pwm_program_get_default_config(offset);
28 sm_config_set_sideset_pins(&c, pin);
29 pio_sm_init(pio, sm, offset, &c);
30 }

A little footwork is required to load the ISR with the desired counting range:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/pwm/pwm.c Lines 14 - 20

14 void pio_pwm_set_period(PIO pio, uint sm, uint32_t period) {
15 pio_sm_set_enabled(pio, sm, false);
16 pio_sm_put_blocking(pio, sm, period);
17 pio_sm_exec(pio, sm, pio_encode_pull(false, false));

RP2040 Datasheet

3.6. Examples 364

https://github.com/raspberrypi/pico-examples/blob/master/pio/pwm/pwm.pio#L9-L21
https://github.com/raspberrypi/pico-examples/blob/master/pio/pwm/pwm.pio#L24-L30
https://github.com/raspberrypi/pico-examples/blob/master/pio/pwm/pwm.c#L14-L20

18 pio_sm_exec(pio, sm, pio_encode_out(pio_isr, 32));
19 pio_sm_set_enabled(pio, sm, true);
20 }

Once this is done, the state machine can be enabled, and PWM values written directly to its TX FIFO.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/pwm/pwm.c Lines 23 - 25

23 void pio_pwm_set_level(PIO pio, uint sm, uint32_t level) {
24 pio_sm_put_blocking(pio, sm, level);
25 }

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/pwm/pwm.c Lines 27 - 51

27 int main() {
28 stdio_init_all();
29 #ifndef PICO_DEFAULT_LED_PIN
30 #warning pio/pwm example requires a board with a regular LED
31 puts("Default LED pin was not defined");
32 #else
33
34 // todo get free sm
35 PIO pio = pio0;
36 int sm = 0;
37 uint offset = pio_add_program(pio, &pwm_program);
38 printf("Loaded program at %d\n", offset);
39
40 pwm_program_init(pio, sm, offset, PICO_DEFAULT_LED_PIN);
41 pio_pwm_set_period(pio, sm, (1u << 16) - 1);
42
43 int level = 0;
44 while (true) {
45 printf("Level = %d\n", level);
46 pio_pwm_set_level(pio, sm, level * level);
47 level = (level + 1) % 256;
48 sleep_ms(10);
49 }
50 #endif
51 }

If the TX FIFO is kept topped up with fresh pulse width values, this program will consume a new pulse width for each

pulse. Once the FIFO runs dry, the program will again start reusing the most recently supplied value.

3.6.9. Addition

Although not designed for computation, PIO is quite likely Turing-complete, provided a long enough piece of tape can be

found. It is conjectured that it could run DOOM, given a sufficiently high clock speed.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/addition/addition.pio Lines 7 - 25

 7 .program addition
 8
 9 ; Pop two 32 bit integers from the TX FIFO, add them together, and push the
10 ; result to the TX FIFO. Autopush/pull should be disabled as we're using
11 ; explicit push and pull instructions.
12 ;

RP2040 Datasheet

3.6. Examples 365

https://github.com/raspberrypi/pico-examples/blob/master/pio/pwm/pwm.c#L23-L25
https://github.com/raspberrypi/pico-examples/blob/master/pio/pwm/pwm.c#L27-L51
https://github.com/raspberrypi/pico-examples/blob/master/pio/addition/addition.pio#L7-L25

13 ; This program uses the two's complement identity x + y == ~(~x - y)
14
15 pull
16 mov x, ~osr
17 pull
18 mov y, osr
19 jmp test ; this loop is equivalent to the following C code:
20 incr: ; while (y--)
21 jmp x-- test ; x--;
22 test: ; This has the effect of subtracting y from x, eventually.
23 jmp y-- incr
24 mov isr, ~x
25 push

A full 32-bit addition takes only around one minute at 125MHz. The program pulls two numbers from the TX FIFO and

pushes their sum to the RX FIFO, which is perfect for use either with the system DMA, or directly by the processor:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/addition/addition.c

 1 /**
 2 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
 3 *
 4 * SPDX-License-Identifier: BSD-3-Clause
 5 */
 6
 7 #include <stdlib.h>
 8 #include <stdio.h>
 9
10 #include "pico/stdlib.h"
11 #include "hardware/pio.h"
12 #include "addition.pio.h"
13
14 // Pop quiz: how many additions does the processor do when calling this function
15 uint32_t do_addition(PIO pio, uint sm, uint32_t a, uint32_t b) {
16 pio_sm_put_blocking(pio, sm, a);
17 pio_sm_put_blocking(pio, sm, b);
18 return pio_sm_get_blocking(pio, sm);
19 }
20
21 int main() {
22 stdio_init_all();
23
24 PIO pio = pio0;
25 uint sm = 0;
26 uint offset = pio_add_program(pio, &addition_program);
27 addition_program_init(pio, sm, offset);
28
29 printf("Doing some random additions:\n");
30 for (int i = 0; i < 10; ++i) {
31 uint a = rand() % 100;
32 uint b = rand() % 100;
33 printf("%u + %u = %u\n", a, b, do_addition(pio, sm, a, b));
34 }
35 }

3.6.10. Further Examples

The Raspberry Pi Pico C/C++ SDK book has a PIO chapter which goes into depth on some software-centric topics not

presented here. It includes a PIO + DMA logic analyser example that can sample every GPIO on every cycle (a bandwidth

RP2040 Datasheet

3.6. Examples 366

https://github.com/raspberrypi/pico-examples/blob/master/pio/addition/addition.c
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf

of nearly 4Gbps at 125MHz, although this does fill up RP2040’s RAM quite quickly).

There are also further examples in the pio/ directory in the Pico Examples repository.

Some of the more experimental example code, such as DPI and SD card support, is currently located in the Pico Extras

and Pico Playground repositories. The PIO parts of these are functional, but the surrounding software stacks are still in

an experimental state.

3.7. List of Registers

The PIO0 and PIO1 registers start at base addresses of 0x50200000 and 0x50300000 respectively (defined as PIO0_BASE

and PIO1_BASE in SDK).

Table 367. List of PIO

registers
Offset Name Info

0x000 CTRL PIO control register

0x004 FSTAT FIFO status register

0x008 FDEBUG FIFO debug register

0x00c FLEVEL FIFO levels

0x010 TXF0 Direct write access to the TX FIFO for this state machine. Each

write pushes one word to the FIFO. Attempting to write to a full

FIFO has no effect on the FIFO state or contents, and sets the

sticky FDEBUG_TXOVER error flag for this FIFO.

0x014 TXF1 Direct write access to the TX FIFO for this state machine. Each

write pushes one word to the FIFO. Attempting to write to a full

FIFO has no effect on the FIFO state or contents, and sets the

sticky FDEBUG_TXOVER error flag for this FIFO.

0x018 TXF2 Direct write access to the TX FIFO for this state machine. Each

write pushes one word to the FIFO. Attempting to write to a full

FIFO has no effect on the FIFO state or contents, and sets the

sticky FDEBUG_TXOVER error flag for this FIFO.

0x01c TXF3 Direct write access to the TX FIFO for this state machine. Each

write pushes one word to the FIFO. Attempting to write to a full

FIFO has no effect on the FIFO state or contents, and sets the

sticky FDEBUG_TXOVER error flag for this FIFO.

0x020 RXF0 Direct read access to the RX FIFO for this state machine. Each

read pops one word from the FIFO. Attempting to read from an

empty FIFO has no effect on the FIFO state, and sets the sticky

FDEBUG_RXUNDER error flag for this FIFO. The data returned to

the system on a read from an empty FIFO is undefined.

0x024 RXF1 Direct read access to the RX FIFO for this state machine. Each

read pops one word from the FIFO. Attempting to read from an

empty FIFO has no effect on the FIFO state, and sets the sticky

FDEBUG_RXUNDER error flag for this FIFO. The data returned to

the system on a read from an empty FIFO is undefined.

0x028 RXF2 Direct read access to the RX FIFO for this state machine. Each

read pops one word from the FIFO. Attempting to read from an

empty FIFO has no effect on the FIFO state, and sets the sticky

FDEBUG_RXUNDER error flag for this FIFO. The data returned to

the system on a read from an empty FIFO is undefined.

RP2040 Datasheet

3.7. List of Registers 367

https://github.com/raspberrypi/pico-examples
https://github.com/raspberrypi/pico-extras
https://github.com/raspberrypi/pico-playground

Offset Name Info

0x02c RXF3 Direct read access to the RX FIFO for this state machine. Each

read pops one word from the FIFO. Attempting to read from an

empty FIFO has no effect on the FIFO state, and sets the sticky

FDEBUG_RXUNDER error flag for this FIFO. The data returned to

the system on a read from an empty FIFO is undefined.

0x030 IRQ State machine IRQ flags register. Write 1 to clear. There are 8

state machine IRQ flags, which can be set, cleared, and waited on

by the state machines. There’s no fixed association between

flags and state machines — any state machine can use any flag.

Any of the 8 flags can be used for timing synchronisation

between state machines, using IRQ and WAIT instructions. The

lower four of these flags are also routed out to system-level

interrupt requests, alongside FIFO status interrupts — see e.g.

IRQ0_INTE.

0x034 IRQ_FORCE Writing a 1 to each of these bits will forcibly assert the

corresponding IRQ. Note this is different to the INTF register:

writing here affects PIO internal state. INTF just asserts the

processor-facing IRQ signal for testing ISRs, and is not visible to

the state machines.

0x038 INPUT_SYNC_BYPASS There is a 2-flipflop synchronizer on each GPIO input, which

protects PIO logic from metastabilities. This increases input

delay, and for fast synchronous IO (e.g. SPI) these synchronizers

may need to be bypassed. Each bit in this register corresponds

to one GPIO.

0 → input is synchronized (default)

1 → synchronizer is bypassed

If in doubt, leave this register as all zeroes.

0x03c DBG_PADOUT Read to sample the pad output values PIO is currently driving to

the GPIOs. On RP2040 there are 30 GPIOs, so the two most

significant bits are hardwired to 0.

0x040 DBG_PADOE Read to sample the pad output enables (direction) PIO is

currently driving to the GPIOs. On RP2040 there are 30 GPIOs, so

the two most significant bits are hardwired to 0.

0x044 DBG_CFGINFO The PIO hardware has some free parameters that may vary

between chip products.

These should be provided in the chip datasheet, but are also

exposed here.

0x048 INSTR_MEM0 Write-only access to instruction memory location 0

0x04c INSTR_MEM1 Write-only access to instruction memory location 1

0x050 INSTR_MEM2 Write-only access to instruction memory location 2

0x054 INSTR_MEM3 Write-only access to instruction memory location 3

0x058 INSTR_MEM4 Write-only access to instruction memory location 4

0x05c INSTR_MEM5 Write-only access to instruction memory location 5

0x060 INSTR_MEM6 Write-only access to instruction memory location 6

0x064 INSTR_MEM7 Write-only access to instruction memory location 7

RP2040 Datasheet

3.7. List of Registers 368

Offset Name Info

0x068 INSTR_MEM8 Write-only access to instruction memory location 8

0x06c INSTR_MEM9 Write-only access to instruction memory location 9

0x070 INSTR_MEM10 Write-only access to instruction memory location 10

0x074 INSTR_MEM11 Write-only access to instruction memory location 11

0x078 INSTR_MEM12 Write-only access to instruction memory location 12

0x07c INSTR_MEM13 Write-only access to instruction memory location 13

0x080 INSTR_MEM14 Write-only access to instruction memory location 14

0x084 INSTR_MEM15 Write-only access to instruction memory location 15

0x088 INSTR_MEM16 Write-only access to instruction memory location 16

0x08c INSTR_MEM17 Write-only access to instruction memory location 17

0x090 INSTR_MEM18 Write-only access to instruction memory location 18

0x094 INSTR_MEM19 Write-only access to instruction memory location 19

0x098 INSTR_MEM20 Write-only access to instruction memory location 20

0x09c INSTR_MEM21 Write-only access to instruction memory location 21

0x0a0 INSTR_MEM22 Write-only access to instruction memory location 22

0x0a4 INSTR_MEM23 Write-only access to instruction memory location 23

0x0a8 INSTR_MEM24 Write-only access to instruction memory location 24

0x0ac INSTR_MEM25 Write-only access to instruction memory location 25

0x0b0 INSTR_MEM26 Write-only access to instruction memory location 26

0x0b4 INSTR_MEM27 Write-only access to instruction memory location 27

0x0b8 INSTR_MEM28 Write-only access to instruction memory location 28

0x0bc INSTR_MEM29 Write-only access to instruction memory location 29

0x0c0 INSTR_MEM30 Write-only access to instruction memory location 30

0x0c4 INSTR_MEM31 Write-only access to instruction memory location 31

0x0c8 SM0_CLKDIV Clock divisor register for state machine 0

Frequency = clock freq / (CLKDIV_INT + CLKDIV_FRAC / 256)

0x0cc SM0_EXECCTRL Execution/behavioural settings for state machine 0

0x0d0 SM0_SHIFTCTRL Control behaviour of the input/output shift registers for state

machine 0

0x0d4 SM0_ADDR Current instruction address of state machine 0

0x0d8 SM0_INSTR Read to see the instruction currently addressed by state machine

0’s program counter

Write to execute an instruction immediately (including jumps)

and then resume execution.

0x0dc SM0_PINCTRL State machine pin control

0x0e0 SM1_CLKDIV Clock divisor register for state machine 1

Frequency = clock freq / (CLKDIV_INT + CLKDIV_FRAC / 256)

0x0e4 SM1_EXECCTRL Execution/behavioural settings for state machine 1

RP2040 Datasheet

3.7. List of Registers 369

Offset Name Info

0x0e8 SM1_SHIFTCTRL Control behaviour of the input/output shift registers for state

machine 1

0x0ec SM1_ADDR Current instruction address of state machine 1

0x0f0 SM1_INSTR Read to see the instruction currently addressed by state machine

1’s program counter

Write to execute an instruction immediately (including jumps)

and then resume execution.

0x0f4 SM1_PINCTRL State machine pin control

0x0f8 SM2_CLKDIV Clock divisor register for state machine 2

Frequency = clock freq / (CLKDIV_INT + CLKDIV_FRAC / 256)

0x0fc SM2_EXECCTRL Execution/behavioural settings for state machine 2

0x100 SM2_SHIFTCTRL Control behaviour of the input/output shift registers for state

machine 2

0x104 SM2_ADDR Current instruction address of state machine 2

0x108 SM2_INSTR Read to see the instruction currently addressed by state machine

2’s program counter

Write to execute an instruction immediately (including jumps)

and then resume execution.

0x10c SM2_PINCTRL State machine pin control

0x110 SM3_CLKDIV Clock divisor register for state machine 3

Frequency = clock freq / (CLKDIV_INT + CLKDIV_FRAC / 256)

0x114 SM3_EXECCTRL Execution/behavioural settings for state machine 3

0x118 SM3_SHIFTCTRL Control behaviour of the input/output shift registers for state

machine 3

0x11c SM3_ADDR Current instruction address of state machine 3

0x120 SM3_INSTR Read to see the instruction currently addressed by state machine

3’s program counter

Write to execute an instruction immediately (including jumps)

and then resume execution.

0x124 SM3_PINCTRL State machine pin control

0x128 INTR Raw Interrupts

0x12c IRQ0_INTE Interrupt Enable for irq0

0x130 IRQ0_INTF Interrupt Force for irq0

0x134 IRQ0_INTS Interrupt status after masking & forcing for irq0

0x138 IRQ1_INTE Interrupt Enable for irq1

0x13c IRQ1_INTF Interrupt Force for irq1

0x140 IRQ1_INTS Interrupt status after masking & forcing for irq1

PIO: CTRL Register

Offset: 0x000

RP2040 Datasheet

3.7. List of Registers 370

Description

PIO control register

Table 368. CTRL

Register
Bits Name Description Type Reset

31:12 Reserved. - - -

11:8 CLKDIV_RESTART Restart a state machine’s clock divider from an initial

phase of 0. Clock dividers are free-running, so once

started, their output (including fractional jitter) is

completely determined by the integer/fractional divisor

configured in SMx_CLKDIV. This means that, if multiple

clock dividers with the same divisor are restarted

simultaneously, by writing multiple 1 bits to this field, the

execution clocks of those state machines will run in

precise lockstep.

Note that setting/clearing SM_ENABLE does not stop the

clock divider from running, so once multiple state

machines' clocks are synchronised, it is safe to

disable/reenable a state machine, whilst keeping the clock

dividers in sync.

Note also that CLKDIV_RESTART can be written to whilst

the state machine is running, and this is useful to

resynchronise clock dividers after the divisors

(SMx_CLKDIV) have been changed on-the-fly.

SC 0x0

7:4 SM_RESTART Write 1 to instantly clear internal SM state which may be

otherwise difficult to access and will affect future

execution.

Specifically, the following are cleared: input and output

shift counters; the contents of the input shift register; the

delay counter; the waiting-on-IRQ state; any stalled

instruction written to SMx_INSTR or run by OUT/MOV

EXEC; any pin write left asserted due to OUT_STICKY.

The program counter, the contents of the output shift

register and the X/Y scratch registers are not affected.

SC 0x0

3:0 SM_ENABLE Enable/disable each of the four state machines by writing

1/0 to each of these four bits. When disabled, a state

machine will cease executing instructions, except those

written directly to SMx_INSTR by the system. Multiple bits

can be set/cleared at once to run/halt multiple state

machines simultaneously.

RW 0x0

PIO: FSTAT Register

Offset: 0x004

Description

FIFO status register

Table 369. FSTAT

Register
Bits Name Description Type Reset

31:28 Reserved. - - -

RP2040 Datasheet

3.7. List of Registers 371

Bits Name Description Type Reset

27:24 TXEMPTY State machine TX FIFO is empty RO 0xf

23:20 Reserved. - - -

19:16 TXFULL State machine TX FIFO is full RO 0x0

15:12 Reserved. - - -

11:8 RXEMPTY State machine RX FIFO is empty RO 0xf

7:4 Reserved. - - -

3:0 RXFULL State machine RX FIFO is full RO 0x0

PIO: FDEBUG Register

Offset: 0x008

Description

FIFO debug register

Table 370. FDEBUG

Register
Bits Name Description Type Reset

31:28 Reserved. - - -

27:24 TXSTALL State machine has stalled on empty TX FIFO during a

blocking PULL, or an OUT with autopull enabled. Write 1 to

clear.

WC 0x0

23:20 Reserved. - - -

19:16 TXOVER TX FIFO overflow (i.e. write-on-full by the system) has

occurred. Write 1 to clear. Note that write-on-full does not

alter the state or contents of the FIFO in any way, but the

data that the system attempted to write is dropped, so if

this flag is set, your software has quite likely dropped

some data on the floor.

WC 0x0

15:12 Reserved. - - -

11:8 RXUNDER RX FIFO underflow (i.e. read-on-empty by the system) has

occurred. Write 1 to clear. Note that read-on-empty does

not perturb the state of the FIFO in any way, but the data

returned by reading from an empty FIFO is undefined, so

this flag generally only becomes set due to some kind of

software error.

WC 0x0

7:4 Reserved. - - -

3:0 RXSTALL State machine has stalled on full RX FIFO during a

blocking PUSH, or an IN with autopush enabled. This flag

is also set when a nonblocking PUSH to a full FIFO took

place, in which case the state machine has dropped data.

Write 1 to clear.

WC 0x0

PIO: FLEVEL Register

Offset: 0x00c

Description

FIFO levels

RP2040 Datasheet

3.7. List of Registers 372

Table 371. FLEVEL

Register
Bits Name Description Type Reset

31:28 RX3 RO 0x0

27:24 TX3 RO 0x0

23:20 RX2 RO 0x0

19:16 TX2 RO 0x0

15:12 RX1 RO 0x0

11:8 TX1 RO 0x0

7:4 RX0 RO 0x0

3:0 TX0 RO 0x0

PIO: TXF0, TXF1, TXF2, TXF3 Registers

Offsets: 0x010, 0x014, 0x018, 0x01c

Table 372. TXF0,

TXF1, TXF2, TXF3

Registers

Bits Description Type Reset

31:0 Direct write access to the TX FIFO for this state machine. Each write pushes

one word to the FIFO. Attempting to write to a full FIFO has no effect on the

FIFO state or contents, and sets the sticky FDEBUG_TXOVER error flag for this

FIFO.

WF 0x00000000

PIO: RXF0, RXF1, RXF2, RXF3 Registers

Offsets: 0x020, 0x024, 0x028, 0x02c

Table 373. RXF0,

RXF1, RXF2, RXF3

Registers

Bits Description Type Reset

31:0 Direct read access to the RX FIFO for this state machine. Each read pops one

word from the FIFO. Attempting to read from an empty FIFO has no effect on

the FIFO state, and sets the sticky FDEBUG_RXUNDER error flag for this FIFO.

The data returned to the system on a read from an empty FIFO is undefined.

RF -

PIO: IRQ Register

Offset: 0x030

Table 374. IRQ

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 State machine IRQ flags register. Write 1 to clear. There are 8 state machine

IRQ flags, which can be set, cleared, and waited on by the state machines.

There’s no fixed association between flags and state machines — any state

machine can use any flag.

Any of the 8 flags can be used for timing synchronisation between state

machines, using IRQ and WAIT instructions. The lower four of these flags are

also routed out to system-level interrupt requests, alongside FIFO status

interrupts — see e.g. IRQ0_INTE.

WC 0x00

PIO: IRQ_FORCE Register

Offset: 0x034

RP2040 Datasheet

3.7. List of Registers 373

Table 375. IRQ_FORCE

Register
Bits Description Type Reset

31:8 Reserved. - -

7:0 Writing a 1 to each of these bits will forcibly assert the corresponding IRQ.

Note this is different to the INTF register: writing here affects PIO internal

state. INTF just asserts the processor-facing IRQ signal for testing ISRs, and is

not visible to the state machines.

WF 0x00

PIO: INPUT_SYNC_BYPASS Register

Offset: 0x038

Table 376.

INPUT_SYNC_BYPASS

Register

Bits Description Type Reset

31:0 There is a 2-flipflop synchronizer on each GPIO input, which protects PIO logic

from metastabilities. This increases input delay, and for fast synchronous IO

(e.g. SPI) these synchronizers may need to be bypassed. Each bit in this

register corresponds to one GPIO.

0 → input is synchronized (default)

1 → synchronizer is bypassed

If in doubt, leave this register as all zeroes.

RW 0x00000000

PIO: DBG_PADOUT Register

Offset: 0x03c

Table 377.

DBG_PADOUT Register
Bits Description Type Reset

31:0 Read to sample the pad output values PIO is currently driving to the GPIOs. On

RP2040 there are 30 GPIOs, so the two most significant bits are hardwired to

0.

RO 0x00000000

PIO: DBG_PADOE Register

Offset: 0x040

Table 378.

DBG_PADOE Register
Bits Description Type Reset

31:0 Read to sample the pad output enables (direction) PIO is currently driving to

the GPIOs. On RP2040 there are 30 GPIOs, so the two most significant bits are

hardwired to 0.

RO 0x00000000

PIO: DBG_CFGINFO Register

Offset: 0x044

Description

The PIO hardware has some free parameters that may vary between chip products.

These should be provided in the chip datasheet, but are also exposed here.

Table 379.

DBG_CFGINFO

Register

Bits Name Description Type Reset

31:22 Reserved. - - -

21:16 IMEM_SIZE The size of the instruction memory, measured in units of

one instruction

RO -

15:12 Reserved. - - -

RP2040 Datasheet

3.7. List of Registers 374

Bits Name Description Type Reset

11:8 SM_COUNT The number of state machines this PIO instance is

equipped with.

RO -

7:6 Reserved. - - -

5:0 FIFO_DEPTH The depth of the state machine TX/RX FIFOs, measured in

words.

Joining fifos via SHIFTCTRL_FJOIN gives one FIFO with

double

this depth.

RO -

PIO: INSTR_MEM0, INSTR_MEM1, …, INSTR_MEM30, INSTR_MEM31 Registers

Offsets: 0x048, 0x04c, …, 0x0c0, 0x0c4

Table 380.

INSTR_MEM0,

INSTR_MEM1, …,

INSTR_MEM30,

INSTR_MEM31

Registers

Bits Description Type Reset

31:16 Reserved. - -

15:0 Write-only access to instruction memory location N WO 0x0000

PIO: SM0_CLKDIV, SM1_CLKDIV, SM2_CLKDIV, SM3_CLKDIV Registers

Offsets: 0x0c8, 0x0e0, 0x0f8, 0x110

Description

Clock divisor register for state machine N

Frequency = clock freq / (CLKDIV_INT + CLKDIV_FRAC / 256)

Table 381.

SM0_CLKDIV,

SM1_CLKDIV,

SM2_CLKDIV,

SM3_CLKDIV

Registers

Bits Name Description Type Reset

31:16 INT Effective frequency is sysclk/(int + frac/256).

Value of 0 is interpreted as 65536. If INT is 0, FRAC must

also be 0.

RW 0x0001

15:8 FRAC Fractional part of clock divisor RW 0x00

7:0 Reserved. - - -

PIO: SM0_EXECCTRL, SM1_EXECCTRL, SM2_EXECCTRL, SM3_EXECCTRL

Registers

Offsets: 0x0cc, 0x0e4, 0x0fc, 0x114

Description

Execution/behavioural settings for state machine N

Table 382.

SM0_EXECCTRL,

SM1_EXECCTRL,

SM2_EXECCTRL,

SM3_EXECCTRL

Registers

Bits Name Description Type Reset

31 EXEC_STALLED If 1, an instruction written to SMx_INSTR is stalled, and

latched by the state machine. Will clear to 0 once this

instruction completes.

RO 0x0

30 SIDE_EN If 1, the MSB of the Delay/Side-set instruction field is used

as side-set enable, rather than a side-set data bit. This

allows instructions to perform side-set optionally, rather

than on every instruction, but the maximum possible side-

set width is reduced from 5 to 4. Note that the value of

PINCTRL_SIDESET_COUNT is inclusive of this enable bit.

RW 0x0

RP2040 Datasheet

3.7. List of Registers 375

Bits Name Description Type Reset

29 SIDE_PINDIR If 1, side-set data is asserted to pin directions, instead of

pin values

RW 0x0

28:24 JMP_PIN The GPIO number to use as condition for JMP PIN.

Unaffected by input mapping.

RW 0x00

23:19 OUT_EN_SEL Which data bit to use for inline OUT enable RW 0x00

18 INLINE_OUT_EN If 1, use a bit of OUT data as an auxiliary write enable

When used in conjunction with OUT_STICKY, writes with

an enable of 0 will

deassert the latest pin write. This can create useful

masking/override behaviour

due to the priority ordering of state machine pin writes

(SM0 < SM1 < …)

RW 0x0

17 OUT_STICKY Continuously assert the most recent OUT/SET to the pins RW 0x0

16:12 WRAP_TOP After reaching this address, execution is wrapped to

wrap_bottom.

If the instruction is a jump, and the jump condition is true,

the jump takes priority.

RW 0x1f

11:7 WRAP_BOTTOM After reaching wrap_top, execution is wrapped to this

address.

RW 0x00

6:5 Reserved. - - -

4 STATUS_SEL Comparison used for the MOV x, STATUS instruction.

0x0 → All-ones if TX FIFO level < N, otherwise all-zeroes

0x1 → All-ones if RX FIFO level < N, otherwise all-zeroes

RW 0x0

3:0 STATUS_N Comparison level for the MOV x, STATUS instruction RW 0x0

PIO: SM0_SHIFTCTRL, SM1_SHIFTCTRL, SM2_SHIFTCTRL, SM3_SHIFTCTRL

Registers

Offsets: 0x0d0, 0x0e8, 0x100, 0x118

Description

Control behaviour of the input/output shift registers for state machine N

Table 383.

SM0_SHIFTCTRL,

SM1_SHIFTCTRL,

SM2_SHIFTCTRL,

SM3_SHIFTCTRL

Registers

Bits Name Description Type Reset

31 FJOIN_RX When 1, RX FIFO steals the TX FIFO’s storage, and

becomes twice as deep.

TX FIFO is disabled as a result (always reads as both full

and empty).

FIFOs are flushed when this bit is changed.

RW 0x0

30 FJOIN_TX When 1, TX FIFO steals the RX FIFO’s storage, and

becomes twice as deep.

RX FIFO is disabled as a result (always reads as both full

and empty).

FIFOs are flushed when this bit is changed.

RW 0x0

29:25 PULL_THRESH Number of bits shifted out of OSR before autopull, or

conditional pull (PULL IFEMPTY), will take place.

Write 0 for value of 32.

RW 0x00

RP2040 Datasheet

3.7. List of Registers 376

Bits Name Description Type Reset

24:20 PUSH_THRESH Number of bits shifted into ISR before autopush, or

conditional push (PUSH IFFULL), will take place.

Write 0 for value of 32.

RW 0x00

19 OUT_SHIFTDIR 1 = shift out of output shift register to right. 0 = to left. RW 0x1

18 IN_SHIFTDIR 1 = shift input shift register to right (data enters from left).

0 = to left.

RW 0x1

17 AUTOPULL Pull automatically when the output shift register is

emptied, i.e. on or following an OUT instruction which

causes the output shift counter to reach or exceed

PULL_THRESH.

RW 0x0

16 AUTOPUSH Push automatically when the input shift register is filled,

i.e. on an IN instruction which causes the input shift

counter to reach or exceed PUSH_THRESH.

RW 0x0

15:0 Reserved. - - -

PIO: SM0_ADDR, SM1_ADDR, SM2_ADDR, SM3_ADDR Registers

Offsets: 0x0d4, 0x0ec, 0x104, 0x11c

Table 384. SM0_ADDR,

SM1_ADDR,

SM2_ADDR,

SM3_ADDR Registers

Bits Description Type Reset

31:5 Reserved. - -

4:0 Current instruction address of state machine N RO 0x00

PIO: SM0_INSTR, SM1_INSTR, SM2_INSTR, SM3_INSTR Registers

Offsets: 0x0d8, 0x0f0, 0x108, 0x120

Table 385.

SM0_INSTR,

SM1_INSTR,

SM2_INSTR,

SM3_INSTR Registers

Bits Description Type Reset

31:16 Reserved. - -

15:0 Read to see the instruction currently addressed by state machine N's program

counter.

Write to execute an instruction immediately (including jumps) and then

resume execution.

RW -

PIO: SM0_PINCTRL, SM1_PINCTRL, SM2_PINCTRL, SM3_PINCTRL Registers

Offsets: 0x0dc, 0x0f4, 0x10c, 0x124

Description

State machine pin control

Table 386.

SM0_PINCTRL,

SM1_PINCTRL,

SM2_PINCTRL,

SM3_PINCTRL

Registers

Bits Name Description Type Reset

31:29 SIDESET_COUNT The number of MSBs of the Delay/Side-set instruction

field which are used for side-set. Inclusive of the enable

bit, if present. Minimum of 0 (all delay bits, no side-set)

and maximum of 5 (all side-set, no delay).

RW 0x0

28:26 SET_COUNT The number of pins asserted by a SET. In the range 0 to 5

inclusive.

RW 0x5

RP2040 Datasheet

3.7. List of Registers 377

Bits Name Description Type Reset

25:20 OUT_COUNT The number of pins asserted by an OUT PINS, OUT

PINDIRS or MOV PINS instruction. In the range 0 to 32

inclusive.

RW 0x00

19:15 IN_BASE The pin which is mapped to the least-significant bit of a

state machine’s IN data bus. Higher-numbered pins are

mapped to consecutively more-significant data bits, with a

modulo of 32 applied to pin number.

RW 0x00

14:10 SIDESET_BASE The lowest-numbered pin that will be affected by a side-

set operation. The MSBs of an instruction’s side-set/delay

field (up to 5, determined by SIDESET_COUNT) are used

for side-set data, with the remaining LSBs used for delay.

The least-significant bit of the side-set portion is the bit

written to this pin, with more-significant bits written to

higher-numbered pins.

RW 0x00

9:5 SET_BASE The lowest-numbered pin that will be affected by a SET

PINS or SET PINDIRS instruction. The data written to this

pin is the least-significant bit of the SET data.

RW 0x00

4:0 OUT_BASE The lowest-numbered pin that will be affected by an OUT

PINS, OUT PINDIRS or MOV PINS instruction. The data

written to this pin will always be the least-significant bit of

the OUT or MOV data.

RW 0x00

PIO: INTR Register

Offset: 0x128

Description

Raw Interrupts

Table 387. INTR

Register
Bits Name Description Type Reset

31:12 Reserved. - - -

11 SM3 RO 0x0

10 SM2 RO 0x0

9 SM1 RO 0x0

8 SM0 RO 0x0

7 SM3_TXNFULL RO 0x0

6 SM2_TXNFULL RO 0x0

5 SM1_TXNFULL RO 0x0

4 SM0_TXNFULL RO 0x0

3 SM3_RXNEMPTY RO 0x0

2 SM2_RXNEMPTY RO 0x0

1 SM1_RXNEMPTY RO 0x0

0 SM0_RXNEMPTY RO 0x0

PIO: IRQ0_INTE Register

RP2040 Datasheet

3.7. List of Registers 378

Offset: 0x12c

Description

Interrupt Enable for irq0

Table 388. IRQ0_INTE

Register
Bits Name Description Type Reset

31:12 Reserved. - - -

11 SM3 RW 0x0

10 SM2 RW 0x0

9 SM1 RW 0x0

8 SM0 RW 0x0

7 SM3_TXNFULL RW 0x0

6 SM2_TXNFULL RW 0x0

5 SM1_TXNFULL RW 0x0

4 SM0_TXNFULL RW 0x0

3 SM3_RXNEMPTY RW 0x0

2 SM2_RXNEMPTY RW 0x0

1 SM1_RXNEMPTY RW 0x0

0 SM0_RXNEMPTY RW 0x0

PIO: IRQ0_INTF Register

Offset: 0x130

Description

Interrupt Force for irq0

Table 389. IRQ0_INTF

Register
Bits Name Description Type Reset

31:12 Reserved. - - -

11 SM3 RW 0x0

10 SM2 RW 0x0

9 SM1 RW 0x0

8 SM0 RW 0x0

7 SM3_TXNFULL RW 0x0

6 SM2_TXNFULL RW 0x0

5 SM1_TXNFULL RW 0x0

4 SM0_TXNFULL RW 0x0

3 SM3_RXNEMPTY RW 0x0

2 SM2_RXNEMPTY RW 0x0

1 SM1_RXNEMPTY RW 0x0

0 SM0_RXNEMPTY RW 0x0

PIO: IRQ0_INTS Register

RP2040 Datasheet

3.7. List of Registers 379

Offset: 0x134

Description

Interrupt status after masking & forcing for irq0

Table 390. IRQ0_INTS

Register
Bits Name Description Type Reset

31:12 Reserved. - - -

11 SM3 RO 0x0

10 SM2 RO 0x0

9 SM1 RO 0x0

8 SM0 RO 0x0

7 SM3_TXNFULL RO 0x0

6 SM2_TXNFULL RO 0x0

5 SM1_TXNFULL RO 0x0

4 SM0_TXNFULL RO 0x0

3 SM3_RXNEMPTY RO 0x0

2 SM2_RXNEMPTY RO 0x0

1 SM1_RXNEMPTY RO 0x0

0 SM0_RXNEMPTY RO 0x0

PIO: IRQ1_INTE Register

Offset: 0x138

Description

Interrupt Enable for irq1

Table 391. IRQ1_INTE

Register
Bits Name Description Type Reset

31:12 Reserved. - - -

11 SM3 RW 0x0

10 SM2 RW 0x0

9 SM1 RW 0x0

8 SM0 RW 0x0

7 SM3_TXNFULL RW 0x0

6 SM2_TXNFULL RW 0x0

5 SM1_TXNFULL RW 0x0

4 SM0_TXNFULL RW 0x0

3 SM3_RXNEMPTY RW 0x0

2 SM2_RXNEMPTY RW 0x0

1 SM1_RXNEMPTY RW 0x0

0 SM0_RXNEMPTY RW 0x0

PIO: IRQ1_INTF Register

RP2040 Datasheet

3.7. List of Registers 380

Offset: 0x13c

Description

Interrupt Force for irq1

Table 392. IRQ1_INTF

Register
Bits Name Description Type Reset

31:12 Reserved. - - -

11 SM3 RW 0x0

10 SM2 RW 0x0

9 SM1 RW 0x0

8 SM0 RW 0x0

7 SM3_TXNFULL RW 0x0

6 SM2_TXNFULL RW 0x0

5 SM1_TXNFULL RW 0x0

4 SM0_TXNFULL RW 0x0

3 SM3_RXNEMPTY RW 0x0

2 SM2_RXNEMPTY RW 0x0

1 SM1_RXNEMPTY RW 0x0

0 SM0_RXNEMPTY RW 0x0

PIO: IRQ1_INTS Register

Offset: 0x140

Description

Interrupt status after masking & forcing for irq1

Table 393. IRQ1_INTS

Register
Bits Name Description Type Reset

31:12 Reserved. - - -

11 SM3 RO 0x0

10 SM2 RO 0x0

9 SM1 RO 0x0

8 SM0 RO 0x0

7 SM3_TXNFULL RO 0x0

6 SM2_TXNFULL RO 0x0

5 SM1_TXNFULL RO 0x0

4 SM0_TXNFULL RO 0x0

3 SM3_RXNEMPTY RO 0x0

2 SM2_RXNEMPTY RO 0x0

1 SM1_RXNEMPTY RO 0x0

0 SM0_RXNEMPTY RO 0x0

RP2040 Datasheet

3.7. List of Registers 381

Chapter 4. Peripherals

4.1. USB

4.1.1. Overview

Prerequisite Knowledge Required

This section requires knowledge of the USB protocol. We recommend [usbmadesimple] if you are

unclear on the terminology used in this section (see References).

RP2040 contains a USB 2.0 controller that can operate as either:

• a Full Speed device (12Mbps)

• a host that can communicate with both Low Speed (1.5Mbps) and Full Speed devices. This includes multiple

downstream devices connected to a USB hub.

There is an integrated USB 1.1 PHY which interfaces the USB controller with the DP and DM pins of the chip.

4.1.1.1. Features

The USB controller hardware handles the low level USB protocol, meaning the main job of the programmer is to

configure the controller and then provide / consume data buffers in response to events on the bus. The controller

interrupts the processor when it needs attention. The USB controller has 4kB of DPSRAM which is used for

configuration and data buffers.

4.1.1.1.1. Device Mode

• USB 2.0 compatible Full Speed device (12Mbps)

• Supports up to 32 endpoints (Endpoints 0 → 15 in both in and out directions)

• Supports Control, Isochronous, Bulk, and Interrupt endpoint types

• Supports double buffering

• 3840 bytes of usable buffer space in DPSRAM. This is equivalent to 60 × 64-byte buffers.

4.1.1.1.2. Host Mode

• Can communicate with Full Speed (12Mbps) devices and Low Speed devices (1.5Mbps)

• Can communicate with multiple devices via a USB hub, including Low Speed devices connected to a Full Speed

hub

• Can poll up to 15 interrupt endpoints in hardware. (Interrupt endpoints are used by hubs to notify the host of

connect/disconnect events, mice to notify the host of movement etc.)

RP2040 Datasheet

4.1. USB 382

4.1.2. Architecture

Figure 57. A simplified

overview of the USB

controller

architecture.

The USB controller is an area efficient design that muxes a device controller or host controller onto a common set of

components. Each component is detailed below.

4.1.2.1. USB PHY

The USB PHY provides the electrical interface between the USB DP and DM pins and the digital logic of the controller. The

DP and DM pins are a differential pair, meaning the values are always the inverse of each other, except to encode a

specific line state (SE0, etc). The USB PHY drives the DP and DM pins to transmit data, as well as performing a differential

receive of any incoming data. The USB PHY provides both single-ended and differential receive data to the line state

detection module.

The USB PHY has built in pull-up and pull-down resistors. If the controller is acting as a Full Speed device then the DP pin

is pulled up to indicate to the host that a Full Speed device has been connected. In host mode, a weak pull down is

applied to DP and DM so that the lines are pulled to a logical zero until the device pulls up DP for Full Speed or DM for Low

Speed.

4.1.2.2. Line state detection

The [usbspec] defines several line states (Bus Reset, Connected, Suspend, Resume, Data 1, Data 0, etc) that need to be

detected. The line state detection module has several state machines to detect these states and signal events to the

other hardware components. There is no shared clock signal in USB, so the RX data must be sampled by an internal

clock. The maximum data rate of USB Full Speed is 12Mbps. The RX data is sampled at 48MHz, giving 4 clock cycles to

capture and filter the bus state. The line state detection module distributes the filtered RX data to the Serial RX Engine.

4.1.2.3. Serial RX Engine

The serial receive engine decodes receive data captured by the line state detection module. It produces the following

information:

• The PID of the incoming data packet

• The device address for the incoming data

• The device endpoint for the incoming data

• Data bytes

The serial receive engine also detects errors in RX data by performing a CRC check on the incoming data. Any errors are

signalled to the other hardware blocks and can raise an interrupt.

RP2040 Datasheet

4.1. USB 383

 NOTE

If you disconnect the USB cable during a packet in either host or device mode you will see errors raised by the

hardware. Your software will need to take this scenario into account if you enable error interrupts.

4.1.2.4. Serial TX Engine

The serial transmit engine is a mirror of the serial receive engine. It is connected to the currently active controller (either

device or host). It creates TOKEN and DATA packets, including calculating the CRC, and transmits them on the bus.

4.1.2.5. DPSRAM

The USB controller has 4kB (4096 bytes) of DPSRAM (Dual Port SRAM). The DPSRAM is used to store control registers

and data buffers. The DPSRAM is accessible as a 32-bit wide memory at address 0 of the USB controller (0x50100000).

The DPSRAM has the following characteristics, which are different to most registers on RP2040:

• Supports 8/16/32-bit accesses. Registers typically support 32-bit accesses only

• The DPSRAM does not support set / clear aliases. RP2040 registers typically support these

Data Buffers are typically 64 bytes long as this is the max normal packet size for most FS packets. For Isochronous

endpoints a maximum buffer size of 1023 bytes is supported. For other packet types the maximum size is 64 bytes per

buffer.

4.1.2.5.1. Concurrent access

The DPSRAM in the USB controller should be considered asynchronous and not atomic. It is a dual port SRAM which

means the processor has a port to read/write the memory and the USB controller also has a port to read/write the

memory. This means that both the processor and the USB controller can access the same memory address at the same

time. One could be writing and one could be reading. It is possible to get inconsistent data if the controller is reading the

memory while the processor is writing the memory. Care must be taken to avoid this scenario.

The AVAILABLE bit in the buffer control register is used to indicate who has ownership of a buffer. This bit should be set to

1 by the processor to give the controller ownership of the buffer. The controller will set the bit back to 0 when it has

used the buffer. The AVAILABLE bit should be set separately to the rest of the data in the buffer control register, so that

the rest of the data in the buffer control register is accurate when the AVAILABLE bit is set.

This is necessary because the processor clock clk_sys can be running several times faster than the clk_usb clock.

Therefore clk_sys can update the data during a read by the USB controller on a slower clock. The correct process is:

• Write buffer information (length, etc.) to buffer control register

• nop for some clk_sys cycles to ensure that at least one clk_usb cycle has passed. For example if clk_sys was running

at 125MHz and clk_usb was running at 48MHz then 125/48 rounded up would be 3 nop instructions

• Set AVAILABLE bit

If clk_sys and clk_usb are running at the same frequency then it is not necessary to set the AVAILABLE bit separately.

RP2040 Datasheet

4.1. USB 384

 NOTE

When the controller is writing status back to the DPSRAM it does a 16 bit write to the lower 2 bytes for buffer 0 and

the upper 2 bytes for buffer 1. Therefore, if using double buffered mode, it is safest to treat the buffer control register

as two 16 bit registers when updating it in software.

4.1.2.5.2. Layout

Addresses 0x0-0xff are used for control registers containing configuration data. The remaining space, addresses 0x100-

0xfff (3840 bytes) can be used for data buffers. The controller has control registers that start at address 0x10000.

The memory layout is different depending on if the controller is in Device or Host mode. In device mode, there are

multiple endpoints a host can access so there must be endpoint control and buffer control registers for each endpoint.

In host mode, the host software running on the processor is deciding which endpoints and which devices to access, so

there only needs to be one set of endpoint control and buffer control registers. As well as software driven transfers, the

host controller can poll up to 15 interrupt endpoints and has a register for each of these interrupt endpoints.

Table 394. DPSRAM

layout
Offset Device Function Host Function

0x0 Setup packet (8 bytes)

0x8 EP1 in control Interrupt endpoint control 1

0xc EP1 out control Spare

0x10 EP2 in control Interrupt endpoint control 2

0x14 EP2 out control Spare

0x18 EP3 in control Interrupt endpoint control 3

0x1c EP3 out control Spare

0x20 EP4 in control Interrupt endpoint control 4

0x24 EP4 out control Spare

0x28 EP5 in control Interrupt endpoint control 5

0x2c EP5 out control Spare

0x30 EP6 in control Interrupt endpoint control 6

0x34 EP6 out control Spare

0x38 EP7 in control Interrupt endpoint control 7

0x3c EP7 out control Spare

0x40 EP8 in control Interrupt endpoint control 8

0x44 EP8 out control Spare

0x48 EP9 in control Interrupt endpoint control 9

0x4c EP9 out control Spare

0x50 EP10 in control Interrupt endpoint control 10

0x54 EP10 out control Spare

0x58 EP11 in control Interrupt endpoint control 11

0x5c EP11 out control Spare

0x60 EP12 in control Interrupt endpoint control 12

RP2040 Datasheet

4.1. USB 385

Offset Device Function Host Function

0x64 EP12 out control Spare

0x68 EP13 in control Interrupt endpoint control 13

0x6c EP13 out control Spare

0x70 EP14 in control Interrupt endpoint control 14

0x74 EP14 out control Spare

0x78 EP15 in control Interrupt endpoint control 15

0x7c EP15 out control Spare

0x80 EP0 in buffer control EPx buffer control

0x84 EP0 out buffer control Spare

0x88 EP1 in buffer control Interrupt endpoint buffer control 1

0x8c EP1 out buffer control Spare

0x90 EP2 in buffer control Interrupt endpoint buffer control 2

0x94 EP2 out buffer control Spare

0x98 EP3 in buffer control Interrupt endpoint buffer control 3

0x9c EP3 out buffer control Spare

0xa0 EP4 in buffer control Interrupt endpoint buffer control 4

0xa4 EP4 out buffer control Spare

0xa8 EP5 in buffer control Interrupt endpoint buffer control 5

0xac EP5 out buffer control Spare

0xb0 EP6 in buffer control Interrupt endpoint buffer control 6

0xb4 EP6 out buffer control Spare

0xb8 EP7 in buffer control Interrupt endpoint buffer control 7

0xbc EP7 out buffer control Spare

0xc0 EP8 in buffer control Interrupt endpoint buffer control 8

0xc4 EP8 out buffer control Spare

0xc8 EP9 in buffer control Interrupt endpoint buffer control 9

0xcc EP9 out buffer control Spare

0xd0 EP10 in buffer control Interrupt endpoint buffer control 10

0xd4 EP10 out buffer control Spare

0xd8 EP11 in buffer control Interrupt endpoint buffer control 11

0xdc EP11 out buffer control Spare

0xe0 EP12 in buffer control Interrupt endpoint buffer control 12

0xe4 EP12 out buffer control Spare

0xe8 EP13 in buffer control Interrupt endpoint buffer control 13

0xec EP13 out buffer control Spare

0xf0 EP14 in buffer control Interrupt endpoint buffer control 14

RP2040 Datasheet

4.1. USB 386

Offset Device Function Host Function

0xf4 EP14 out buffer control Spare

0xf8 EP15 in buffer control Interrupt endpoint buffer control 15

0xfc EP15 out buffer control Spare

0x100 EP0 buffer 0 (shared between in and

out)

EPx control

0x140 Optional EP0 buffer 1 Spare

0x180 Data buffers

4.1.2.5.3. Endpoint control register

The endpoint control register is used to configure an endpoint. It contains:

• The endpoint type

• The base address of its data buffer, or data buffers if double buffered

• Interrupts events on the endpoint should trigger

A device must support Endpoint 0 so that it can reply to SETUP packets and be enumerated. As a result, there is no

endpoint control register for EP0. Its buffers begin at 0x100. All other endpoints can have either single or dual buffers

and are mapped at the base address programmed. As EP0 has no endpoint control register, the interrupt enable

controls for EP0 come from SIE_CTRL.

Table 395. Endpoint

control register layout
Bit(s) Device Function Host Function

31 Endpoint Enable

30 Single buffered (64 bytes) = 0, Double buffered (64 bytes x 2) = 1

29 Enable Interrupt for every transferred buffer

28 Enable Interrupt for every 2 transferred buffers (valid for double buffered only)

27:26 Endpoint Type: Control = 0, ISO = 1, Bulk = 2, Interrupt = 3

25:18 N/A The interval the host controller should poll this

endpoint. Only applicable for interrupt

endpoints. Specified in ms - 1. For example: a

value of 9 would poll the endpoint every 10ms.

17 Interrupt on Stall

16 Interrupt on NAK

15:6 Address base offset in DPSRAM of data buffer(s)

 NOTE

The data buffer base address must be 64-byte aligned as bits 0-5 are ignored

4.1.2.5.4. Buffer control register

The buffer control register contains information about the state of the data buffers for that endpoint. It is shared

between the processor and the controller. If the endpoint is configured to be single buffered, only the first half (bits 0-

15) of the buffer are used.

If double buffering, the buffer select starts at buffer 0. From then on, the buffer select flips between buffer 0 and 1

unless the "reset buffer select" bit is set (which resets the buffer select to buffer 0). The value of the buffer select is

internal to the controller and not accessible by the processor.

RP2040 Datasheet

4.1. USB 387

For host interrupt and isochronous packets on EPx, the buffer full bit will be set on completion even if the transfer was

unsuccessful. The error bits in the SIE_STATUS register can be read to determine the error.

Table 396. Buffer

control register layout
Bit(s) Function

31 Buffer 1 full. Should be set to 1 by the processor for an IN transaction and 0 for an OUT

transaction. The controller sets this to 1 for an OUT transaction because it has filled the buffer.

The controller sets it to 0 for an IN transaction because it has emptied the buffer. Only valid for

double buffered

30 Last buffer of transfer for buffer 1 - only valid for double buffered

29 Data PID for buffer 1 - DATA0 = 0, DATA1 = 1 - only valid for double buffered

27:28 Double buffer offset for Isochronous mode (0 = 128, 1 = 256, 2 = 512, 3 = 1024)

26 Buffer 1 available. Whether the buffer can be used by the controller for a transfer. The

processor sets this to 1 when the buffer is configured. The controller sets to 0 when it has

used the buffer. i.e. has sent the data to the host for an IN transaction or has filled the buffer

with data from the host for an OUT transaction. Only valid for double buffered.

25:16 Buffer 1 transfer length - only valid for double buffered

15 Buffer 0 full. Should be set to 1 by the processor for an IN transaction and 0 for an OUT

transaction. The controller sets this to 1 for an OUT transaction because it has filled the buffer.

The controller sets it to 0 for an IN transaction because it has emptied the buffer.

14 Last buffer of transfer for buffer 0

13 Data PID for buffer 0 - DATA0 = 0, DATA1 = 1

12 Reset buffer select to buffer 0 - cleared at end of transfer. For DEVICE ONLY

11 Send STALL for device, STALL received for host

10 Buffer 0 available. Whether the buffer can be used by the controller for a transfer. The

processor sets this to 1 when the buffer is configured. The controller sets to 0 when it has

used the buffer. i.e. has sent the data to the host for an IN transaction or has filled the buffer

with data from the host for an OUT transaction.

9:0 Buffer 0 transfer length

 WARNING

If running clk_sys and clk_usb at different speeds, the available and stall bits should be set after the other data in the

buffer control register. Otherwise the controller may initiate a transaction with data from a previous packet. That is

to say, the controller could see the available bit set but get the data pid or length from the previous packet.

4.1.2.6. Device Controller

This section details how the device controller operates when it receives various packet types from the host.

4.1.2.6.1. SETUP

The device controller MUST always accept a setup packet from the host. That is why the first 8 bytes of the DPSRAM

has dedicated space for the setup packet.

The [usbspec] states that receiving a setup packet also clears any stall bits on EP0. For this reason, the stall bits for EP0

are gated with two bits in the EP_STALL_ARM register. These bits are cleared when a setup packet is received. This

means that to send a stall on EP0, you have to set both the stall bit in the buffer control register, and the appropriate bit

in EP_STALL_ARM.

RP2040 Datasheet

4.1. USB 388

Barring any errors, the setup packet will be put into the setup packet buffer at DPSRAM offset 0x0. The device controller

will then reply with an ACK.

Finally, SIE_STATUS.SETUP_REC is set to indicate that a setup packet has been received. This will trigger an interrupt if

the programmer has enabled the SETUP_REC interrupt (see INTE).

4.1.2.6.2. IN

From the device’s point of view, an IN transfer means transferring data INTO the host. When an IN token is received from

the host the request is handled as follows:

TOKEN phase:

• If STALL is set in the buffer control register (and if EP0, the appropriate EP_STALL_ARM bit is set) then send a STALL

response and go back to idle.

• If AVAILABLE and FULL bits are set in buffer control move to the phase

• Otherwise send NAK unless this is an Isochronous endpoint, in which case go to idle.

DATA phase:

• Send DATA. If Isochronous go to idle. Otherwise move to ACK phase.

ACK phase:

• Wait for ACK packet from host. If there is a timeout then raise a timeout error. If ACK is received then the packet is

done, so move to status phase.

STATUS phase:

• If this was the last buffer in the transfer (i.e. if the LAST_BUFFER bit in the buffer control register was set), set

SIE_STATUS.TRANS_COMPLETE.

• If the endpoint is double buffered, flip the buffer select to the other buffer.

• Set a bit in BUFF_STATUS to indicate the buffer is done. When handling this event, the programmer should read

BUFF_CPU_SHOULD_HANDLE to see if it is buffer 0 or buffer 1 that is finished. If the endpoint is double buffered it

is possible to have both buffers done. The cleared BUFF_STATUS bit will be set again, and

BUFF_CPU_SHOULD_HANDLE will change in this instance.

• Update status in the appropriate half of the buffer control register: length, pid, and last_buff are set. Everything else

is written to zero.

If a NAK gets sent to the host the host will retry again later.

4.1.2.6.3. OUT

When an OUT token is received from the host, the request is handled as follows:

TOKEN phase:

• Is the DATA pid what is specified in the buffer control register? If not raise SIE_STATUS.DATA_SEQ_ERROR. (The

data pid for an Isochronous endpoint is not checked because Isochronous data is always sent with a DATA0 pid.)

• Is the AVAILABLE bit set and the FULL bit unset. If so go to the data phase, unless the STALL bit is set in which case the

device controller will reply with a STALL.

DATA phase:

• Store received data in buffer. If Isochronous go to STATUS phase. Otherwise go to ACK phase.

ACK phase:

• Send ACK. Go to STATUS phase.

RP2040 Datasheet

4.1. USB 389

STATUS phase:

See status phase from Section 4.1.2.6.2. The only difference is that the FULL bit is set in the buffer control register to

indicate that data has been received whereas in the IN case the FULL bit is cleared to indicate that data has been sent.

4.1.2.6.4. Suspend and Resume

The USB device controller supports both suspend and resume, as well as remote resume (triggered with

SIE_CTRL.RESUME), where the device initiates the resume. There is an interrupt / status bit in SIE_STATUS. It is not

necessary to enable the suspend and resume interrupts, as most devices do not need to care about suspend and

resume.

The device goes into suspend when it does not see any start of frame packets (transmitted every 1ms) from the host.

 NOTE

If you enable the suspend interrupt, it is likely you will see a suspend interrupt when the device is first connected but

the bus is idle. The bus can be idle for a few ms before the host begins sending start of frame packets. You will also

see a suspend interrupt when the device is disconnected if you do not have a VBUS detect circuit connected. This is

because without VBUS detection, it is impossible to tell the difference between being disconnected and suspended.

4.1.2.6.5. Errata

There are two hardware issues with the device controller, both of which have software workarounds on RP2040B0,

RP2040B1, and are fixed in hardware on RP2040B2. See RP2040-E2 and RP2040-E5 for more information.

4.1.2.7. Host Controller

The host controller design is similar to the device controller. All transactions are started by the host, so the host is

always dealing with transactions it has started. For this reason there is only one set of endpoint control / endpoint

buffer control registers. There is also additional hardware to poll interrupt endpoints in the background when there are

no software controlled transactions taking place.

The host needs to send keep-alive packets to the device every 1ms to keep the device from suspending. In Full Speed

mode this is done by sending a SOF (start of frame) packet. In Low Speed mode, an EOP (end of packet) is sent. When

setting up the controller, SIE_CTRL.KEEP_ALIVE_EN and SIE_CTRL.SOF_EN should be set to enable these packets.

Several bits in SIE_CTRL are used to begin a host transaction:

• SEND_SETUP - Send a setup packet. This is typically used in conjunction with RECEIVE_TRANS so the setup packet will be

sent followed by the additional data transaction expected from the device.

• SEND_TRANS - This transfer is OUT from the host

• RECEIVE_TRANS - This transfer is IN to the host

• START_TRANS - Start the transfer - non-latching

• STOP_TRANS - Stop the current transfer - non-latching

• PREAMBLE_ENABLE - Use this to send a packet to a Low Speed device on a Full Speed hub. This will send a PRE token

packet before every packet the host sends (i.e. pre, token, pre, data, pre, ack).

• SOF_SYNC - The SOF Sync bit is used to delay the transaction until after the next SOF. This is useful for interrupt and

isochronous endpoints. The Host controller prevents a transaction of 64bytes from clashing with the SOF packets.

For longer Isochronous packet the software is responsible for preventing a collision by using the SOF Sync bit and

limiting the number of packets sent in one frame. If a transaction is set up with multiple packets the SOF Sync bit

only applies to the first packet.

RP2040 Datasheet

4.1. USB 390

 WARNING

The START_TRANS bit is synchronised separately to other control bits in the SIE_CTRL register. The START_TRANS bit should

be set separately to the rest of the data in the SIE_CTRL register, so that the register contents are stable when the

controller is prompted to start a transfer. This is necessary because the processor clock clk_sys can be

asynchronous to the clk_usb clock.

• Write fields in SIE_CTRL apart from START_TRANS

• nop for some clk_sys cycles to ensure that at least two clk_usb cycles have passed. For example if clk_sys was

running at 125MHz and clk_usb was running at 48MHz then 125/48 rounded up would be 6 nop instructions

• Set the START_TRANS bit.

4.1.2.7.1. SETUP

The SETUP packet sent from the host always comes from the dedicated 8 bytes of space at offset 0x0 of the DPSRAM.

Like the device controller, there are no control registers associated with the setup packet. The parameters are hard

coded and loaded into the hardware when you write to START_TRANS with the SEND_SETUP bit set. Once the setup packet has

been sent, the host state machine will wait for an ACK from the device. If there is a timeout then an RX_TIMEOUT error will be

raised. If the SEND_TRANS bit is set then the host state machine will move to the OUT phase. Most commonly the SEND_SETUP

packet is used in conjunction with the RECEIVE_TRANS bit and will therefore move to the IN phase after sending a setup

packet.

4.1.2.7.2. IN

An IN transfer is triggered with the RECEIVE_TRANS bit set when the START_TRANS bit is set. This may be preceded by a SETUP

packet being sent if the SEND_SETUP bit was set.

CONTROL phase:

• Read EPx control register located at 0x80 to get the endpoint information:

◦ Are we double buffered?

◦ What interrupts to enable

◦ Base address of the data buffer, or data buffers if in double buffered mode

◦ Endpoint type

• Read EPx buffer control register at 0x100 to get the endpoint buffer information such as transfer length and data

pid. The host state machine still checks for the presence of the AVAILABLE bit, so this needs to be set and FULL needs

to be unset. The transaction will not happen until this is the case.

TOKEN phase:

• Send the IN token packet to the device. The target device address and endpoint come from the ADDR_ENDP

register.

DATA phase:

• Receive the first data packet from the device. Raise RX timeout error if the device doesn’t reply. Raise DATA SEQ

ERROR if the data packet has wrong DATA PID.

ACK phase:

• Send ACK to device

STATUS phase:

• Set BUFF_STATUS bit and update buffer control register. Will set FULL, LAST_BUFF if applicable, DATA_PID, WR_LEN.

TRANS_COMPLETE will be set if this is the last buffer in the transfer.

RP2040 Datasheet

4.1. USB 391

CONTROL phase (pt 2):

• The host state machine will keep performing IN transactions until LAST_BUFF is seen in the buffer_control register. If

the host is in double buffered mode then the host controller will toggle between BUF0 and BUF1 sections of the buffer

control register. Otherwise it will keep reading the buffer control register for buffer 0 and wait for the FULL to be

unset and AVAILABLE to be set before starting the next IN transaction (i.e. wait in the control phase). The device can

send a zero length packet to the host to indicate that it has no more data. In which case the host state machine will

stop listening for more data regardless of if the LAST_BUFF flag was set or not. The host software can tell this has

happened because BUFF_DONE will be set with a data length of 0 in the buffer control register.

 WARNING

The USB host controller has a bug (RP2040-E4) that means the status written back to the buffer control register can

appear in the wrong half of the register. Bits 0-15 are for buffer 0, and bits 16-31 are for buffer 1. The host controller

has a buffer selector that is flipped after each transfer is complete. This buffer selector is incorrectly used when

writing status information back to the buffer control register even in single buffered mode. The buffer selector is not

used when reading the buffer control register. The implication of this is that host software needs to keep track of the

buffer selector and shift the buffer control register to the right by 16 bits if the buffer selector is 1.

For more information, see RP2040-E4.

4.1.2.7.3. OUT

An OUT transfer is triggered with the SEND_TRANS bit set when the START_TRANS bit is set. This may be preceded by a SETUP

packet being sent if the SEND_SETUP bit was set.

CONTROL phase:

• Read EPx control to get endpoint information (same as Section 4.1.2.7.2)

• Read EPx buffer control to get the transfer length, data pid. AVAILABLE and FULL must be set for the transfer to start.

TOKEN phase

• Send OUT packet to the device. The target device address and endpoint come from the ADDR_ENDP register.

DATA phase:

• Send the first data packet to the device. If the endpoint type is Isochronous then there is no ACK phase so the host

controller will go straight to status phase. If ACK received then go to status phase. Otherwise:

◦ If no reply is received than raise SIE_STATUS.RX_TIMEOUT.

◦ If NAK received raise SIE_STATUS.NAK_REC and send the data packet again.

◦ If STALL received then raise SIE_STATUS.STALL_REC and go to idle.

STATUS phase:

• Set BUFF_STATUS bit and update buffer control register. FULL will be set to 0. TRANS_COMPLETE will be set if this is the

last buffer in the transfer.

 WARNING

The bug mentioned above (RP2040-E4) in the IN section also applies to the OUT section.

CONTROL phase (pt 2):

If this isn’t the last buffer in the transfer then wait for FULL and AVAILABLE to be set in the EPx buffer control register again.

RP2040 Datasheet

4.1. USB 392

4.1.2.7.4. Interrupt Endpoints

The host controller can poll interrupt endpoints on many devices (up to a maximum of 15 endpoints). To enable these,

the programmer must:

• Pick the next free interrupt endpoint slot on the host controller (starting at 1, to a maximum of 15)

• Program the appropriate endpoint control register and buffer control register like you would with a normal IN or OUT

transfer. Note that interrupt endpoints are only single buffered so the BUF1 part of the buffer control register is

invalid.

• Set the address and endpoint of the device in the appropriate ADDR_ENDP register (ADDR_ENDP1 to ADDR_ENDP15).

The preamble bit should be set if the device is Low Speed but attached to a Full Speed hub. The endpoint direction

bit should also be set.

• Set the interrupt endpoint active bit in INT_EP_CTRL (i.e. set bit 1 to 15 of that register)

Typically an interrupt endpoint will be an IN transfer. For example, a USB hub would be polled to see if the state of any of

its ports have changed. If there is no changed the hub will reply with a NAK to the controller and nothing will happen.

Similarly, a mouse will reply with a NAK unless the mouse has been moved since the last time the interrupt endpoint was

polled.

Interrupt endpoints are polled by the controller once a SOF packet has been sent by the host controller.

The controller loops from 1 to 15 and will attempt to poll any interrupt endpoint with the EP_ACTIVE bit set to 1 in

INT_EP_CTRL. The controller will then read the endpoint control register, and buffer control register to see if there is an

available buffer (i.e. FULL + AVAILABLE if an OUT transfer and NOT FULL + AVAILABLE for an IN transfer). If not, the controller will

move onto the next interrupt endpoint slot.

If there is an available buffer, then the transfer is dealt with the same as a normal IN or OUT transfer and the BUFF_DONE flag

in BUFF_STATUS will be set when the interrupt endpoint has a valid buffer. BUFF_CPU_SHOULD_HANDLE is invalid for

interrupt endpoints as there is only a single buffer that can ever be done (RP2040-E3).

4.1.2.8. VBUS Control

The USB controller can be connected up to GPIO pins (see Section 2.19) for the purpose of VBUS control:

• VBUS enable, used to enable VBUS in host mode. VBUS enable is set in SIE_CTRL

• VBUS detect, used to detect that VBUS is present in device mode. VBUS detect is a bit in SIE_STATUS and can also

raise a VBUS_DETECT interrupt (enabled in INTE)

• VBUS overcurrent, used to detect an overcurrent event. Applicable to both device and host. VBUS overcurrent is a

bit in SIE_STATUS.

It is not necessary to connect up any of these pins to GPIO. The host can permanently supply VBUS and detect a device

being connected when either the DP or DM pin is pulled high. VBUS detect can be forced in USB_PWR.

4.1.3. Programmer’s Model

4.1.3.1. TinyUSB

The RP2040 TinyUSB port should be considered as the reference implementation for this USB controller. This port can

be found in:

https://github.com/hathach/tinyusb/blob/master/src/portable/raspberrypi/rp2040/dcd_rp2040.c

https://github.com/hathach/tinyusb/blob/master/src/portable/raspberrypi/rp2040/hcd_rp2040.c

https://github.com/hathach/tinyusb/blob/master/src/portable/raspberrypi/rp2040/rp2040_usb.h

RP2040 Datasheet

4.1. USB 393

https://github.com/hathach/tinyusb/blob/master/src/portable/raspberrypi/rp2040/dcd_rp2040.c
https://github.com/hathach/tinyusb/blob/master/src/portable/raspberrypi/rp2040/hcd_rp2040.c
https://github.com/hathach/tinyusb/blob/master/src/portable/raspberrypi/rp2040/rp2040_usb.h

4.1.3.2. Standalone device example

A standalone USB device example, dev_lowlevel, makes it easier to understand how to interact with the USB controller

without needing to understand the TinyUSB abstractions. In addition to endpoint 0, the standalone device has two bulk

endpoints: EP1 OUT and EP2 IN. The device is designed to send whatever data it receives on EP1 to EP2. The example

comes with a small Python script that writes "Hello World" into EP1 and checks that it is correctly received on EP2.

The code included in this section will walk you through setting up to the USB device controller to receive a setup packet,

and then respond to the setup packet.

Figure 58. USB

analyser trace of the

dev_lowlevel USB

device example. The

control transfers are

the device

enumeration. The first

bulk OUT (out from the

host) transfer,

highlighted in blue, is

the host sending

"Hello World" to the

device. The second

bulk transfer IN (in to

the host), is the device

returning "Hello World"

to the host.

4.1.3.2.1. Device controller initialisation

The following code initialises the USB device.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/usb/device/dev_lowlevel/dev_lowlevel.c Lines 183 - 218

183 void usb_device_init() {
184 // Reset usb controller
185 reset_block(RESETS_RESET_USBCTRL_BITS);
186 unreset_block_wait(RESETS_RESET_USBCTRL_BITS);
187
188 // Clear any previous state in dpram just in case
189 memset(usb_dpram, 0, sizeof(*usb_dpram)); ①
190
191 // Enable USB interrupt at processor
192 irq_set_enabled(USBCTRL_IRQ, true);
193
194 // Mux the controller to the onboard usb phy
195 usb_hw->muxing = USB_USB_MUXING_TO_PHY_BITS | USB_USB_MUXING_SOFTCON_BITS;
196
197 // Force VBUS detect so the device thinks it is plugged into a host
198 usb_hw->pwr = USB_USB_PWR_VBUS_DETECT_BITS | USB_USB_PWR_VBUS_DETECT_OVERRIDE_EN_BITS;
199
200 // Enable the USB controller in device mode.
201 usb_hw->main_ctrl = USB_MAIN_CTRL_CONTROLLER_EN_BITS;
202
203 // Enable an interrupt per EP0 transaction
204 usb_hw->sie_ctrl = USB_SIE_CTRL_EP0_INT_1BUF_BITS; ②
205

RP2040 Datasheet

4.1. USB 394

https://github.com/raspberrypi/pico-examples/blob/master/usb/device/dev_lowlevel/dev_lowlevel.c#L183-L218

206 // Enable interrupts for when a buffer is done, when the bus is reset,
207 // and when a setup packet is received
208 usb_hw->inte = USB_INTS_BUFF_STATUS_BITS |
209 USB_INTS_BUS_RESET_BITS |
210 USB_INTS_SETUP_REQ_BITS;
211
212 // Set up endpoints (endpoint control registers)
213 // described by device configuration
214 usb_setup_endpoints();
215
216 // Present full speed device by enabling pull up on DP
217 usb_hw_set->sie_ctrl = USB_SIE_CTRL_PULLUP_EN_BITS;
218 }

4.1.3.2.2. Configuring the endpoint control registers for EP1 and EP2

The function usb_configure_endpoints loops through each endpoint defined in the device configuration (including EP0 in

and EP0 out, which don’t have an endpoint control register defined) and calls the usb_configure_endpoint function. This

sets up the endpoint control register for that endpoint:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/usb/device/dev_lowlevel/dev_lowlevel.c Lines 149 - 164

149 void usb_setup_endpoint(const struct usb_endpoint_configuration *ep) {
150 printf("Set up endpoint 0x%x with buffer address 0x%p\n", ep->descriptor-
 >bEndpointAddress, ep->data_buffer);
151
152 // EP0 doesn't have one so return if that is the case
153 if (!ep->endpoint_control) {
154 return;
155 }
156
157 // Get the data buffer as an offset of the USB controller's DPRAM
158 uint32_t dpram_offset = usb_buffer_offset(ep->data_buffer);
159 uint32_t reg = EP_CTRL_ENABLE_BITS
160 | EP_CTRL_INTERRUPT_PER_BUFFER
161 | (ep->descriptor->bmAttributes << EP_CTRL_BUFFER_TYPE_LSB)
162 | dpram_offset;
163 *ep->endpoint_control = reg;
164 }

4.1.3.2.3. Receiving a setup packet

An interrupt is raised when a setup packet is received, so the interrupt handler must handle this event:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/usb/device/dev_lowlevel/dev_lowlevel.c Lines 492 - 502

492 void isr_usbctrl(void) {
493 // USB interrupt handler
494 uint32_t status = usb_hw->ints;
495 uint32_t handled = 0;
496
497 // Setup packet received
498 if (status & USB_INTS_SETUP_REQ_BITS) {
499 handled |= USB_INTS_SETUP_REQ_BITS;
500 usb_hw_clear->sie_status = USB_SIE_STATUS_SETUP_REC_BITS;
501 usb_handle_setup_packet();
502 }

RP2040 Datasheet

4.1. USB 395

https://github.com/raspberrypi/pico-examples/blob/master/usb/device/dev_lowlevel/dev_lowlevel.c#L149-L164
https://github.com/raspberrypi/pico-examples/blob/master/usb/device/dev_lowlevel/dev_lowlevel.c#L492-L502

The setup packet gets written to the first 8 bytes of the USB ram, so the setup packet handler casts that area of memory

to struct usb_setup_packet *.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/usb/device/dev_lowlevel/dev_lowlevel.c Lines 384 - 428

384 void usb_handle_setup_packet(void) {
385 volatile struct usb_setup_packet *pkt = (volatile struct usb_setup_packet *) &usb_dpram
 ->setup_packet;
386 uint8_t req_direction = pkt->bmRequestType;
387 uint8_t req = pkt->bRequest;
388
389 // Reset PID to 1 for EP0 IN
390 usb_get_endpoint_configuration(EP0_IN_ADDR)->next_pid = 1u;
391
392 if (req_direction == USB_DIR_OUT) {
393 if (req == USB_REQUEST_SET_ADDRESS) {
394 usb_set_device_address(pkt);
395 } else if (req == USB_REQUEST_SET_CONFIGURATION) {
396 usb_set_device_configuration(pkt);
397 } else {
398 usb_acknowledge_out_request();
399 printf("Other OUT request (0x%x)\r\n", pkt->bRequest);
400 }
401 } else if (req_direction == USB_DIR_IN) {
402 if (req == USB_REQUEST_GET_DESCRIPTOR) {
403 uint16_t descriptor_type = pkt->wValue >> 8;
404
405 switch (descriptor_type) {
406 case USB_DT_DEVICE:
407 usb_handle_device_descriptor(pkt);
408 printf("GET DEVICE DESCRIPTOR\r\n");
409 break;
410
411 case USB_DT_CONFIG:
412 usb_handle_config_descriptor(pkt);
413 printf("GET CONFIG DESCRIPTOR\r\n");
414 break;
415
416 case USB_DT_STRING:
417 usb_handle_string_descriptor(pkt);
418 printf("GET STRING DESCRIPTOR\r\n");
419 break;
420
421 default:
422 printf("Unhandled GET_DESCRIPTOR type 0x%x\r\n", descriptor_type);
423 }
424 } else {
425 printf("Other IN request (0x%x)\r\n", pkt->bRequest);
426 }
427 }
428 }

4.1.3.2.4. Replying to a setup packet on EP0 IN

The first thing a host will request is the device descriptor, the following code handles that setup request.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/usb/device/dev_lowlevel/dev_lowlevel.c Lines 267 - 274

267 void usb_handle_device_descriptor(volatile struct usb_setup_packet *pkt) {
268 const struct usb_device_descriptor *d = dev_config.device_descriptor;

RP2040 Datasheet

4.1. USB 396

https://github.com/raspberrypi/pico-examples/blob/master/usb/device/dev_lowlevel/dev_lowlevel.c#L384-L428
https://github.com/raspberrypi/pico-examples/blob/master/usb/device/dev_lowlevel/dev_lowlevel.c#L267-L274

269 // EP0 in
270 struct usb_endpoint_configuration *ep = usb_get_endpoint_configuration(EP0_IN_ADDR);
271 // Always respond with pid 1
272 ep->next_pid = 1;
273 usb_start_transfer(ep, (uint8_t *) d, MIN(sizeof(struct usb_device_descriptor), pkt-
 >wLength));
274 }

The usb_start_transfer function copies the data to send into the appropriate hardware buffer, and configures the buffer

control register. Once the buffer control register has been written to, the device controller will respond to the host with

the data. Before this point, the device will reply with a NAK.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/usb/device/dev_lowlevel/dev_lowlevel.c Lines 239 - 261

239 void usb_start_transfer(struct usb_endpoint_configuration *ep, uint8_t *buf, uint16_t len) {
240 // We are asserting that the length is <= 64 bytes for simplicity of the example.
241 // For multi packet transfers see the tinyusb port.
242 assert(len <= 64);
243
244 printf("Start transfer of len %d on ep addr 0x%x\n", len, ep->descriptor-
 >bEndpointAddress);
245
246 // Prepare buffer control register value
247 uint32_t val = len | USB_BUF_CTRL_AVAIL;
248
249 if (ep_is_tx(ep)) {
250 // Need to copy the data from the user buffer to the usb memory
251 memcpy((void *) ep->data_buffer, (void *) buf, len);
252 // Mark as full
253 val |= USB_BUF_CTRL_FULL;
254 }
255
256 // Set pid and flip for next transfer
257 val |= ep->next_pid ? USB_BUF_CTRL_DATA1_PID : USB_BUF_CTRL_DATA0_PID;
258 ep->next_pid ^= 1u;
259
260 *ep->buffer_control = val;
261 }

4.1.4. List of Registers

The USB registers start at a base address of 0x50110000 (defined as USBCTRL_REGS_BASE in SDK).

Table 397. List of USB

registers
Offset Name Info

0x00 ADDR_ENDP Device address and endpoint control

0x04 ADDR_ENDP1 Interrupt endpoint 1. Only valid for HOST mode.

0x08 ADDR_ENDP2 Interrupt endpoint 2. Only valid for HOST mode.

0x0c ADDR_ENDP3 Interrupt endpoint 3. Only valid for HOST mode.

0x10 ADDR_ENDP4 Interrupt endpoint 4. Only valid for HOST mode.

0x14 ADDR_ENDP5 Interrupt endpoint 5. Only valid for HOST mode.

0x18 ADDR_ENDP6 Interrupt endpoint 6. Only valid for HOST mode.

0x1c ADDR_ENDP7 Interrupt endpoint 7. Only valid for HOST mode.

RP2040 Datasheet

4.1. USB 397

https://github.com/raspberrypi/pico-examples/blob/master/usb/device/dev_lowlevel/dev_lowlevel.c#L239-L261

Offset Name Info

0x20 ADDR_ENDP8 Interrupt endpoint 8. Only valid for HOST mode.

0x24 ADDR_ENDP9 Interrupt endpoint 9. Only valid for HOST mode.

0x28 ADDR_ENDP10 Interrupt endpoint 10. Only valid for HOST mode.

0x2c ADDR_ENDP11 Interrupt endpoint 11. Only valid for HOST mode.

0x30 ADDR_ENDP12 Interrupt endpoint 12. Only valid for HOST mode.

0x34 ADDR_ENDP13 Interrupt endpoint 13. Only valid for HOST mode.

0x38 ADDR_ENDP14 Interrupt endpoint 14. Only valid for HOST mode.

0x3c ADDR_ENDP15 Interrupt endpoint 15. Only valid for HOST mode.

0x40 MAIN_CTRL Main control register

0x44 SOF_WR Set the SOF (Start of Frame) frame number in the host controller.

The SOF packet is sent every 1ms and the host will increment the

frame number by 1 each time.

0x48 SOF_RD Read the last SOF (Start of Frame) frame number seen. In device

mode the last SOF received from the host. In host mode the last

SOF sent by the host.

0x4c SIE_CTRL SIE control register

0x50 SIE_STATUS SIE status register

0x54 INT_EP_CTRL interrupt endpoint control register

0x58 BUFF_STATUS Buffer status register. A bit set here indicates that a buffer has

completed on the endpoint (if the buffer interrupt is enabled). It

is possible for 2 buffers to be completed, so clearing the buffer

status bit may instantly re set it on the next clock cycle.

0x5c BUFF_CPU_SHOULD_HANDLE Which of the double buffers should be handled. Only valid if

using an interrupt per buffer (i.e. not per 2 buffers). Not valid for

host interrupt endpoint polling because they are only single

buffered.

0x60 EP_ABORT Device only: Can be set to ignore the buffer control register for

this endpoint in case you would like to revoke a buffer. A NAK

will be sent for every access to the endpoint until this bit is

cleared. A corresponding bit in EP_ABORT_DONE is set when it is safe

to modify the buffer control register.

0x64 EP_ABORT_DONE Device only: Used in conjunction with EP_ABORT. Set once an

endpoint is idle so the programmer knows it is safe to modify the

buffer control register.

0x68 EP_STALL_ARM Device: this bit must be set in conjunction with the STALL bit in the

buffer control register to send a STALL on EP0. The device

controller clears these bits when a SETUP packet is received

because the USB spec requires that a STALL condition is cleared

when a SETUP packet is received.

0x6c NAK_POLL Used by the host controller. Sets the wait time in microseconds

before trying again if the device replies with a NAK.

0x70 EP_STATUS_STALL_NAK Device: bits are set when the IRQ_ON_NAK or IRQ_ON_STALL bits are

set. For EP0 this comes from SIE_CTRL. For all other endpoints it

comes from the endpoint control register.

RP2040 Datasheet

4.1. USB 398

Offset Name Info

0x74 USB_MUXING Where to connect the USB controller. Should be to_phy by

default.

0x78 USB_PWR Overrides for the power signals in the event that the VBUS

signals are not hooked up to GPIO. Set the value of the override

and then the override enable to switch over to the override value.

0x7c USBPHY_DIRECT This register allows for direct control of the USB phy. Use in

conjunction with usbphy_direct_override register to enable each

override bit.

0x80 USBPHY_DIRECT_OVERRIDE Override enable for each control in usbphy_direct

0x84 USBPHY_TRIM Used to adjust trim values of USB phy pull down resistors.

0x8c INTR Raw Interrupts

0x90 INTE Interrupt Enable

0x94 INTF Interrupt Force

0x98 INTS Interrupt status after masking & forcing

USB: ADDR_ENDP Register

Offset: 0x00

Description

Device address and endpoint control

Table 398.

ADDR_ENDP Register
Bits Name Description Type Reset

31:20 Reserved. - - -

19:16 ENDPOINT Device endpoint to send data to. Only valid for HOST

mode.

RW 0x0

15:7 Reserved. - - -

6:0 ADDRESS In device mode, the address that the device should

respond to. Set in response to a SET_ADDR setup packet

from the host. In host mode set to the address of the

device to communicate with.

RW 0x00

USB: ADDR_ENDP1, ADDR_ENDP2, …, ADDR_ENDP14, ADDR_ENDP15

Registers

Offsets: 0x04, 0x08, …, 0x38, 0x3c

Description

Interrupt endpoint N. Only valid for HOST mode.

Table 399.

ADDR_ENDP1,

ADDR_ENDP2, …,

ADDR_ENDP14,

ADDR_ENDP15

Registers

Bits Name Description Type Reset

31:27 Reserved. - - -

26 INTEP_PREAMBL

E

Interrupt EP requires preamble (is a low speed device on a

full speed hub)

RW 0x0

25 INTEP_DIR Direction of the interrupt endpoint. In=0, Out=1 RW 0x0

24:20 Reserved. - - -

RP2040 Datasheet

4.1. USB 399

Bits Name Description Type Reset

19:16 ENDPOINT Endpoint number of the interrupt endpoint RW 0x0

15:7 Reserved. - - -

6:0 ADDRESS Device address RW 0x00

USB: MAIN_CTRL Register

Offset: 0x40

Description

Main control register

Table 400.

MAIN_CTRL Register
Bits Name Description Type Reset

31 SIM_TIMING Reduced timings for simulation RW 0x0

30:2 Reserved. - - -

1 HOST_NDEVICE Device mode = 0, Host mode = 1 RW 0x0

0 CONTROLLER_EN Enable controller RW 0x0

USB: SOF_WR Register

Offset: 0x44

Description

Set the SOF (Start of Frame) frame number in the host controller. The SOF packet is sent every 1ms and the host

will increment the frame number by 1 each time.

Table 401. SOF_WR

Register
Bits Name Description Type Reset

31:11 Reserved. - - -

10:0 COUNT WF 0x000

USB: SOF_RD Register

Offset: 0x48

Description

Read the last SOF (Start of Frame) frame number seen. In device mode the last SOF received from the host. In host

mode the last SOF sent by the host.

Table 402. SOF_RD

Register
Bits Name Description Type Reset

31:11 Reserved. - - -

10:0 COUNT RO 0x000

USB: SIE_CTRL Register

Offset: 0x4c

Description

SIE control register

Table 403. SIE_CTRL

Register
Bits Name Description Type Reset

31 EP0_INT_STALL Device: Set bit in EP_STATUS_STALL_NAK when EP0

sends a STALL

RW 0x0

RP2040 Datasheet

4.1. USB 400

Bits Name Description Type Reset

30 EP0_DOUBLE_BUF Device: EP0 single buffered = 0, double buffered = 1 RW 0x0

29 EP0_INT_1BUF Device: Set bit in BUFF_STATUS for every buffer

completed on EP0

RW 0x0

28 EP0_INT_2BUF Device: Set bit in BUFF_STATUS for every 2 buffers

completed on EP0

RW 0x0

27 EP0_INT_NAK Device: Set bit in EP_STATUS_STALL_NAK when EP0

sends a NAK

RW 0x0

26 DIRECT_EN Direct bus drive enable RW 0x0

25 DIRECT_DP Direct control of DP RW 0x0

24 DIRECT_DM Direct control of DM RW 0x0

23:19 Reserved. - - -

18 TRANSCEIVER_PD Power down bus transceiver RW 0x0

17 RPU_OPT Device: Pull-up strength (0=1K2, 1=2k3) RW 0x0

16 PULLUP_EN Device: Enable pull up resistor RW 0x0

15 PULLDOWN_EN Host: Enable pull down resistors RW 0x0

14 Reserved. - - -

13 RESET_BUS Host: Reset bus SC 0x0

12 RESUME Device: Remote wakeup. Device can initiate its own

resume after suspend.

SC 0x0

11 VBUS_EN Host: Enable VBUS RW 0x0

10 KEEP_ALIVE_EN Host: Enable keep alive packet (for low speed bus) RW 0x0

9 SOF_EN Host: Enable SOF generation (for full speed bus) RW 0x0

8 SOF_SYNC Host: Delay packet(s) until after SOF RW 0x0

7 Reserved. - - -

6 PREAMBLE_EN Host: Preable enable for LS device on FS hub RW 0x0

5 Reserved. - - -

4 STOP_TRANS Host: Stop transaction SC 0x0

3 RECEIVE_DATA Host: Receive transaction (IN to host) RW 0x0

2 SEND_DATA Host: Send transaction (OUT from host) RW 0x0

1 SEND_SETUP Host: Send Setup packet RW 0x0

0 START_TRANS Host: Start transaction SC 0x0

USB: SIE_STATUS Register

Offset: 0x50

Description

SIE status register

Table 404.

SIE_STATUS Register

RP2040 Datasheet

4.1. USB 401

Bits Name Description Type Reset

31 DATA_SEQ_ERRO

R

Data Sequence Error.

The device can raise a sequence error in the following

conditions:

* A SETUP packet is received followed by a DATA1 packet

(data phase should always be DATA0) * An OUT packet is

received from the host but doesn’t match the data pid in

the buffer control register read from DPSRAM

The host can raise a data sequence error in the following

conditions:

* An IN packet from the device has the wrong data PID

WC 0x0

30 ACK_REC ACK received. Raised by both host and device. WC 0x0

29 STALL_REC Host: STALL received WC 0x0

28 NAK_REC Host: NAK received WC 0x0

27 RX_TIMEOUT RX timeout is raised by both the host and device if an ACK

is not received in the maximum time specified by the USB

spec.

WC 0x0

26 RX_OVERFLOW RX overflow is raised by the Serial RX engine if the

incoming data is too fast.

WC 0x0

25 BIT_STUFF_ERRO

R

Bit Stuff Error. Raised by the Serial RX engine. WC 0x0

24 CRC_ERROR CRC Error. Raised by the Serial RX engine. WC 0x0

23:20 Reserved. - - -

19 BUS_RESET Device: bus reset received WC 0x0

18 TRANS_COMPLET

E

Transaction complete.

Raised by device if:

* An IN or OUT packet is sent with the LAST_BUFF bit set in

the buffer control register

Raised by host if:

* A setup packet is sent when no data in or data out

transaction follows * An IN packet is received and the

LAST_BUFF bit is set in the buffer control register * An IN

packet is received with zero length * An OUT packet is

sent and the LAST_BUFF bit is set

WC 0x0

17 SETUP_REC Device: Setup packet received WC 0x0

16 CONNECTED Device: connected WC 0x0

15:12 Reserved. - - -

11 RESUME Host: Device has initiated a remote resume. Device: host

has initiated a resume.

WC 0x0

RP2040 Datasheet

4.1. USB 402

Bits Name Description Type Reset

10 VBUS_OVER_CUR

R

VBUS over current detected RO 0x0

9:8 SPEED Host: device speed. Disconnected = 00, LS = 01, FS = 10 WC 0x0

7:5 Reserved. - - -

4 SUSPENDED Bus in suspended state. Valid for device and host. Host

and device will go into suspend if neither Keep Alive / SOF

frames are enabled.

WC 0x0

3:2 LINE_STATE USB bus line state RO 0x0

1 Reserved. - - -

0 VBUS_DETECTED Device: VBUS Detected RO 0x0

USB: INT_EP_CTRL Register

Offset: 0x54

Description

interrupt endpoint control register

Table 405.

INT_EP_CTRL Register
Bits Name Description Type Reset

31:16 Reserved. - - -

15:1 INT_EP_ACTIVE Host: Enable interrupt endpoint 1 → 15 RW 0x0000

0 Reserved. - - -

USB: BUFF_STATUS Register

Offset: 0x58

Description

Buffer status register. A bit set here indicates that a buffer has completed on the endpoint (if the buffer interrupt is

enabled). It is possible for 2 buffers to be completed, so clearing the buffer status bit may instantly re set it on the

next clock cycle.

Table 406.

BUFF_STATUS

Register

Bits Name Description Type Reset

31 EP15_OUT WC 0x0

30 EP15_IN WC 0x0

29 EP14_OUT WC 0x0

28 EP14_IN WC 0x0

27 EP13_OUT WC 0x0

26 EP13_IN WC 0x0

25 EP12_OUT WC 0x0

24 EP12_IN WC 0x0

23 EP11_OUT WC 0x0

22 EP11_IN WC 0x0

21 EP10_OUT WC 0x0

RP2040 Datasheet

4.1. USB 403

Bits Name Description Type Reset

20 EP10_IN WC 0x0

19 EP9_OUT WC 0x0

18 EP9_IN WC 0x0

17 EP8_OUT WC 0x0

16 EP8_IN WC 0x0

15 EP7_OUT WC 0x0

14 EP7_IN WC 0x0

13 EP6_OUT WC 0x0

12 EP6_IN WC 0x0

11 EP5_OUT WC 0x0

10 EP5_IN WC 0x0

9 EP4_OUT WC 0x0

8 EP4_IN WC 0x0

7 EP3_OUT WC 0x0

6 EP3_IN WC 0x0

5 EP2_OUT WC 0x0

4 EP2_IN WC 0x0

3 EP1_OUT WC 0x0

2 EP1_IN WC 0x0

1 EP0_OUT WC 0x0

0 EP0_IN WC 0x0

USB: BUFF_CPU_SHOULD_HANDLE Register

Offset: 0x5c

Description

Which of the double buffers should be handled. Only valid if using an interrupt per buffer (i.e. not per 2 buffers). Not

valid for host interrupt endpoint polling because they are only single buffered.

Table 407.

BUFF_CPU_SHOULD_H

ANDLE Register

Bits Name Description Type Reset

31 EP15_OUT RO 0x0

30 EP15_IN RO 0x0

29 EP14_OUT RO 0x0

28 EP14_IN RO 0x0

27 EP13_OUT RO 0x0

26 EP13_IN RO 0x0

25 EP12_OUT RO 0x0

24 EP12_IN RO 0x0

23 EP11_OUT RO 0x0

RP2040 Datasheet

4.1. USB 404

Bits Name Description Type Reset

22 EP11_IN RO 0x0

21 EP10_OUT RO 0x0

20 EP10_IN RO 0x0

19 EP9_OUT RO 0x0

18 EP9_IN RO 0x0

17 EP8_OUT RO 0x0

16 EP8_IN RO 0x0

15 EP7_OUT RO 0x0

14 EP7_IN RO 0x0

13 EP6_OUT RO 0x0

12 EP6_IN RO 0x0

11 EP5_OUT RO 0x0

10 EP5_IN RO 0x0

9 EP4_OUT RO 0x0

8 EP4_IN RO 0x0

7 EP3_OUT RO 0x0

6 EP3_IN RO 0x0

5 EP2_OUT RO 0x0

4 EP2_IN RO 0x0

3 EP1_OUT RO 0x0

2 EP1_IN RO 0x0

1 EP0_OUT RO 0x0

0 EP0_IN RO 0x0

USB: EP_ABORT Register

Offset: 0x60

Description

Device only: Can be set to ignore the buffer control register for this endpoint in case you would like to revoke a

buffer. A NAK will be sent for every access to the endpoint until this bit is cleared. A corresponding bit in

EP_ABORT_DONE is set when it is safe to modify the buffer control register.

Table 408. EP_ABORT

Register
Bits Name Description Type Reset

31 EP15_OUT RW 0x0

30 EP15_IN RW 0x0

29 EP14_OUT RW 0x0

28 EP14_IN RW 0x0

27 EP13_OUT RW 0x0

26 EP13_IN RW 0x0

RP2040 Datasheet

4.1. USB 405

Bits Name Description Type Reset

25 EP12_OUT RW 0x0

24 EP12_IN RW 0x0

23 EP11_OUT RW 0x0

22 EP11_IN RW 0x0

21 EP10_OUT RW 0x0

20 EP10_IN RW 0x0

19 EP9_OUT RW 0x0

18 EP9_IN RW 0x0

17 EP8_OUT RW 0x0

16 EP8_IN RW 0x0

15 EP7_OUT RW 0x0

14 EP7_IN RW 0x0

13 EP6_OUT RW 0x0

12 EP6_IN RW 0x0

11 EP5_OUT RW 0x0

10 EP5_IN RW 0x0

9 EP4_OUT RW 0x0

8 EP4_IN RW 0x0

7 EP3_OUT RW 0x0

6 EP3_IN RW 0x0

5 EP2_OUT RW 0x0

4 EP2_IN RW 0x0

3 EP1_OUT RW 0x0

2 EP1_IN RW 0x0

1 EP0_OUT RW 0x0

0 EP0_IN RW 0x0

USB: EP_ABORT_DONE Register

Offset: 0x64

Description

Device only: Used in conjunction with EP_ABORT. Set once an endpoint is idle so the programmer knows it is safe to

modify the buffer control register.

Table 409.

EP_ABORT_DONE

Register

Bits Name Description Type Reset

31 EP15_OUT WC 0x0

30 EP15_IN WC 0x0

29 EP14_OUT WC 0x0

28 EP14_IN WC 0x0

RP2040 Datasheet

4.1. USB 406

Bits Name Description Type Reset

27 EP13_OUT WC 0x0

26 EP13_IN WC 0x0

25 EP12_OUT WC 0x0

24 EP12_IN WC 0x0

23 EP11_OUT WC 0x0

22 EP11_IN WC 0x0

21 EP10_OUT WC 0x0

20 EP10_IN WC 0x0

19 EP9_OUT WC 0x0

18 EP9_IN WC 0x0

17 EP8_OUT WC 0x0

16 EP8_IN WC 0x0

15 EP7_OUT WC 0x0

14 EP7_IN WC 0x0

13 EP6_OUT WC 0x0

12 EP6_IN WC 0x0

11 EP5_OUT WC 0x0

10 EP5_IN WC 0x0

9 EP4_OUT WC 0x0

8 EP4_IN WC 0x0

7 EP3_OUT WC 0x0

6 EP3_IN WC 0x0

5 EP2_OUT WC 0x0

4 EP2_IN WC 0x0

3 EP1_OUT WC 0x0

2 EP1_IN WC 0x0

1 EP0_OUT WC 0x0

0 EP0_IN WC 0x0

USB: EP_STALL_ARM Register

Offset: 0x68

Description

Device: this bit must be set in conjunction with the STALL bit in the buffer control register to send a STALL on EP0.

The device controller clears these bits when a SETUP packet is received because the USB spec requires that a

STALL condition is cleared when a SETUP packet is received.

RP2040 Datasheet

4.1. USB 407

Table 410.

EP_STALL_ARM

Register

Bits Name Description Type Reset

31:2 Reserved. - - -

1 EP0_OUT RW 0x0

0 EP0_IN RW 0x0

USB: NAK_POLL Register

Offset: 0x6c

Description

Used by the host controller. Sets the wait time in microseconds before trying again if the device replies with a NAK.

Table 411. NAK_POLL

Register
Bits Name Description Type Reset

31:26 Reserved. - - -

25:16 DELAY_FS NAK polling interval for a full speed device RW 0x010

15:10 Reserved. - - -

9:0 DELAY_LS NAK polling interval for a low speed device RW 0x010

USB: EP_STATUS_STALL_NAK Register

Offset: 0x70

Description

Device: bits are set when the IRQ_ON_NAK or IRQ_ON_STALL bits are set. For EP0 this comes from SIE_CTRL. For all other

endpoints it comes from the endpoint control register.

Table 412.

EP_STATUS_STALL_N

AK Register

Bits Name Description Type Reset

31 EP15_OUT WC 0x0

30 EP15_IN WC 0x0

29 EP14_OUT WC 0x0

28 EP14_IN WC 0x0

27 EP13_OUT WC 0x0

26 EP13_IN WC 0x0

25 EP12_OUT WC 0x0

24 EP12_IN WC 0x0

23 EP11_OUT WC 0x0

22 EP11_IN WC 0x0

21 EP10_OUT WC 0x0

20 EP10_IN WC 0x0

19 EP9_OUT WC 0x0

18 EP9_IN WC 0x0

17 EP8_OUT WC 0x0

16 EP8_IN WC 0x0

15 EP7_OUT WC 0x0

RP2040 Datasheet

4.1. USB 408

Bits Name Description Type Reset

14 EP7_IN WC 0x0

13 EP6_OUT WC 0x0

12 EP6_IN WC 0x0

11 EP5_OUT WC 0x0

10 EP5_IN WC 0x0

9 EP4_OUT WC 0x0

8 EP4_IN WC 0x0

7 EP3_OUT WC 0x0

6 EP3_IN WC 0x0

5 EP2_OUT WC 0x0

4 EP2_IN WC 0x0

3 EP1_OUT WC 0x0

2 EP1_IN WC 0x0

1 EP0_OUT WC 0x0

0 EP0_IN WC 0x0

USB: USB_MUXING Register

Offset: 0x74

Description

Where to connect the USB controller. Should be to_phy by default.

Table 413.

USB_MUXING Register
Bits Name Description Type Reset

31:4 Reserved. - - -

3 SOFTCON RW 0x0

2 TO_DIGITAL_PAD RW 0x0

1 TO_EXTPHY RW 0x0

0 TO_PHY RW 0x0

USB: USB_PWR Register

Offset: 0x78

Description

Overrides for the power signals in the event that the VBUS signals are not hooked up to GPIO. Set the value of the

override and then the override enable to switch over to the override value.

Table 414. USB_PWR

Register
Bits Name Description Type Reset

31:6 Reserved. - - -

5 OVERCURR_DETECT_EN RW 0x0

4 OVERCURR_DETECT RW 0x0

3 VBUS_DETECT_OVERRIDE_EN RW 0x0

RP2040 Datasheet

4.1. USB 409

Bits Name Description Type Reset

2 VBUS_DETECT RW 0x0

1 VBUS_EN_OVERRIDE_EN RW 0x0

0 VBUS_EN RW 0x0

USB: USBPHY_DIRECT Register

Offset: 0x7c

Description

This register allows for direct control of the USB phy. Use in conjunction with usbphy_direct_override register to

enable each override bit.

Table 415.

USBPHY_DIRECT

Register

Bits Name Description Type Reset

31:23 Reserved. - - -

22 DM_OVV DM over voltage RO 0x0

21 DP_OVV DP over voltage RO 0x0

20 DM_OVCN DM overcurrent RO 0x0

19 DP_OVCN DP overcurrent RO 0x0

18 RX_DM DPM pin state RO 0x0

17 RX_DP DPP pin state RO 0x0

16 RX_DD Differential RX RO 0x0

15 TX_DIFFMODE TX_DIFFMODE=0: Single ended mode

TX_DIFFMODE=1: Differential drive mode (TX_DM,

TX_DM_OE ignored)

RW 0x0

14 TX_FSSLEW TX_FSSLEW=0: Low speed slew rate

TX_FSSLEW=1: Full speed slew rate

RW 0x0

13 TX_PD TX power down override (if override enable is set). 1 =

powered down.

RW 0x0

12 RX_PD RX power down override (if override enable is set). 1 =

powered down.

RW 0x0

11 TX_DM Output data. TX_DIFFMODE=1, Ignored

TX_DIFFMODE=0, Drives DPM only. TX_DM_OE=1 to

enable drive. DPM=TX_DM

RW 0x0

10 TX_DP Output data. If TX_DIFFMODE=1, Drives DPP/DPM diff

pair. TX_DP_OE=1 to enable drive. DPP=TX_DP,

DPM=~TX_DP

If TX_DIFFMODE=0, Drives DPP only. TX_DP_OE=1 to

enable drive. DPP=TX_DP

RW 0x0

9 TX_DM_OE Output enable. If TX_DIFFMODE=1, Ignored.

If TX_DIFFMODE=0, OE for DPM only. 0 - DPM in Hi-Z

state; 1 - DPM driving

RW 0x0

8 TX_DP_OE Output enable. If TX_DIFFMODE=1, OE for DPP/DPM diff

pair. 0 - DPP/DPM in Hi-Z state; 1 - DPP/DPM driving

If TX_DIFFMODE=0, OE for DPP only. 0 - DPP in Hi-Z state;

1 - DPP driving

RW 0x0

RP2040 Datasheet

4.1. USB 410

Bits Name Description Type Reset

7 Reserved. - - -

6 DM_PULLDN_EN DM pull down enable RW 0x0

5 DM_PULLUP_EN DM pull up enable RW 0x0

4 DM_PULLUP_HISE

L

Enable the second DM pull up resistor. 0 - Pull = Rpu2; 1 -

Pull = Rpu1 + Rpu2

RW 0x0

3 Reserved. - - -

2 DP_PULLDN_EN DP pull down enable RW 0x0

1 DP_PULLUP_EN DP pull up enable RW 0x0

0 DP_PULLUP_HISE

L

Enable the second DP pull up resistor. 0 - Pull = Rpu2; 1 -

Pull = Rpu1 + Rpu2

RW 0x0

USB: USBPHY_DIRECT_OVERRIDE Register

Offset: 0x80

Description

Override enable for each control in usbphy_direct

Table 416.

USBPHY_DIRECT_OVE

RRIDE Register

Bits Name Description Type Reset

31:16 Reserved. - - -

15 TX_DIFFMODE_OVERRIDE_EN RW 0x0

14:13 Reserved. - - -

12 DM_PULLUP_OVERRIDE_EN RW 0x0

11 TX_FSSLEW_OVERRIDE_EN RW 0x0

10 TX_PD_OVERRIDE_EN RW 0x0

9 RX_PD_OVERRIDE_EN RW 0x0

8 TX_DM_OVERRIDE_EN RW 0x0

7 TX_DP_OVERRIDE_EN RW 0x0

6 TX_DM_OE_OVERRIDE_EN RW 0x0

5 TX_DP_OE_OVERRIDE_EN RW 0x0

4 DM_PULLDN_EN_OVERRIDE_EN RW 0x0

3 DP_PULLDN_EN_OVERRIDE_EN RW 0x0

2 DP_PULLUP_EN_OVERRIDE_EN RW 0x0

1 DM_PULLUP_HISEL_OVERRIDE_EN RW 0x0

0 DP_PULLUP_HISEL_OVERRIDE_EN RW 0x0

USB: USBPHY_TRIM Register

Offset: 0x84

Description

Used to adjust trim values of USB phy pull down resistors.

RP2040 Datasheet

4.1. USB 411

Table 417.

USBPHY_TRIM

Register

Bits Name Description Type Reset

31:13 Reserved. - - -

12:8 DM_PULLDN_TRI

M

Value to drive to USB PHY

DM pulldown resistor trim control

Experimental data suggests that the reset value will work,

but this register allows adjustment if required

RW 0x1f

7:5 Reserved. - - -

4:0 DP_PULLDN_TRI

M

Value to drive to USB PHY

DP pulldown resistor trim control

Experimental data suggests that the reset value will work,

but this register allows adjustment if required

RW 0x1f

USB: INTR Register

Offset: 0x8c

Description

Raw Interrupts

Table 418. INTR

Register
Bits Name Description Type Reset

31:20 Reserved. - - -

19 EP_STALL_NAK Raised when any bit in EP_STATUS_STALL_NAK is set.

Clear by clearing all bits in EP_STATUS_STALL_NAK.

RO 0x0

18 ABORT_DONE Raised when any bit in ABORT_DONE is set. Clear by

clearing all bits in ABORT_DONE.

RO 0x0

17 DEV_SOF Set every time the device receives a SOF (Start of Frame)

packet. Cleared by reading SOF_RD

RO 0x0

16 SETUP_REQ Device. Source: SIE_STATUS.SETUP_REC RO 0x0

15 DEV_RESUME_FR

OM_HOST

Set when the device receives a resume from the host.

Cleared by writing to SIE_STATUS.RESUME

RO 0x0

14 DEV_SUSPEND Set when the device suspend state changes. Cleared by

writing to SIE_STATUS.SUSPENDED

RO 0x0

13 DEV_CONN_DIS Set when the device connection state changes. Cleared by

writing to SIE_STATUS.CONNECTED

RO 0x0

12 BUS_RESET Source: SIE_STATUS.BUS_RESET RO 0x0

11 VBUS_DETECT Source: SIE_STATUS.VBUS_DETECTED RO 0x0

10 STALL Source: SIE_STATUS.STALL_REC RO 0x0

9 ERROR_CRC Source: SIE_STATUS.CRC_ERROR RO 0x0

8 ERROR_BIT_STUF

F

Source: SIE_STATUS.BIT_STUFF_ERROR RO 0x0

7 ERROR_RX_OVER

FLOW

Source: SIE_STATUS.RX_OVERFLOW RO 0x0

6 ERROR_RX_TIME

OUT

Source: SIE_STATUS.RX_TIMEOUT RO 0x0

5 ERROR_DATA_SE

Q

Source: SIE_STATUS.DATA_SEQ_ERROR RO 0x0

RP2040 Datasheet

4.1. USB 412

Bits Name Description Type Reset

4 BUFF_STATUS Raised when any bit in BUFF_STATUS is set. Clear by

clearing all bits in BUFF_STATUS.

RO 0x0

3 TRANS_COMPLET

E

Raised every time SIE_STATUS.TRANS_COMPLETE is set.

Clear by writing to this bit.

RO 0x0

2 HOST_SOF Host: raised every time the host sends a SOF (Start of

Frame). Cleared by reading SOF_RD

RO 0x0

1 HOST_RESUME Host: raised when a device wakes up the host. Cleared by

writing to SIE_STATUS.RESUME

RO 0x0

0 HOST_CONN_DIS Host: raised when a device is connected or disconnected

(i.e. when SIE_STATUS.SPEED changes). Cleared by

writing to SIE_STATUS.SPEED

RO 0x0

USB: INTE Register

Offset: 0x90

Description

Interrupt Enable

Table 419. INTE

Register
Bits Name Description Type Reset

31:20 Reserved. - - -

19 EP_STALL_NAK Raised when any bit in EP_STATUS_STALL_NAK is set.

Clear by clearing all bits in EP_STATUS_STALL_NAK.

RW 0x0

18 ABORT_DONE Raised when any bit in ABORT_DONE is set. Clear by

clearing all bits in ABORT_DONE.

RW 0x0

17 DEV_SOF Set every time the device receives a SOF (Start of Frame)

packet. Cleared by reading SOF_RD

RW 0x0

16 SETUP_REQ Device. Source: SIE_STATUS.SETUP_REC RW 0x0

15 DEV_RESUME_FR

OM_HOST

Set when the device receives a resume from the host.

Cleared by writing to SIE_STATUS.RESUME

RW 0x0

14 DEV_SUSPEND Set when the device suspend state changes. Cleared by

writing to SIE_STATUS.SUSPENDED

RW 0x0

13 DEV_CONN_DIS Set when the device connection state changes. Cleared by

writing to SIE_STATUS.CONNECTED

RW 0x0

12 BUS_RESET Source: SIE_STATUS.BUS_RESET RW 0x0

11 VBUS_DETECT Source: SIE_STATUS.VBUS_DETECTED RW 0x0

10 STALL Source: SIE_STATUS.STALL_REC RW 0x0

9 ERROR_CRC Source: SIE_STATUS.CRC_ERROR RW 0x0

8 ERROR_BIT_STUF

F

Source: SIE_STATUS.BIT_STUFF_ERROR RW 0x0

7 ERROR_RX_OVER

FLOW

Source: SIE_STATUS.RX_OVERFLOW RW 0x0

6 ERROR_RX_TIME

OUT

Source: SIE_STATUS.RX_TIMEOUT RW 0x0

RP2040 Datasheet

4.1. USB 413

Bits Name Description Type Reset

5 ERROR_DATA_SE

Q

Source: SIE_STATUS.DATA_SEQ_ERROR RW 0x0

4 BUFF_STATUS Raised when any bit in BUFF_STATUS is set. Clear by

clearing all bits in BUFF_STATUS.

RW 0x0

3 TRANS_COMPLET

E

Raised every time SIE_STATUS.TRANS_COMPLETE is set.

Clear by writing to this bit.

RW 0x0

2 HOST_SOF Host: raised every time the host sends a SOF (Start of

Frame). Cleared by reading SOF_RD

RW 0x0

1 HOST_RESUME Host: raised when a device wakes up the host. Cleared by

writing to SIE_STATUS.RESUME

RW 0x0

0 HOST_CONN_DIS Host: raised when a device is connected or disconnected

(i.e. when SIE_STATUS.SPEED changes). Cleared by

writing to SIE_STATUS.SPEED

RW 0x0

USB: INTF Register

Offset: 0x94

Description

Interrupt Force

Table 420. INTF

Register
Bits Name Description Type Reset

31:20 Reserved. - - -

19 EP_STALL_NAK Raised when any bit in EP_STATUS_STALL_NAK is set.

Clear by clearing all bits in EP_STATUS_STALL_NAK.

RW 0x0

18 ABORT_DONE Raised when any bit in ABORT_DONE is set. Clear by

clearing all bits in ABORT_DONE.

RW 0x0

17 DEV_SOF Set every time the device receives a SOF (Start of Frame)

packet. Cleared by reading SOF_RD

RW 0x0

16 SETUP_REQ Device. Source: SIE_STATUS.SETUP_REC RW 0x0

15 DEV_RESUME_FR

OM_HOST

Set when the device receives a resume from the host.

Cleared by writing to SIE_STATUS.RESUME

RW 0x0

14 DEV_SUSPEND Set when the device suspend state changes. Cleared by

writing to SIE_STATUS.SUSPENDED

RW 0x0

13 DEV_CONN_DIS Set when the device connection state changes. Cleared by

writing to SIE_STATUS.CONNECTED

RW 0x0

12 BUS_RESET Source: SIE_STATUS.BUS_RESET RW 0x0

11 VBUS_DETECT Source: SIE_STATUS.VBUS_DETECTED RW 0x0

10 STALL Source: SIE_STATUS.STALL_REC RW 0x0

9 ERROR_CRC Source: SIE_STATUS.CRC_ERROR RW 0x0

8 ERROR_BIT_STUF

F

Source: SIE_STATUS.BIT_STUFF_ERROR RW 0x0

7 ERROR_RX_OVER

FLOW

Source: SIE_STATUS.RX_OVERFLOW RW 0x0

RP2040 Datasheet

4.1. USB 414

Bits Name Description Type Reset

6 ERROR_RX_TIME

OUT

Source: SIE_STATUS.RX_TIMEOUT RW 0x0

5 ERROR_DATA_SE

Q

Source: SIE_STATUS.DATA_SEQ_ERROR RW 0x0

4 BUFF_STATUS Raised when any bit in BUFF_STATUS is set. Clear by

clearing all bits in BUFF_STATUS.

RW 0x0

3 TRANS_COMPLET

E

Raised every time SIE_STATUS.TRANS_COMPLETE is set.

Clear by writing to this bit.

RW 0x0

2 HOST_SOF Host: raised every time the host sends a SOF (Start of

Frame). Cleared by reading SOF_RD

RW 0x0

1 HOST_RESUME Host: raised when a device wakes up the host. Cleared by

writing to SIE_STATUS.RESUME

RW 0x0

0 HOST_CONN_DIS Host: raised when a device is connected or disconnected

(i.e. when SIE_STATUS.SPEED changes). Cleared by

writing to SIE_STATUS.SPEED

RW 0x0

USB: INTS Register

Offset: 0x98

Description

Interrupt status after masking & forcing

Table 421. INTS

Register
Bits Name Description Type Reset

31:20 Reserved. - - -

19 EP_STALL_NAK Raised when any bit in EP_STATUS_STALL_NAK is set.

Clear by clearing all bits in EP_STATUS_STALL_NAK.

RO 0x0

18 ABORT_DONE Raised when any bit in ABORT_DONE is set. Clear by

clearing all bits in ABORT_DONE.

RO 0x0

17 DEV_SOF Set every time the device receives a SOF (Start of Frame)

packet. Cleared by reading SOF_RD

RO 0x0

16 SETUP_REQ Device. Source: SIE_STATUS.SETUP_REC RO 0x0

15 DEV_RESUME_FR

OM_HOST

Set when the device receives a resume from the host.

Cleared by writing to SIE_STATUS.RESUME

RO 0x0

14 DEV_SUSPEND Set when the device suspend state changes. Cleared by

writing to SIE_STATUS.SUSPENDED

RO 0x0

13 DEV_CONN_DIS Set when the device connection state changes. Cleared by

writing to SIE_STATUS.CONNECTED

RO 0x0

12 BUS_RESET Source: SIE_STATUS.BUS_RESET RO 0x0

11 VBUS_DETECT Source: SIE_STATUS.VBUS_DETECTED RO 0x0

10 STALL Source: SIE_STATUS.STALL_REC RO 0x0

9 ERROR_CRC Source: SIE_STATUS.CRC_ERROR RO 0x0

8 ERROR_BIT_STUF

F

Source: SIE_STATUS.BIT_STUFF_ERROR RO 0x0

RP2040 Datasheet

4.1. USB 415

Bits Name Description Type Reset

7 ERROR_RX_OVER

FLOW

Source: SIE_STATUS.RX_OVERFLOW RO 0x0

6 ERROR_RX_TIME

OUT

Source: SIE_STATUS.RX_TIMEOUT RO 0x0

5 ERROR_DATA_SE

Q

Source: SIE_STATUS.DATA_SEQ_ERROR RO 0x0

4 BUFF_STATUS Raised when any bit in BUFF_STATUS is set. Clear by

clearing all bits in BUFF_STATUS.

RO 0x0

3 TRANS_COMPLET

E

Raised every time SIE_STATUS.TRANS_COMPLETE is set.

Clear by writing to this bit.

RO 0x0

2 HOST_SOF Host: raised every time the host sends a SOF (Start of

Frame). Cleared by reading SOF_RD

RO 0x0

1 HOST_RESUME Host: raised when a device wakes up the host. Cleared by

writing to SIE_STATUS.RESUME

RO 0x0

0 HOST_CONN_DIS Host: raised when a device is connected or disconnected

(i.e. when SIE_STATUS.SPEED changes). Cleared by

writing to SIE_STATUS.SPEED

RO 0x0

References

▪ http://www.usbmadesimple.co.uk/

▪ https://www.usb.org/document-library/usb-20-specification

4.2. UART

ARM Documentation

Excerpted from the PrimeCell UART (PL011) Technical Reference Manual. Used with permission.

RP2040 has 2 identical instances of a UART peripheral, based on the ARM Primecell UART (PL011) (Revision r1p5).

Each instance supports the following features:

• Separate 32×8 Tx and 32×12 Rx FIFOs

• Programmable baud rate generator, clocked by clk_peri (see Section 2.15.1)

• Standard asynchronous communication bits (start, stop, parity) added on transmit and removed on receive

• line break detection

• programmable serial interface (5, 6, 7, or 8 bits)

• 1 or 2 stop bits

• programmable hardware flow control

Each UART can be connected to a number of GPIO pins as defined in the GPIO muxing table in Section 2.19.2.

Connections to the GPIO muxing are prefixed with the UART instance name uart0_ or uart1_, and include the following:

• Transmit data tx (referred to as UARTTXD in the following sections)

RP2040 Datasheet

4.2. UART 416

http://www.usbmadesimple.co.uk/
https://www.usb.org/document-library/usb-20-specification
https://developer.arm.com/documentation/ddi0183/latest/

• Received data rx (referred to as UARTRXD in the following sections)

• Output flow control rts (referred to as nUARTRTS in the following sections)

• Input flow control cts (referred to as nUARTCTS in the following sections)

The modem mode and IrDA mode of the PL011 are not supported.

The UARTCLK is driven from clk_peri, and PCLK is driven from the system clock clk_sys (see Section 2.15.1).

4.2.1. Overview

The UART performs:

• Serial-to-parallel conversion on data received from a peripheral device

• Parallel-to-serial conversion on data transmitted to the peripheral device.

The CPU reads and writes data and control/status information through the AMBA APB interface. The transmit and

receive paths are buffered with internal FIFO memories enabling up to 32-bytes to be stored independently in both

transmit and receive modes.

The UART:

• Includes a programmable baud rate generator that generates a common transmit and receive internal clock from

the UART internal reference clock input, UARTCLK

• Offers similar functionality to the industry-standard 16C650 UART device

• Supports a maximum baud rate of UARTCLK / 16 in UART mode (7.8 Mbaud at 125MHz)

The UART operation and baud rate values are controlled by the Line Control Register, UARTLCR_H and the baud rate

divisor registers (Integer Baud Rate Register, UARTIBRD and Fractional Baud Rate Register, UARTFBRD).

The UART can generate:

• Individually-maskable interrupts from the receive (including timeout), transmit, modem status and error conditions

• A single combined interrupt so that the output is asserted if any of the individual interrupts are asserted, and

unmasked

• DMA request signals for interfacing with a Direct Memory Access (DMA) controller.

If a framing, parity, or break error occurs during reception, the appropriate error bit is set, and is stored in the FIFO. If an

overrun condition occurs, the overrun register bit is set immediately and FIFO data is prevented from being overwritten.

You can program the FIFOs to be 1-byte deep providing a conventional double-buffered UART interface.

There is a programmable hardware flow control feature that uses the nUARTCTS input and the nUARTRTS output to

automatically control the serial data flow.

4.2.2. Functional description

RP2040 Datasheet

4.2. UART 417

Figure 59. UART block

diagram. Test logic is

not shown for clarity.

4.2.2.1. AMBA APB interface

The AMBA APB interface generates read and write decodes for accesses to status/control registers, and the transmit

and receive FIFOs.

4.2.2.2. Register block

The register block stores data written, or to be read across the AMBA APB interface.

4.2.2.3. Baud rate generator

The baud rate generator contains free-running counters that generate the internal clocks: Baud16 and IrLPBaud16

signals. Baud16 provides timing information for UART transmit and receive control. Baud16 is a stream of pulses with a

width of one UARTCLK clock period and a frequency of 16 times the baud rate.

4.2.2.4. Transmit FIFO

The transmit FIFO is an 8-bit wide, 32 location deep, FIFO memory buffer. CPU data written across the APB interface is

stored in the FIFO until read out by the transmit logic. You can disable the transmit FIFO to act like a one-byte holding

register.

4.2.2.5. Receive FIFO

The receive FIFO is a 12-bit wide, 32 location deep, FIFO memory buffer. Received data and corresponding error bits, are

stored in the receive FIFO by the receive logic until read out by the CPU across the APB interface. The receive FIFO can

RP2040 Datasheet

4.2. UART 418

be disabled to act like a one-byte holding register.

4.2.2.6. Transmit logic

The transmit logic performs parallel-to-serial conversion on the data read from the transmit FIFO. Control logic outputs

the serial bit stream beginning with a start bit, data bits with the Least Significant Bit (LSB) first, followed by the parity

bit, and then the stop bits according to the programmed configuration in control registers.

4.2.2.7. Receive logic

The receive logic performs serial-to-parallel conversion on the received bit stream after a valid start pulse has been

detected. Overrun, parity, frame error checking, and line break detection are also performed, and their status

accompanies the data that is written to the receive FIFO.

4.2.2.8. Interrupt generation logic

Individual maskable active HIGH interrupts are generated by the UART. A combined interrupt output is generated as an

OR function of the individual interrupt requests and is connected to the processor interrupt controllers.

See Section 4.2.6 for more information.

4.2.2.9. DMA interface

The UART provides an interface to connect to the DMA controller as UART DMA interface in Section 4.2.5 describes.

4.2.2.10. Synchronizing registers and logic

The UART supports both asynchronous and synchronous operation of the clocks, PCLK and UARTCLK. Synchronization

registers and handshaking logic have been implemented, and are active at all times. This has a minimal impact on

performance or area. Synchronization of control signals is performed on both directions of data flow, that is from the

PCLK to the UARTCLK domain, and from the UARTCLK to the PCLK domain.

4.2.3. Operation

4.2.3.1. Clock signals

The frequency selected for UARTCLK must accommodate the required range of baud rates:

• FUARTCLK (min) ≥ 16 × baud_rate(max)

• FUARTCLK(max) ≤ 16 × 65535 × baud_rate(min)

For example, for a range of baud rates from 110 baud to 460800 baud the UARTCLK frequency must be between

7.3728MHz to 115.34MHz.

The frequency of UARTCLK must also be within the required error limits for all baud rates to be used.

There is also a constraint on the ratio of clock frequencies for PCLK to UARTCLK. The frequency of UARTCLK must be

no more than 5/3 times faster than the frequency of PCLK:

• FUARTCLK ≤ 5/3 × FPCLK

RP2040 Datasheet

4.2. UART 419

For example, in UART mode, to generate 921600 baud when UARTCLK is 14.7456MHz then PCLK must be greater than

or equal to 8.85276MHz. This ensures that the UART has sufficient time to write the received data to the receive FIFO.

4.2.3.2. UART operation

Control data is written to the UART Line Control Register, UARTLCR. This register is 30-bits wide internally, but is

externally accessed through the APB interface by writes to the following registers:

The UARTLCR_H register defines the:

• transmission parameters

• word length

• buffer mode

• number of transmitted stop bits

• parity mode

• break generation.

The UARTIBRD register defines the integer baud rate divider, and the UARTFBRD register defines the fractional baud

rate divider.

4.2.3.2.1. Fractional baud rate divider

The baud rate divisor is a 22-bit number consisting of a 16-bit integer and a 6-bit fractional part. This is used by the

baud rate generator to determine the bit period. The fractional baud rate divider enables the use of any clock with a

frequency >3.6864MHz to act as UARTCLK, while it is still possible to generate all the standard baud rates.

The 16-bit integer is written to the Integer Baud Rate Register, UARTIBRD. The 6-bit fractional part is written to the

Fractional Baud Rate Register, UARTFBRD. The Baud Rate Divisor has the following relationship to UARTCLK:

Baud Rate Divisor = UARTCLK/(16×Baud Rate) = where is the integer part and is the

fractional part separated by a decimal point as Figure 60.

Figure 60. Baud rate

divisor.

You can calculate the 6-bit number () by taking the fractional part of the required baud rate divisor and multiplying it by

64 (that is, , where is the width of the UARTFBRD Register) and adding 0.5 to account for rounding errors:

An internal clock enable signal, Baud16, is generated, and is a stream of one UARTCLK wide pulses with an average

frequency of 16 times the required baud rate. This signal is then divided by 16 to give the transmit clock. A low number

in the baud rate divisor gives a short bit period, and a high number in the baud rate divisor gives a long bit period.

4.2.3.2.2. Data transmission or reception

Data received or transmitted is stored in two 32-byte FIFOs, though the receive FIFO has an extra four bits per character

for status information. For transmission, data is written into the transmit FIFO. If the UART is enabled, it causes a data

frame to start transmitting with the parameters indicated in the Line Control Register, UARTLCR_H. Data continues to be

transmitted until there is no data left in the transmit FIFO. The BUSY signal goes HIGH as soon as data is written to the

transmit FIFO (that is, the FIFO is non-empty) and remains asserted HIGH while data is being transmitted. BUSY is

negated only when the transmit FIFO is empty, and the last character has been transmitted from the shift register,

including the stop bits. BUSY can be asserted HIGH even though the UART might no longer be enabled.

RP2040 Datasheet

4.2. UART 420

For each sample of data, three readings are taken and the majority value is kept. In the following paragraphs the middle

sampling point is defined, and one sample is taken either side of it.

When the receiver is idle (UARTRXD continuously 1, in the marking state) and a LOW is detected on the data input (a

start bit has been received), the receive counter, with the clock enabled by Baud16, begins running and data is sampled

on the eighth cycle of that counter in UART mode, or the fourth cycle of the counter in SIR mode to allow for the shorter

logic 0 pulses (half way through a bit period).

The start bit is valid if UARTRXD is still LOW on the eighth cycle of Baud16, otherwise a false start bit is detected and it

is ignored.

If the start bit was valid, successive data bits are sampled on every 16th cycle of Baud16 (that is, one bit period later)

according to the programmed length of the data characters. The parity bit is then checked if parity mode was enabled.

Lastly, a valid stop bit is confirmed if UARTRXD is HIGH, otherwise a framing error has occurred. When a full word is

received, the data is stored in the receive FIFO, with any error bits associated with that word

4.2.3.2.3. Error bits

Three error bits are stored in bits [10:8] of the receive FIFO, and are associated with a particular character. There is an

additional error that indicates an overrun error and this is stored in bit 11 of the receive FIFO.

4.2.3.2.4. Overrun bit

The overrun bit is not associated with the character in the receive FIFO. The overrun error is set when the FIFO is full,

and the next character is completely received in the shift register. The data in the shift register is overwritten, but it is

not written into the FIFO. When an empty location is available in the receive FIFO, and another character is received, the

state of the overrun bit is copied into the receive FIFO along with the received character. The overrun state is then

cleared. Table 422 lists the bit functions of the receive FIFO.

Table 422. Receive

FIFO bit functions
FIFO bit Function

11 Overrun indicator

10 Break error

9 Parity error

8 Framing error

7:0 Received data

4.2.3.2.5. Disabling the FIFOs

Additionally, you can disable the FIFOs. In this case, the transmit and receive sides of the UART have 1-byte holding

registers (the bottom entry of the FIFOs). The overrun bit is set when a word has been received, and the previous one

was not yet read. In this implementation, the FIFOs are not physically disabled, but the flags are manipulated to give the

illusion of a 1-byte register. When the FIFOs are disabled, a write to the data register bypasses the holding register

unless the transmit shift register is already in use.

4.2.3.2.6. System and diagnostic loopback testing

You can perform loopback testing for UART data by setting the Loop Back Enable (LBE) bit to 1 in the Control Register,

UARTCR.

Data transmitted on UARTTXD is received on the UARTRXD input.

RP2040 Datasheet

4.2. UART 421

4.2.3.3. UART character frame

Figure 61. UART

character frame.

4.2.4. UART hardware flow control

The hardware flow control feature is fully selectable, and enables you to control the serial data flow by using the

nUARTRTS output and nUARTCTS input signals. Figure 62 shows how two devices can communicate with each other

using hardware flow control.

Figure 62. Hardware

flow control between

two similar devices.

When the RTS flow control is enabled, nUARTRTS is asserted until the receive FIFO is filled up to the programmed

watermark level. When the CTS flow control is enabled, the transmitter can only transmit data when nUARTCTS is

asserted.

The hardware flow control is selectable using the RTSEn and CTSEn bits in the Control Register, UARTCR. Table 423

lists how you must set the bits to enable RTS and CTS flow control both simultaneously, and independently.

Table 423. Control bits

to enable and disable

hardware flow control.

UARTCR Register bits

CTSEn RTSEn Description

1 1 Both RTS and CTS flow control

enabled

1 0 Only CTS flow control enabled

0 1 Only RTS flow control enabled

0 0 Both RTS and CTS flow control

disabled

 NOTE

When RTS flow control is enabled, the software cannot use the RTSEn bit in the Control Register, UARTCR, to control

the status of nUARTRTS.

4.2.4.1. RTS flow control

The RTS flow control logic is linked to the programmable receive FIFO watermark levels. When RTS flow control is

enabled, the nUARTRTS is asserted until the receive FIFO is filled up to the watermark level. When the receive FIFO

watermark level is reached, the nUARTRTS signal is deasserted, indicating that there is no more room to receive any

more data. The transmission of data is expected to cease after the current character has been transmitted.

RP2040 Datasheet

4.2. UART 422

The nUARTRTS signal is reasserted when data has been read out of the receive FIFO so that it is filled to less than the

watermark level. If RTS flow control is disabled and the UART is still enabled, then data is received until the receive FIFO

is full, or no more data is transmitted to it.

4.2.4.2. CTS flow control

If CTS flow control is enabled, then the transmitter checks the nUARTCTS signal before transmitting the next byte. If the

nUARTCTS signal is asserted, it transmits the byte otherwise transmission does not occur.

The data continues to be transmitted while nUARTCTS is asserted, and the transmit FIFO is not empty. If the transmit

FIFO is empty and the nUARTCTS signal is asserted no data is transmitted.

If the nUARTCTS signal is deasserted and CTS flow control is enabled, then the current character transmission is

completed before stopping. If CTS flow control is disabled and the UART is enabled, then the data continues to be

transmitted until the transmit FIFO is empty.

4.2.5. UART DMA Interface

The UART provides an interface to connect to a DMA controller. The DMA operation of the UART is controlled using the

DMA Control Register, UARTDMACR. The DMA interface includes the following signals:

For receive:

UARTRXDMASREQ

Single character DMA transfer request, asserted by the UART. For receive, one character consists of up to 12 bits.

This signal is asserted when the receive FIFO contains at least one character.

UARTRXDMABREQ

Burst DMA transfer request, asserted by the UART. This signal is asserted when the receive FIFO contains more

characters than the programmed watermark level. You can program the watermark level for each FIFO using the

Interrupt FIFO Level Select Register, UARTIFLS

UARTRXDMACLR

DMA request clear, asserted by a DMA controller to clear the receive request signals. If DMA burst transfer is

requested, the clear signal is asserted during the transfer of the last data in the burst.

For transmit:

UARTTXDMASREQ

Single character DMA transfer request, asserted by the UART. For transmit one character consists of up to eight

bits. This signal is asserted when there is at least one empty location in the transmit FIFO.

UARTTXDMABREQ

Burst DMA transfer request, asserted by the UART. This signal is asserted when the transmit FIFO contains less

characters than the watermark level. You can program the watermark level for each FIFO using the Interrupt FIFO

Level Select Register, UARTIFLS.

UARTTXDMACLR

DMA request clear, asserted by a DMA controller to clear the transmit request signals. If DMA burst transfer is

requested, the clear signal is asserted during the transfer of the last data in the burst.

The burst transfer and single transfer request signals are not mutually exclusive, they can both be asserted at the same

time. For example, when there is more data than the watermark level in the receive FIFO, the burst transfer request and

the single transfer request are asserted. When the amount of data left in the receive FIFO is less than the watermark

level, the single request only is asserted. This is useful for situations where the number of characters left to be received

in the stream is less than a burst.

For example, if 19 characters have to be received and the watermark level is programmed to be four. The DMA

RP2040 Datasheet

4.2. UART 423

controller then transfers four bursts of four characters and three single transfers to complete the stream.

 NOTE

For the remaining three characters the UART cannot assert the burst request.

Each request signal remains asserted until the relevant DMACLR signal is asserted. After the request clear signal is

deasserted, a request signal can become active again, depending on the conditions described previously. All request

signals are deasserted if the UART is disabled or the relevant DMA enable bit, TXDMAE or RXDMAE, in the DMA Control

Register, UARTDMACR, is cleared.

If you disable the FIFOs in the UART then it operates in character mode and only the DMA single transfer mode can

operate, because only one character can be transferred to, or from the FIFOs at any time. UARTRXDMASREQ and

UARTTXDMASREQ are the only request signals that can be asserted. See the Line Control Register, UARTLCR_H, for

information about disabling the FIFOs.

When the UART is in the FIFO enabled mode, data transfers can be made by either single or burst transfers depending

on the programmed watermark level and the amount of data in the FIFO. Table 424 lists the trigger points for

UARTRXDMABREQ and UARTTXDMABREQ depending on the watermark level, for the transmit and receive FIFOs.

Table 424. DMA

trigger points for the

transmit and receive

FIFOs.

Watermark level Burst length

Transmit (number of empty

locations)

Receive (number of filled locations)

1/8 28 4

1/4 24 8

1/2 16 16

3/4 8 24

7/8 4 28

In addition, the DMAONERR bit in the DMA Control Register, UARTDMACR, supports the use of the receive error

interrupt, UARTEINTR. It enables the DMA receive request outputs, UARTRXDMASREQ or UARTRXDMABREQ, to be

masked out when the UART error interrupt, UARTEINTR, is asserted. The DMA receive request outputs remain inactive

until the UARTEINTR is cleared. The DMA transmit request outputs are unaffected.

Figure 63. DMA

transfer waveforms.

Figure 63 shows the timing diagram for both a single transfer request and a burst transfer request with the appropriate

DMACLR signal. The signals are all synchronous to PCLK. For the sake of clarity it is assumed that there is no

synchronization of the request signals in the DMA controller.

4.2.6. Interrupts

There are eleven maskable interrupts generated in the UART. On RP2040, only the combined interrupt output, UARTINTR, is

connected.

You can enable or disable the individual interrupts by changing the mask bits in the Interrupt Mask Set/Clear Register,

UARTIMSC. Setting the appropriate mask bit HIGH enables the interrupt.

Provision of individual outputs and the combined interrupt output, enables you to use either a global interrupt service

routine, or modular device drivers to handle interrupts.

The transmit and receive dataflow interrupts UARTRXINTR and UARTTXINTR have been separated from the status

RP2040 Datasheet

4.2. UART 424

interrupts. This enables you to use UARTRXINTR and UARTTXINTR so that data can be read or written in response to

the FIFO trigger levels.

The error interrupt, UARTEINTR, can be triggered when there is an error in the reception of data. A number of error

conditions are possible.

The modem status interrupt, UARTMSINTR, is a combined interrupt of all the individual modem status signals.

The status of the individual interrupt sources can be read either from the Raw Interrupt Status Register, UARTRIS, or

from the Masked Interrupt Status Register, UARTMIS.

4.2.6.1. UARTMSINTR

The modem status interrupt is asserted if any of the modem status signals (nUARTCTS, nUARTDCD, nUARTDSR, and

nUARTRI) change. It is cleared by writing a 1 to the corresponding bit(s) in the Interrupt Clear Register, UARTICR,

depending on the modem status signals that generated the interrupt.

4.2.6.2. UARTRXINTR

The receive interrupt changes state when one of the following events occurs:

• If the FIFOs are enabled and the receive FIFO reaches the programmed trigger level. When this happens, the

receive interrupt is asserted HIGH. The receive interrupt is cleared by reading data from the receive FIFO until it

becomes less than the trigger level, or by clearing the interrupt.

• If the FIFOs are disabled (have a depth of one location) and data is received thereby filling the location, the receive

interrupt is asserted HIGH. The receive interrupt is cleared by performing a single read of the receive FIFO, or by

clearing the interrupt.

4.2.6.3. UARTTXINTR

The transmit interrupt changes state when one of the following events occurs:

• If the FIFOs are enabled and the transmit FIFO is equal to or lower than the programmed trigger level then the

transmit interrupt is asserted HIGH. The transmit interrupt is cleared by writing data to the transmit FIFO until it

becomes greater than the trigger level, or by clearing the interrupt.

• If the FIFOs are disabled (have a depth of one location) and there is no data present in the transmitters single

location, the transmit interrupt is asserted HIGH. It is cleared by performing a single write to the transmit FIFO, or

by clearing the interrupt.

To update the transmit FIFO you must:

• Write data to the transmit FIFO, either prior to enabling the UART and the interrupts, or after enabling the UART and

interrupts.

 NOTE

The transmit interrupt is based on a transition through a level, rather than on the level itself. When the interrupt and

the UART is enabled before any data is written to the transmit FIFO the interrupt is not set. The interrupt is only set,

after written data leaves the single location of the transmit FIFO and it becomes empty.

4.2.6.4. UARTRTINTR

The receive timeout interrupt is asserted when the receive FIFO is not empty, and no more data is received during a 32-

bit period. The receive timeout interrupt is cleared either when the FIFO becomes empty through reading all the data (or

by reading the holding register), or when a 1 is written to the corresponding bit of the Interrupt Clear Register, UARTICR.

RP2040 Datasheet

4.2. UART 425

4.2.6.5. UARTEINTR

The error interrupt is asserted when an error occurs in the reception of data by the UART. The interrupt can be caused

by a number of different error conditions:

• framing

• parity

• break

• overrun.

You can determine the cause of the interrupt by reading the Raw Interrupt Status Register, UARTRIS, or the Masked

Interrupt Status Register, UARTMIS. It can be cleared by writing to the relevant bits of the Interrupt Clear Register,

UARTICR (bits 7 to 10 are the error clear bits).

4.2.6.6. UARTINTR

The interrupts are also combined into a single output, that is an OR function of the individual masked sources. You can

connect this output to a system interrupt controller to provide another level of masking on a individual peripheral basis.

The combined UART interrupt is asserted if any of the individual interrupts are asserted and enabled.

4.2.7. Programmer’s Model

The SDK provides a uart_init function to configure the UART with a particular baud rate. Once the UART is initialised,

the user must configure a GPIO pin as UART_TX and UART_RX. See Section 2.19.5.1 for more information on selecting a

GPIO function.

To initialise the UART, the uart_init function takes the following steps:

• Deassert the reset

• Enable clk_peri

• Set enable bits in the control register

• Enable the FIFOs

• Set the baud rate divisors

• Set the format

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_uart/uart.c Lines 39 - 65

39 uint uart_init(uart_inst_t *uart, uint baudrate) {
40 invalid_params_if(UART, uart != uart0 && uart != uart1);
41
42 if (clock_get_hz(clk_peri) == 0) {
43 return 0;
44 }
45
46 uart_reset(uart);
47 uart_unreset(uart);
48
49 #if PICO_UART_ENABLE_CRLF_SUPPORT
50 uart_set_translate_crlf(uart, PICO_UART_DEFAULT_CRLF);
51 #endif
52
53 // Any LCR writes need to take place before enabling the UART
54 uint baud = uart_set_baudrate(uart, baudrate);
55 uart_set_format(uart, 8, 1, UART_PARITY_NONE);

RP2040 Datasheet

4.2. UART 426

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_uart/uart.c#L39-L65

56
57 // Enable FIFOs (must be before setting UARTEN, as this is an LCR access)
58 hw_set_bits(&uart_get_hw(uart)->lcr_h, UART_UARTLCR_H_FEN_BITS);
59 // Enable the UART, both TX and RX
60 uart_get_hw(uart)->cr = UART_UARTCR_UARTEN_BITS | UART_UARTCR_TXE_BITS |
 UART_UARTCR_RXE_BITS;
61 // Always enable DREQ signals -- no harm in this if DMA is not listening
62 uart_get_hw(uart)->dmacr = UART_UARTDMACR_TXDMAE_BITS | UART_UARTDMACR_RXDMAE_BITS;
63
64 return baud;
65 }

4.2.7.1. Baud Rate Calculation

The uart baud rate is derived from dividing clk_peri.

If the required baud rate is 115200 and UARTCLK = 125MHz then:

Baud Rate Divisor = (125 * 10^6)/(16 * 115200) ~= 67.817

Therefore, BRDI = 67 and BRDF = 0.817,

Therefore, fractional part, m = integer((0.817 * 64) + 0.5) = 52

Generated baud rate divider = 67 + 52/64 = 67.8125

Generated baud rate = (125 * 10^6)/(16 * 67.8125) ~= 115207

Error = (abs(115200 - 115207) / 115200) * 100 ~= 0.006%

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_uart/uart.c Lines 128 - 153

128 uint uart_set_baudrate(uart_inst_t *uart, uint baudrate) {
129 invalid_params_if(UART, baudrate == 0);
130 uint32_t baud_rate_div = (8 * clock_get_hz(clk_peri) / baudrate);
131 uint32_t baud_ibrd = baud_rate_div >> 7;
132 uint32_t baud_fbrd;
133
134 if (baud_ibrd == 0) {
135 baud_ibrd = 1;
136 baud_fbrd = 0;
137 } else if (baud_ibrd >= 65535) {
138 baud_ibrd = 65535;
139 baud_fbrd = 0;
140 } else {
141 baud_fbrd = ((baud_rate_div & 0x7f) + 1) / 2;
142 }
143
144 uart_get_hw(uart)->ibrd = baud_ibrd;
145 uart_get_hw(uart)->fbrd = baud_fbrd;
146
147 // PL011 needs a (dummy) LCR_H write to latch in the divisors.
148 // We don't want to actually change LCR_H contents here.
149 uart_write_lcr_bits_masked(uart, 0, 0);
150
151 // See datasheet
152 return (4 * clock_get_hz(clk_peri)) / (64 * baud_ibrd + baud_fbrd);
153 }

RP2040 Datasheet

4.2. UART 427

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_uart/uart.c#L128-L153

4.2.8. List of Registers

The UART0 and UART1 registers start at base addresses of 0x40034000 and 0x40038000 respectively (defined as

UART0_BASE and UART1_BASE in SDK).

Table 425. List of

UART registers
Offset Name Info

0x000 UARTDR Data Register, UARTDR

0x004 UARTRSR Receive Status Register/Error Clear Register,

UARTRSR/UARTECR

0x018 UARTFR Flag Register, UARTFR

0x020 UARTILPR IrDA Low-Power Counter Register, UARTILPR

0x024 UARTIBRD Integer Baud Rate Register, UARTIBRD

0x028 UARTFBRD Fractional Baud Rate Register, UARTFBRD

0x02c UARTLCR_H Line Control Register, UARTLCR_H

0x030 UARTCR Control Register, UARTCR

0x034 UARTIFLS Interrupt FIFO Level Select Register, UARTIFLS

0x038 UARTIMSC Interrupt Mask Set/Clear Register, UARTIMSC

0x03c UARTRIS Raw Interrupt Status Register, UARTRIS

0x040 UARTMIS Masked Interrupt Status Register, UARTMIS

0x044 UARTICR Interrupt Clear Register, UARTICR

0x048 UARTDMACR DMA Control Register, UARTDMACR

0xfe0 UARTPERIPHID0 UARTPeriphID0 Register

0xfe4 UARTPERIPHID1 UARTPeriphID1 Register

0xfe8 UARTPERIPHID2 UARTPeriphID2 Register

0xfec UARTPERIPHID3 UARTPeriphID3 Register

0xff0 UARTPCELLID0 UARTPCellID0 Register

0xff4 UARTPCELLID1 UARTPCellID1 Register

0xff8 UARTPCELLID2 UARTPCellID2 Register

0xffc UARTPCELLID3 UARTPCellID3 Register

UART: UARTDR Register

Offset: 0x000

Description

Data Register, UARTDR

Table 426. UARTDR

Register
Bits Name Description Type Reset

31:12 Reserved. - - -

11 OE Overrun error. This bit is set to 1 if data is received and the

receive FIFO is already full. This is cleared to 0 once there

is an empty space in the FIFO and a new character can be

written to it.

RO -

RP2040 Datasheet

4.2. UART 428

Bits Name Description Type Reset

10 BE Break error. This bit is set to 1 if a break condition was

detected, indicating that the received data input was held

LOW for longer than a full-word transmission time

(defined as start, data, parity and stop bits). In FIFO mode,

this error is associated with the character at the top of the

FIFO. When a break occurs, only one 0 character is loaded

into the FIFO. The next character is only enabled after the

receive data input goes to a 1 (marking state), and the

next valid start bit is received.

RO -

9 PE Parity error. When set to 1, it indicates that the parity of

the received data character does not match the parity that

the EPS and SPS bits in the Line Control Register,

UARTLCR_H. In FIFO mode, this error is associated with

the character at the top of the FIFO.

RO -

8 FE Framing error. When set to 1, it indicates that the received

character did not have a valid stop bit (a valid stop bit is

1). In FIFO mode, this error is associated with the

character at the top of the FIFO.

RO -

7:0 DATA Receive (read) data character. Transmit (write) data

character.

RWF -

UART: UARTRSR Register

Offset: 0x004

Description

Receive Status Register/Error Clear Register, UARTRSR/UARTECR

Table 427. UARTRSR

Register
Bits Name Description Type Reset

31:4 Reserved. - - -

3 OE Overrun error. This bit is set to 1 if data is received and the

FIFO is already full. This bit is cleared to 0 by a write to

UARTECR. The FIFO contents remain valid because no

more data is written when the FIFO is full, only the

contents of the shift register are overwritten. The CPU

must now read the data, to empty the FIFO.

WC 0x0

2 BE Break error. This bit is set to 1 if a break condition was

detected, indicating that the received data input was held

LOW for longer than a full-word transmission time

(defined as start, data, parity, and stop bits). This bit is

cleared to 0 after a write to UARTECR. In FIFO mode, this

error is associated with the character at the top of the

FIFO. When a break occurs, only one 0 character is loaded

into the FIFO. The next character is only enabled after the

receive data input goes to a 1 (marking state) and the next

valid start bit is received.

WC 0x0

RP2040 Datasheet

4.2. UART 429

Bits Name Description Type Reset

1 PE Parity error. When set to 1, it indicates that the parity of

the received data character does not match the parity that

the EPS and SPS bits in the Line Control Register,

UARTLCR_H. This bit is cleared to 0 by a write to

UARTECR. In FIFO mode, this error is associated with the

character at the top of the FIFO.

WC 0x0

0 FE Framing error. When set to 1, it indicates that the received

character did not have a valid stop bit (a valid stop bit is

1). This bit is cleared to 0 by a write to UARTECR. In FIFO

mode, this error is associated with the character at the top

of the FIFO.

WC 0x0

UART: UARTFR Register

Offset: 0x018

Description

Flag Register, UARTFR

Table 428. UARTFR

Register
Bits Name Description Type Reset

31:9 Reserved. - - -

8 RI Ring indicator. This bit is the complement of the UART

ring indicator, nUARTRI, modem status input. That is, the

bit is 1 when nUARTRI is LOW.

RO -

7 TXFE Transmit FIFO empty. The meaning of this bit depends on

the state of the FEN bit in the Line Control Register,

UARTLCR_H. If the FIFO is disabled, this bit is set when

the transmit holding register is empty. If the FIFO is

enabled, the TXFE bit is set when the transmit FIFO is

empty. This bit does not indicate if there is data in the

transmit shift register.

RO 0x1

6 RXFF Receive FIFO full. The meaning of this bit depends on the

state of the FEN bit in the UARTLCR_H Register. If the

FIFO is disabled, this bit is set when the receive holding

register is full. If the FIFO is enabled, the RXFF bit is set

when the receive FIFO is full.

RO 0x0

5 TXFF Transmit FIFO full. The meaning of this bit depends on the

state of the FEN bit in the UARTLCR_H Register. If the

FIFO is disabled, this bit is set when the transmit holding

register is full. If the FIFO is enabled, the TXFF bit is set

when the transmit FIFO is full.

RO 0x0

4 RXFE Receive FIFO empty. The meaning of this bit depends on

the state of the FEN bit in the UARTLCR_H Register. If the

FIFO is disabled, this bit is set when the receive holding

register is empty. If the FIFO is enabled, the RXFE bit is set

when the receive FIFO is empty.

RO 0x1

RP2040 Datasheet

4.2. UART 430

Bits Name Description Type Reset

3 BUSY UART busy. If this bit is set to 1, the UART is busy

transmitting data. This bit remains set until the complete

byte, including all the stop bits, has been sent from the

shift register. This bit is set as soon as the transmit FIFO

becomes non-empty, regardless of whether the UART is

enabled or not.

RO 0x0

2 DCD Data carrier detect. This bit is the complement of the

UART data carrier detect, nUARTDCD, modem status

input. That is, the bit is 1 when nUARTDCD is LOW.

RO -

1 DSR Data set ready. This bit is the complement of the UART

data set ready, nUARTDSR, modem status input. That is,

the bit is 1 when nUARTDSR is LOW.

RO -

0 CTS Clear to send. This bit is the complement of the UART

clear to send, nUARTCTS, modem status input. That is, the

bit is 1 when nUARTCTS is LOW.

RO -

UART: UARTILPR Register

Offset: 0x020

Description

IrDA Low-Power Counter Register, UARTILPR

Table 429. UARTILPR

Register
Bits Name Description Type Reset

31:8 Reserved. - - -

7:0 ILPDVSR 8-bit low-power divisor value. These bits are cleared to 0

at reset.

RW 0x00

UART: UARTIBRD Register

Offset: 0x024

Description

Integer Baud Rate Register, UARTIBRD

Table 430. UARTIBRD

Register
Bits Name Description Type Reset

31:16 Reserved. - - -

15:0 BAUD_DIVINT The integer baud rate divisor. These bits are cleared to 0

on reset.

RW 0x0000

UART: UARTFBRD Register

Offset: 0x028

Description

Fractional Baud Rate Register, UARTFBRD

RP2040 Datasheet

4.2. UART 431

Table 431. UARTFBRD

Register
Bits Name Description Type Reset

31:6 Reserved. - - -

5:0 BAUD_DIVFRAC The fractional baud rate divisor. These bits are cleared to

0 on reset.

RW 0x00

UART: UARTLCR_H Register

Offset: 0x02c

Description

Line Control Register, UARTLCR_H

Table 432.

UARTLCR_H Register
Bits Name Description Type Reset

31:8 Reserved. - - -

7 SPS Stick parity select. 0 = stick parity is disabled 1 = either: *

if the EPS bit is 0 then the parity bit is transmitted and

checked as a 1 * if the EPS bit is 1 then the parity bit is

transmitted and checked as a 0. This bit has no effect

when the PEN bit disables parity checking and generation.

RW 0x0

6:5 WLEN Word length. These bits indicate the number of data bits

transmitted or received in a frame as follows: b11 = 8 bits

b10 = 7 bits b01 = 6 bits b00 = 5 bits.

RW 0x0

4 FEN Enable FIFOs: 0 = FIFOs are disabled (character mode)

that is, the FIFOs become 1-byte-deep holding registers 1

= transmit and receive FIFO buffers are enabled (FIFO

mode).

RW 0x0

3 STP2 Two stop bits select. If this bit is set to 1, two stop bits are

transmitted at the end of the frame. The receive logic

does not check for two stop bits being received.

RW 0x0

2 EPS Even parity select. Controls the type of parity the UART

uses during transmission and reception: 0 = odd parity.

The UART generates or checks for an odd number of 1s in

the data and parity bits. 1 = even parity. The UART

generates or checks for an even number of 1s in the data

and parity bits. This bit has no effect when the PEN bit

disables parity checking and generation.

RW 0x0

1 PEN Parity enable: 0 = parity is disabled and no parity bit added

to the data frame 1 = parity checking and generation is

enabled.

RW 0x0

0 BRK Send break. If this bit is set to 1, a low-level is continually

output on the UARTTXD output, after completing

transmission of the current character. For the proper

execution of the break command, the software must set

this bit for at least two complete frames. For normal use,

this bit must be cleared to 0.

RW 0x0

UART: UARTCR Register

Offset: 0x030

RP2040 Datasheet

4.2. UART 432

Description

Control Register, UARTCR

Table 433. UARTCR

Register
Bits Name Description Type Reset

31:16 Reserved. - - -

15 CTSEN CTS hardware flow control enable. If this bit is set to 1,

CTS hardware flow control is enabled. Data is only

transmitted when the nUARTCTS signal is asserted.

RW 0x0

14 RTSEN RTS hardware flow control enable. If this bit is set to 1,

RTS hardware flow control is enabled. Data is only

requested when there is space in the receive FIFO for it to

be received.

RW 0x0

13 OUT2 This bit is the complement of the UART Out2 (nUARTOut2)

modem status output. That is, when the bit is

programmed to a 1, the output is 0. For DTE this can be

used as Ring Indicator (RI).

RW 0x0

12 OUT1 This bit is the complement of the UART Out1 (nUARTOut1)

modem status output. That is, when the bit is

programmed to a 1 the output is 0. For DTE this can be

used as Data Carrier Detect (DCD).

RW 0x0

11 RTS Request to send. This bit is the complement of the UART

request to send, nUARTRTS, modem status output. That

is, when the bit is programmed to a 1 then nUARTRTS is

LOW.

RW 0x0

10 DTR Data transmit ready. This bit is the complement of the

UART data transmit ready, nUARTDTR, modem status

output. That is, when the bit is programmed to a 1 then

nUARTDTR is LOW.

RW 0x0

9 RXE Receive enable. If this bit is set to 1, the receive section of

the UART is enabled. Data reception occurs for either

UART signals or SIR signals depending on the setting of

the SIREN bit. When the UART is disabled in the middle of

reception, it completes the current character before

stopping.

RW 0x1

8 TXE Transmit enable. If this bit is set to 1, the transmit section

of the UART is enabled. Data transmission occurs for

either UART signals, or SIR signals depending on the

setting of the SIREN bit. When the UART is disabled in the

middle of transmission, it completes the current character

before stopping.

RW 0x1

RP2040 Datasheet

4.2. UART 433

Bits Name Description Type Reset

7 LBE Loopback enable. If this bit is set to 1 and the SIREN bit is

set to 1 and the SIRTEST bit in the Test Control Register,

UARTTCR is set to 1, then the nSIROUT path is inverted,

and fed through to the SIRIN path. The SIRTEST bit in the

test register must be set to 1 to override the normal half-

duplex SIR operation. This must be the requirement for

accessing the test registers during normal operation, and

SIRTEST must be cleared to 0 when loopback testing is

finished. This feature reduces the amount of external

coupling required during system test. If this bit is set to 1,

and the SIRTEST bit is set to 0, the UARTTXD path is fed

through to the UARTRXD path. In either SIR mode or UART

mode, when this bit is set, the modem outputs are also fed

through to the modem inputs. This bit is cleared to 0 on

reset, to disable loopback.

RW 0x0

6:3 Reserved. - - -

2 SIRLP SIR low-power IrDA mode. This bit selects the IrDA

encoding mode. If this bit is cleared to 0, low-level bits are

transmitted as an active high pulse with a width of 3 /

16th of the bit period. If this bit is set to 1, low-level bits

are transmitted with a pulse width that is 3 times the

period of the IrLPBaud16 input signal, regardless of the

selected bit rate. Setting this bit uses less power, but

might reduce transmission distances.

RW 0x0

1 SIREN SIR enable: 0 = IrDA SIR ENDEC is disabled. nSIROUT

remains LOW (no light pulse generated), and signal

transitions on SIRIN have no effect. 1 = IrDA SIR ENDEC is

enabled. Data is transmitted and received on nSIROUT and

SIRIN. UARTTXD remains HIGH, in the marking state.

Signal transitions on UARTRXD or modem status inputs

have no effect. This bit has no effect if the UARTEN bit

disables the UART.

RW 0x0

0 UARTEN UART enable: 0 = UART is disabled. If the UART is disabled

in the middle of transmission or reception, it completes

the current character before stopping. 1 = the UART is

enabled. Data transmission and reception occurs for

either UART signals or SIR signals depending on the

setting of the SIREN bit.

RW 0x0

UART: UARTIFLS Register

Offset: 0x034

Description

Interrupt FIFO Level Select Register, UARTIFLS

Table 434. UARTIFLS

Register
Bits Name Description Type Reset

31:6 Reserved. - - -

RP2040 Datasheet

4.2. UART 434

Bits Name Description Type Reset

5:3 RXIFLSEL Receive interrupt FIFO level select. The trigger points for

the receive interrupt are as follows: b000 = Receive FIFO

becomes >= 1 / 8 full b001 = Receive FIFO becomes >= 1 /

4 full b010 = Receive FIFO becomes >= 1 / 2 full b011 =

Receive FIFO becomes >= 3 / 4 full b100 = Receive FIFO

becomes >= 7 / 8 full b101-b111 = reserved.

RW 0x2

2:0 TXIFLSEL Transmit interrupt FIFO level select. The trigger points for

the transmit interrupt are as follows: b000 = Transmit

FIFO becomes <= 1 / 8 full b001 = Transmit FIFO becomes

<= 1 / 4 full b010 = Transmit FIFO becomes <= 1 / 2 full

b011 = Transmit FIFO becomes <= 3 / 4 full b100 =

Transmit FIFO becomes <= 7 / 8 full b101-b111 =

reserved.

RW 0x2

UART: UARTIMSC Register

Offset: 0x038

Description

Interrupt Mask Set/Clear Register, UARTIMSC

Table 435. UARTIMSC

Register
Bits Name Description Type Reset

31:11 Reserved. - - -

10 OEIM Overrun error interrupt mask. A read returns the current

mask for the UARTOEINTR interrupt. On a write of 1, the

mask of the UARTOEINTR interrupt is set. A write of 0

clears the mask.

RW 0x0

9 BEIM Break error interrupt mask. A read returns the current

mask for the UARTBEINTR interrupt. On a write of 1, the

mask of the UARTBEINTR interrupt is set. A write of 0

clears the mask.

RW 0x0

8 PEIM Parity error interrupt mask. A read returns the current

mask for the UARTPEINTR interrupt. On a write of 1, the

mask of the UARTPEINTR interrupt is set. A write of 0

clears the mask.

RW 0x0

7 FEIM Framing error interrupt mask. A read returns the current

mask for the UARTFEINTR interrupt. On a write of 1, the

mask of the UARTFEINTR interrupt is set. A write of 0

clears the mask.

RW 0x0

6 RTIM Receive timeout interrupt mask. A read returns the current

mask for the UARTRTINTR interrupt. On a write of 1, the

mask of the UARTRTINTR interrupt is set. A write of 0

clears the mask.

RW 0x0

5 TXIM Transmit interrupt mask. A read returns the current mask

for the UARTTXINTR interrupt. On a write of 1, the mask of

the UARTTXINTR interrupt is set. A write of 0 clears the

mask.

RW 0x0

RP2040 Datasheet

4.2. UART 435

Bits Name Description Type Reset

4 RXIM Receive interrupt mask. A read returns the current mask

for the UARTRXINTR interrupt. On a write of 1, the mask of

the UARTRXINTR interrupt is set. A write of 0 clears the

mask.

RW 0x0

3 DSRMIM nUARTDSR modem interrupt mask. A read returns the

current mask for the UARTDSRINTR interrupt. On a write

of 1, the mask of the UARTDSRINTR interrupt is set. A

write of 0 clears the mask.

RW 0x0

2 DCDMIM nUARTDCD modem interrupt mask. A read returns the

current mask for the UARTDCDINTR interrupt. On a write

of 1, the mask of the UARTDCDINTR interrupt is set. A

write of 0 clears the mask.

RW 0x0

1 CTSMIM nUARTCTS modem interrupt mask. A read returns the

current mask for the UARTCTSINTR interrupt. On a write

of 1, the mask of the UARTCTSINTR interrupt is set. A

write of 0 clears the mask.

RW 0x0

0 RIMIM nUARTRI modem interrupt mask. A read returns the

current mask for the UARTRIINTR interrupt. On a write of

1, the mask of the UARTRIINTR interrupt is set. A write of

0 clears the mask.

RW 0x0

UART: UARTRIS Register

Offset: 0x03c

Description

Raw Interrupt Status Register, UARTRIS

Table 436. UARTRIS

Register
Bits Name Description Type Reset

31:11 Reserved. - - -

10 OERIS Overrun error interrupt status. Returns the raw interrupt

state of the UARTOEINTR interrupt.

RO 0x0

9 BERIS Break error interrupt status. Returns the raw interrupt state

of the UARTBEINTR interrupt.

RO 0x0

8 PERIS Parity error interrupt status. Returns the raw interrupt

state of the UARTPEINTR interrupt.

RO 0x0

7 FERIS Framing error interrupt status. Returns the raw interrupt

state of the UARTFEINTR interrupt.

RO 0x0

6 RTRIS Receive timeout interrupt status. Returns the raw interrupt

state of the UARTRTINTR interrupt. a

RO 0x0

5 TXRIS Transmit interrupt status. Returns the raw interrupt state

of the UARTTXINTR interrupt.

RO 0x0

4 RXRIS Receive interrupt status. Returns the raw interrupt state of

the UARTRXINTR interrupt.

RO 0x0

3 DSRRMIS nUARTDSR modem interrupt status. Returns the raw

interrupt state of the UARTDSRINTR interrupt.

RO -

RP2040 Datasheet

4.2. UART 436

Bits Name Description Type Reset

2 DCDRMIS nUARTDCD modem interrupt status. Returns the raw

interrupt state of the UARTDCDINTR interrupt.

RO -

1 CTSRMIS nUARTCTS modem interrupt status. Returns the raw

interrupt state of the UARTCTSINTR interrupt.

RO -

0 RIRMIS nUARTRI modem interrupt status. Returns the raw

interrupt state of the UARTRIINTR interrupt.

RO -

UART: UARTMIS Register

Offset: 0x040

Description

Masked Interrupt Status Register, UARTMIS

Table 437. UARTMIS

Register
Bits Name Description Type Reset

31:11 Reserved. - - -

10 OEMIS Overrun error masked interrupt status. Returns the

masked interrupt state of the UARTOEINTR interrupt.

RO 0x0

9 BEMIS Break error masked interrupt status. Returns the masked

interrupt state of the UARTBEINTR interrupt.

RO 0x0

8 PEMIS Parity error masked interrupt status. Returns the masked

interrupt state of the UARTPEINTR interrupt.

RO 0x0

7 FEMIS Framing error masked interrupt status. Returns the

masked interrupt state of the UARTFEINTR interrupt.

RO 0x0

6 RTMIS Receive timeout masked interrupt status. Returns the

masked interrupt state of the UARTRTINTR interrupt.

RO 0x0

5 TXMIS Transmit masked interrupt status. Returns the masked

interrupt state of the UARTTXINTR interrupt.

RO 0x0

4 RXMIS Receive masked interrupt status. Returns the masked

interrupt state of the UARTRXINTR interrupt.

RO 0x0

3 DSRMMIS nUARTDSR modem masked interrupt status. Returns the

masked interrupt state of the UARTDSRINTR interrupt.

RO -

2 DCDMMIS nUARTDCD modem masked interrupt status. Returns the

masked interrupt state of the UARTDCDINTR interrupt.

RO -

1 CTSMMIS nUARTCTS modem masked interrupt status. Returns the

masked interrupt state of the UARTCTSINTR interrupt.

RO -

0 RIMMIS nUARTRI modem masked interrupt status. Returns the

masked interrupt state of the UARTRIINTR interrupt.

RO -

UART: UARTICR Register

Offset: 0x044

Description

Interrupt Clear Register, UARTICR

Table 438. UARTICR

Register

RP2040 Datasheet

4.2. UART 437

Bits Name Description Type Reset

31:11 Reserved. - - -

10 OEIC Overrun error interrupt clear. Clears the UARTOEINTR

interrupt.

WC -

9 BEIC Break error interrupt clear. Clears the UARTBEINTR

interrupt.

WC -

8 PEIC Parity error interrupt clear. Clears the UARTPEINTR

interrupt.

WC -

7 FEIC Framing error interrupt clear. Clears the UARTFEINTR

interrupt.

WC -

6 RTIC Receive timeout interrupt clear. Clears the UARTRTINTR

interrupt.

WC -

5 TXIC Transmit interrupt clear. Clears the UARTTXINTR interrupt. WC -

4 RXIC Receive interrupt clear. Clears the UARTRXINTR interrupt. WC -

3 DSRMIC nUARTDSR modem interrupt clear. Clears the

UARTDSRINTR interrupt.

WC -

2 DCDMIC nUARTDCD modem interrupt clear. Clears the

UARTDCDINTR interrupt.

WC -

1 CTSMIC nUARTCTS modem interrupt clear. Clears the

UARTCTSINTR interrupt.

WC -

0 RIMIC nUARTRI modem interrupt clear. Clears the UARTRIINTR

interrupt.

WC -

UART: UARTDMACR Register

Offset: 0x048

Description

DMA Control Register, UARTDMACR

Table 439.

UARTDMACR Register
Bits Name Description Type Reset

31:3 Reserved. - - -

2 DMAONERR DMA on error. If this bit is set to 1, the DMA receive

request outputs, UARTRXDMASREQ or UARTRXDMABREQ,

are disabled when the UART error interrupt is asserted.

RW 0x0

1 TXDMAE Transmit DMA enable. If this bit is set to 1, DMA for the

transmit FIFO is enabled.

RW 0x0

0 RXDMAE Receive DMA enable. If this bit is set to 1, DMA for the

receive FIFO is enabled.

RW 0x0

UART: UARTPERIPHID0 Register

Offset: 0xfe0

Description

UARTPeriphID0 Register

RP2040 Datasheet

4.2. UART 438

Table 440.

UARTPERIPHID0

Register

Bits Name Description Type Reset

31:8 Reserved. - - -

7:0 PARTNUMBER0 These bits read back as 0x11 RO 0x11

UART: UARTPERIPHID1 Register

Offset: 0xfe4

Description

UARTPeriphID1 Register

Table 441.

UARTPERIPHID1

Register

Bits Name Description Type Reset

31:8 Reserved. - - -

7:4 DESIGNER0 These bits read back as 0x1 RO 0x1

3:0 PARTNUMBER1 These bits read back as 0x0 RO 0x0

UART: UARTPERIPHID2 Register

Offset: 0xfe8

Description

UARTPeriphID2 Register

Table 442.

UARTPERIPHID2

Register

Bits Name Description Type Reset

31:8 Reserved. - - -

7:4 REVISION This field depends on the revision of the UART: r1p0 0x0

r1p1 0x1 r1p3 0x2 r1p4 0x2 r1p5 0x3

RO 0x3

3:0 DESIGNER1 These bits read back as 0x4 RO 0x4

UART: UARTPERIPHID3 Register

Offset: 0xfec

Description

UARTPeriphID3 Register

Table 443.

UARTPERIPHID3

Register

Bits Name Description Type Reset

31:8 Reserved. - - -

7:0 CONFIGURATION These bits read back as 0x00 RO 0x00

UART: UARTPCELLID0 Register

Offset: 0xff0

Description

UARTPCellID0 Register

RP2040 Datasheet

4.2. UART 439

Table 444.

UARTPCELLID0

Register

Bits Name Description Type Reset

31:8 Reserved. - - -

7:0 UARTPCELLID0 These bits read back as 0x0D RO 0x0d

UART: UARTPCELLID1 Register

Offset: 0xff4

Description

UARTPCellID1 Register

Table 445.

UARTPCELLID1

Register

Bits Name Description Type Reset

31:8 Reserved. - - -

7:0 UARTPCELLID1 These bits read back as 0xF0 RO 0xf0

UART: UARTPCELLID2 Register

Offset: 0xff8

Description

UARTPCellID2 Register

Table 446.

UARTPCELLID2

Register

Bits Name Description Type Reset

31:8 Reserved. - - -

7:0 UARTPCELLID2 These bits read back as 0x05 RO 0x05

UART: UARTPCELLID3 Register

Offset: 0xffc

Description

UARTPCellID3 Register

Table 447.

UARTPCELLID3

Register

Bits Name Description Type Reset

31:8 Reserved. - - -

7:0 UARTPCELLID3 These bits read back as 0xB1 RO 0xb1

4.3. I2C

Synopsys Documentation

Synopsys Proprietary. Used with permission.

I2C is a commonly used 2-wire interface that can be used to connect devices for low speed data transfer using clock SCL

and data SDA wires.

RP2040 has two identical instances of an I2C controller. The external pins of each controller are connected to GPIO pins

as defined in the GPIO muxing table in Section 2.19.2. The muxing options give some IO flexibility.

RP2040 Datasheet

4.3. I2C 440

4.3.1. Features

Each I2C controller is based on a configuration of the Synopsys DW_apb_i2c (v2.01) IP. The following features are

supported:

• Master or Slave (Default to Master mode)

• Standard mode, Fast mode or Fast mode plus

• Default slave address 0x055

• Supports 10-bit addressing in Master mode

• 16-element transmit buffer

• 16-element receive buffer

• Can be driven from DMA

• Can generate interrupts

4.3.1.1. Standard

The I2C controller was designed for I2C Bus specification, version 6.0, dated April 2014.

4.3.1.2. Clocking

All clocks in the I2C controller are connected to clk_sys, including ic_clk which is mentioned in later sections. The I2C

clock is generated by dividing down this clock, controlled by registers inside the block.

4.3.1.3. IOs

Each controller must connect its clock SCL and data SDA to one pair of GPIOs. The I2C standard requires that drivers drive

a signal low, or when not driven the signal will be pulled high. This applies to SCL and SDA. The GPIO pads should be

configured for:

• pull-up enabled

• slew rate limited

• schmitt trigger enabled

 NOTE

There should also be external pull-ups on the board as the internal pad pull-ups may not be strong enough to pull up

external circuits.

4.3.2. IP Configuration

I2C configuration details (each instance is fully independent):

• 32-bit APB access

• Supports Standard mode, Fast mode or Fast mode plus (not High speed)

• Default slave address of 0x055

• Master or Slave mode

• Master by default (Slave mode disabled at reset)

RP2040 Datasheet

4.3. I2C 441

• 10-bit addressing supported in master mode (7-bit by default)

• 16 entry transmit buffer

• 16 entry receive buffer

• Allows restart conditions when a master (can be disabled for legacy device support)

• Configurable timing to adjust TsuDAT/ThDAT

• General calls responded to on reset

• Interface to DMA

• Single interrupt output

• Configurable timing to adjust clock frequency

• Spike suppression (default 7 clk_sys cycles)

• Can NACK after data received by Slave

• Hold transfer when TX FIFO empty

• Hold bus until space available in RX FIFO

• Restart detect interrupt in Slave mode

• Optional blocking Master commands (not enabled by default)

4.3.3. I2C Overview

The I2C bus is a 2-wire serial interface, consisting of a serial data line SDA and a serial clock SCL. These wires carry

information between the devices connected to the bus. Each device is recognized by a unique address and can operate

as either a “transmitter” or “receiver”, depending on the function of the device. Devices can also be considered as

masters or slaves when performing data transfers. A master is a device that initiates a data transfer on the bus and

generates the clock signals to permit that transfer. At that time, any device addressed is considered a slave.

 NOTE

The I2C block must only be programmed to operate in either master OR slave mode only. Operating as a master and

slave simultaneously is not supported.

The I2C block can operate in these modes:

• standard mode (with data rates from 0 to 100kbps),

• fast mode (with data rates less than or equal to 400kbps),

• fast mode plus (with data rates less than or equal to 1000kbps).

These modes are not supported:

• High-speed mode (with data rates less than or equal to 3.4Mbps),

• Ultra-Fast Speed Mode (with data rates less than or equal to 5Mbps).

 NOTE

References to fast mode also apply to fast mode plus, unless specifically stated otherwise.

The I2C block can communicate with devices in one of these modes as long as they are attached to the bus.

Additionally, fast mode devices are downward compatible. For instance, fast mode devices can communicate with

standard mode devices in 0 to 100kbps I2C bus system. However standard mode devices are not upward compatible

and should not be incorporated in a fast-mode I2C bus system as they cannot follow the higher transfer rate and

unpredictable states would occur.

RP2040 Datasheet

4.3. I2C 442

An example of high-speed mode devices are LCD displays, high-bit count ADCs, and high capacity EEPROMs. These

devices typically need to transfer large amounts of data. Most maintenance and control applications, the common use

for the I2C bus, typically operate at 100kHz (in standard and fast modes). Any DW_apb_i2c device can be attached to an

I2C-bus and every device can talk with any master, passing information back and forth. There needs to be at least one

master (such as a microcontroller or DSP) on the bus but there can be multiple masters, which require them to arbitrate

for ownership. Multiple masters and arbitration are explained later in this chapter. The I2C block does not support

SMBus and PMBus protocols (for System Management and Power management).

The DW_apb_i2c is made up of an AMBA APB slave interface, an I2C interface, and FIFO logic to maintain coherency

between the two interfaces. The blocks of the component are illustrated in Figure 64.

AMBA Bus

Interface Unit
Register File

Slave State

Machine

Master State

Machine

Clock Generator Rx Shift Tx Shift Rx Filter

Toggle Synchronizer DMA Interface
Interrupt

Controller

RX FIFO TX FIFO

DW_apb_i2c

Figure 64. I2C Block

diagram

The following define the functions of the blocks in Figure 64:

• AMBA Bus Interface Unit — Takes the APB interface signals and translates them into a common generic interface

that allows the register file to be bus protocol-agnostic.

• Register File — Contains configuration registers and is the interface with software.

• Slave State Machine — Follows the protocol for a slave and monitors bus for address match.

• Master State Machine — Generates the I2C protocol for the master transfers.

• Clock Generator — Calculates the required timing to do the following:

◦ Generate the SCL clock when configured as a master

◦ Check for bus idle

◦ Generate a START and a STOP

◦ Setup the data and hold the data

• Rx Shift — Takes data into the design and extracts it in byte format.

• Tx Shift — Presents data supplied by CPU for transfer on the I2C bus.

• Rx Filter — Detects the events in the bus; for example, start, stop and arbitration lost.

• Toggle — Generates pulses on both sides and toggles to transfer signals across clock domains.

• Synchronizer — Transfers signals from one clock domain to another.

• DMA Interface — Generates the handshaking signals to the central DMA controller in order to automate the data

transfer without CPU intervention.

• Interrupt Controller — Generates the raw interrupt and interrupt flags, allowing them to be set and cleared.

• RX FIFO/TX FIFO — Holds the RX FIFO and TX FIFO register banks and controllers, along with their status levels.

RP2040 Datasheet

4.3. I2C 443

4.3.4. I2C Terminology

The following terms are used and are defined as follows:

4.3.4.1. I2C Bus Terms

The following terms relate to how the role of the I2C device and how it interacts with other I2C devices on the bus.

• Transmitter – the device that sends data to the bus. A transmitter can either be a device that initiates the data

transmission to the bus (a master-transmitter) or responds to a request from the master to send data to the bus (a

slave-transmitter).

• Receiver – the device that receives data from the bus. A receiver can either be a device that receives data on its

own request (a master-receiver) or in response to a request from the master (a slave-receiver).

• Master – the component that initializes a transfer (START command), generates the clock SCL signal and

terminates the transfer (STOP command). A master can be either a transmitter or a receiver.

• Slave – the device addressed by the master. A slave can be either receiver or transmitter.

• Multi-master – the ability for more than one master to co-exist on the bus at the same time without collision or

data loss.

• Arbitration – the predefined procedure that authorizes only one master at a time to take control of the bus. For

more information about this behaviour, refer to Section 4.3.8.

• Synchronization – the predefined procedure that synchronizes the clock signals provided by two or more masters.

For more information about this feature, refer to Section 4.3.9.

• SDA – data signal line (Serial Data)

• SCL – clock signal line (Serial Clock)

4.3.4.2. Bus Transfer Terms

The following terms are specific to data transfers that occur to/from the I2C bus.

• START (RESTART) – data transfer begins with a START or RESTART condition. The level of the SDA data line

changes from high to low, while the SCL clock line remains high. When this occurs, the bus becomes busy.

 NOTE

START and RESTART conditions are functionally identical.

• STOP – data transfer is terminated by a STOP condition. This occurs when the level on the SDA data line passes

from the low state to the high state, while the SCL clock line remains high. When the data transfer has been

terminated, the bus is free or idle once again. The bus stays busy if a RESTART is generated instead of a STOP

condition.

4.3.5. I2C Behaviour

The DW_apb_i2c can be controlled via software to be either:

• An I2C master only, communicating with other I2C slaves; OR

• An I2C slave only, communicating with one or more I2C masters.

The master is responsible for generating the clock and controlling the transfer of data. The slave is responsible for

either transmitting or receiving data to/from the master. The acknowledgement of data is sent by the device that is

receiving data, which can be either a master or a slave. As mentioned previously, the I2C protocol also allows multiple

RP2040 Datasheet

4.3. I2C 444

masters to reside on the I2C bus and uses an arbitration procedure to determine bus ownership.

Each slave has a unique address that is determined by the system designer. When a master wants to communicate with

a slave, the master transmits a START/RESTART condition that is then followed by the slave’s address and a control bit

(R/W) to determine if the master wants to transmit data or receive data from the slave. The slave then sends an

acknowledge (ACK) pulse after the address.

If the master (master-transmitter) is writing to the slave (slave-receiver), the receiver gets one byte of data. This

transaction continues until the master terminates the transmission with a STOP condition. If the master is reading from

a slave (master-receiver), the slave transmits (slave-transmitter) a byte of data to the master, and the master then

acknowledges the transaction with the ACK pulse. This transaction continues until the master terminates the

transmission by not acknowledging (NACK) the transaction after the last byte is received, and then the master issues a

STOP condition or addresses another slave after issuing a RESTART condition. This behaviour is illustrated in Figure 65.

SDA

SCL S
or
R

START or RESTART Condition

P
or
R

R
or
P

STOP AND RESTART ConditionByte Complete Interrupt
within Slave

SCL held low while
servicing interrupts

MSB

1 2 1 2 93-87 8 9

LSB ACK

from slave from receiver

ACK

Figure 65. Data

transfer on the I2C

Bus

The DW_apb_i2c is a synchronous serial interface. The SDA line is a bidirectional signal and changes only while the SCL

line is low, except for STOP, START, and RESTART conditions. The output drivers are open-drain or open-collector to

perform wire-AND functions on the bus. The maximum number of devices on the bus is limited by only the maximum

capacitance specification of 400 pF. Data is transmitted in byte packages.

The I2C protocols implemented in DW_apb_i2c are described in more details in Section 4.3.6.

4.3.5.1. START and STOP Generation

When operating as an I2C master, putting data into the transmit FIFO causes the DW_apb_i2c to generate a START

condition on the I2C bus. Writing a 1 to IC_DATA_CMD.STOP causes the DW_apb_i2c to generate a STOP condition on

the I2C bus; a STOP condition is not issued if this bit is not set, even if the transmit FIFO is empty.

When operating as a slave, the DW_apb_i2c does not generate START and STOP conditions, as per the protocol.

However, if a read request is made to the DW_apb_i2c, it holds the SCL line low until read data has been supplied to it.

This stalls the I2C bus until read data is provided to the slave DW_apb_i2c, or the DW_apb_i2c slave is disabled by

writing a 0 to IC_ENABLE.ENABLE.

4.3.5.2. Combined Formats

The DW_apb_i2c supports mixed read and write combined format transactions in both 7-bit and 10-bit addressing

modes. The DW_apb_i2c does not support mixed address and mixed address format—that is, a 7-bit address

transaction followed by a 10-bit address transaction or vice versa—combined format transactions. To initiate combined

format transfers, IC_CON.IC_RESTART_EN should be set to 1. With this value set and operating as a master, when the

DW_apb_i2c completes an I2C transfer, it checks the transmit FIFO and executes the next transfer. If the direction of

this transfer differs from the previous transfer, the combined format is used to issue the transfer. If the transmit FIFO is

empty when the current I2C transfer completes:

• IC_DATA_CMD.STOP is checked and:

◦ If set to 1, a STOP bit is issued.

◦ If set to 0, the SCL is held low until the next command is written to the transmit FIFO.

For more details, refer to Section 4.3.7.

RP2040 Datasheet

4.3. I2C 445

4.3.6. I2C Protocols

The DW_apb_i2c has the protocols discussed in this section.

4.3.6.1. START and STOP Conditions

When the bus is idle, both the SCL and SDA signals are pulled high through external pull-up resistors on the bus. When the

master wants to start a transmission on the bus, the master issues a START condition. This is defined to be a high-to-

low transition of the SDA signal while SCL is 1. When the master wants to terminate the transmission, the master issues a

STOP condition. This is defined to be a low-to-high transition of the SDA line while SCL is 1. Figure 66 shows the timing of

the START and STOP conditions. When data is being transmitted on the bus, the SDA line must be stable when SCL is 1.

SDA

SCL
S

Data line Stable Data Valid Change of Data
Allowed

Stop ConditionChange of Data AllowedStart Condition

P

Figure 66. I2C START

and STOP Condition

 NOTE

The signal transitions for the START/STOP conditions, as depicted in Figure 66, reflect those observed at the output

signals of the Master driving the I2C bus. Care should be taken when observing the SDA/SCL signals at the input

signals of the Slave(s), because unequal line delays may result in an incorrect SDA/SCL timing relationship.

4.3.6.2. Addressing Slave Protocol

There are two address formats: the 7-bit address format and the 10-bit address format.

4.3.6.2.1. 7-bit Address Format

During the 7-bit address format, the first seven bits (bits 7:1) of the first byte set the slave address and the LSB bit (bit 0)

is the R/W bit as shown in Figure 67. When bit 0 (R/W) is set to 0, the master writes to the slave. When bit 0 (R/W) is set

to 1, the master reads from the slave.

S A6 A5 A4 A3 A2 A1 A0 R/W ACK

sent by slave
Slave Address

S = START Condition ACK = Acknowledge R/W = Read/Write Pulse

Figure 67. I2C 7-bit

Address Format

4.3.6.2.2. 10-bit Address Format

During 10-bit addressing, two bytes are transferred to set the 10-bit address. The transfer of the first byte contains the

following bit definition. The first five bits (bits 7:3) notify the slaves that this is a 10-bit transfer followed by the next two

bits (bits 2:1), which set the slaves address bits 9:8, and the LSB bit (bit 0) is the R/W bit. The second byte transferred

sets bits 7:0 of the slave address. Figure 68 shows the 10-bit address format.

RP2040 Datasheet

4.3. I2C 446

S ‘1’ ‘1’ ‘1’ ‘0’ A9 A8 A7 A6 A5 A4 A3 A2 A1 A0R/W ACK

sent by slave
Reserved for 10-bit Address

sent by slave

S = START Condition ACK = Acknowledge R/W = Read/Write Pulse

ACK

Figure 68. 10-bit

Address Format

This table defines the special purpose and reserved first byte addresses.

Table 448. I2C/SMBus

Definition of Bits in

First Byte

Slave Address R/W Bit Description

0000 000 0 General Call Address. DW_apb_i2c

places the data in the receive buffer

and issues a General Call interrupt.

0000 000 1 START byte. For more details, refer to

Section 4.3.6.4.

0000 001 X CBUS address. DW_apb_i2c ignores

these accesses.

0000 010 X Reserved.

0000 011 X Reserved.

0000 1XX X High-speed master code (for more

information, refer to Section 4.3.8).

1111 1XX X Reserved.

1111 0XX X 10-bit slave addressing.

0001 000 X SMbus Host (not supported)

0001 100 X SMBus Alert Response Address (not

supported)

1100 001 X SMBus Device Default Address (not

supported)

DW_apb_i2c does not restrict you from using these reserved addresses. However, if you use these reserved addresses,

you may run into incompatibilities with other I2C components.

4.3.6.3. Transmitting and Receiving Protocol

The master can initiate data transmission and reception to/from the bus, acting as either a master-transmitter or

master-receiver. A slave responds to requests from the master to either transmit data or receive data to/from the bus,

acting as either a slave-transmitter or slave-receiver, respectively.

4.3.6.3.1. Master-Transmitter and Slave-Receiver

All data is transmitted in byte format, with no limit on the number of bytes transferred per data transfer. After the master

sends the address and R/W bit or the master transmits a byte of data to the slave, the slave-receiver must respond with

the acknowledge signal (ACK). When a slave-receiver does not respond with an ACK pulse, the master aborts the

transfer by issuing a STOP condition. The slave must leave the SDA line high so that the master can abort the transfer. If

the master-transmitter is transmitting data as shown in Figure 69, then the slave-receiver responds to the master-

transmitter with an acknowledge pulse after every byte of data is received.

RP2040 Datasheet

4.3. I2C 447

S

For 7-bit Address

R/W

‘0’ (read)

A ADATA A/A PDATASlave Address

A/A PDATAS

For 10-bit Address

From Master to Slave A = Acknowledge (SDA low)

A = No Acknowledge (SDA high)

S = START Condition

P = STOP ConditionFrom Slave to Master

R/W

‘0’ (write)

A ASlave Address
First 7 bits

Slave Address
Second Byte

‘11110xxx’

Figure 69. I2C Master-

Transmitter Protocol

4.3.6.3.2. Master-Receiver and Slave-Transmitter

If the master is receiving data as shown in Figure 70, then the master responds to the slave-transmitter with an

acknowledge pulse after a byte of data has been received, except for the last byte. This is the way the master-receiver

notifies the slave-transmitter that this is the last byte. The slave-transmitter relinquishes the SDA line after detecting the

No Acknowledge (NACK) so that the master can issue a STOP condition.

S

For 7-bit Address

R/W

‘1’ (read)

A ADATA A PDATASlave Address

‘1’ (read)

S

For 10-bit Address

From Master to Slave A = Acknowledge (SDA low)

A = No Acknowledge (SDA high)

S = START Condition

R = RESTART Condition

P = STOP ConditionFrom Slave to Master

R/W

‘0’ (write)

A A ASr A PDATASlave Address
First 7 bits

Slave Address
Second Byte R/WSlave Address

First 7 bits

‘11110xxx’ ‘11110xxx’

Figure 70. I2C Master-

Receiver Protocol

When a master does not want to relinquish the bus with a STOP condition, the master can issue a RESTART condition.

This is identical to a START condition except it occurs after the ACK pulse. Operating in master mode, the DW_apb_i2c

can then communicate with the same slave using a transfer of a different direction. For a description of the combined

format transactions that the DW_apb_i2c supports, refer to Section 4.3.5.2.

 NOTE

The DW_apb_i2c must be completely disabled before the target slave address register (IC_TAR) can be

reprogrammed.

4.3.6.4. START BYTE Transfer Protocol

The START BYTE transfer protocol is set up for systems that do not have an on-board dedicated I2C hardware module.

When the DW_apb_i2c is addressed as a slave, it always samples the I2C bus at the highest speed supported so that it

never requires a START BYTE transfer. However, when DW_apb_i2c is a master, it supports the generation of START

BYTE transfers at the beginning of every transfer in case a slave device requires it.

This protocol consists of seven zeros being transmitted followed by a one, as illustrated in Figure 71. This allows the

processor that is polling the bus to under-sample the address phase until zero is detected. Once the microcontroller

detects a zero, it switches from the under sampling rate to the correct rate of the master.

RP2040 Datasheet

4.3. I2C 448

SDA

SCL 1 2

S Ack

(HIGH)

dummy
acknowledge

Sr

7 8 9

start byte 00000001

Figure 71. I2C Start

Byte Transfer

The START BYTE procedure is as follows:

1. Master generates a START condition.

2. Master transmits the START byte (0000 0001).

3. Master transmits the ACK clock pulse. (Present only to conform with the byte handling format used on the bus)

4. No slave sets the ACK signal to zero.

5. Master generates a RESTART (R) condition.

A hardware receiver does not respond to the START BYTE because it is a reserved address and resets after the

RESTART condition is generated.

4.3.7. Tx FIFO Management and START, STOP and RESTART Generation

When operating as a master, the DW_apb_i2c component supports the mode of Tx FIFO management illustrated in

Figure 72

4.3.7.1. Tx FIFO Management

The component does not generate a STOP if the Tx FIFO becomes empty; in this situation the component holds the SCL

line low, stalling the bus until a new entry is available in the Tx FIFO. A STOP condition is generated only when the user

specifically requests it by setting bit nine (Stop bit) of the command written to IC_DATA_CMD register. Figure 72 shows

the bits in the IC_DATA_CMD register.

IC_DATA_CMD Restart

Data Read/Write field; data retrieved from slave is read from
 this field; data to be sent to slave is written to this field

CDM Write-only field; this bit determines whether transfer to
 be carried out is Read (CMD=1) or Write (CMD=0)

Stop Write-only field; this bit determines whether STOP is
 generated after data byte is sent or received

Restart Write-only field; this bit determines whether RESTART
 (or STOP followed by START in case or restart
 capability is not enabled) is generated before data is
 sent or received

9 8 7 0

Stop CMD DATA

Figure 72.

IC_DATA_CMD

Register

Figure 73 illustrates the behaviour of the DW_apb_i2c when the Tx FIFO becomes empty while operating as a master

transmitter, as well as showing the generation of a STOP condition.

RP2040 Datasheet

4.3. I2C 449

SDA

SCL

FIFO_

EMPTY

A6

S

Tx FIFO loaded with data
(write data in this example)

Last byte popped from
Tx FIFO, with STOP bit
not set

Master releases SCL line and
resumes transmission because
new data became available

Data availability triggers
START condition on bus

D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0A5 A4 A3 A2 A1 A0 D6D7 D5 D4 D3 D2 D1 D0W Ack Ack AckAck

P

Because STOP bit was not set on
last byte popped from Tx FIFO,
Master holds SCL low

Tx FIFO loaded
with new data

Last byte popped from Tx FIFO
with STOP bit set

STOP bit enabled triggers
STOP condition on bus

Figure 73. Master

Transmitter - Tx FIFO

Empties/STOP

Generation

Figure 74 illustrates the behaviour of the DW_apb_i2c when the Tx FIFO becomes empty while operating as a master

receiver, as well as showing the generation of a STOP condition.

SDA

SCL

FIFO_

EMPTY

A6

S

Tx FIFO loaded with command
(read operation in this example)

Last command
popped from Tx
FIFO, with STOP bit
not set

Tx FIFO loaded
with new command

Last command popped from
Tx FIFO with STOP bit set

STOP bit enabled triggers
STOP condition on bus

Master releases SCL line and
resumes transmission
because new command
became available

Because STOP bit was
not set on last
command popped
from Tx FIFO, Master
holds SCL low

Command availability triggers
START condition on bus

D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0R Ack Ack NakAck

SFigure 74. Master

Receiver - Tx FIFO

Empties/STOP

Generation

Figure 75 and Figure 76 illustrate configurations where the user can control the generation of RESTART conditions on

the I2C bus. If bit 10 (Restart) of the IC_DATA_CMD register is set and the restart capability is enabled

(IC_RESTART_EN=1), a RESTART is generated before the data byte is written to or read from the slave. If the restart

capability is not enabled a STOP followed by a START is generated in place of the RESTART. Figure 75 illustrates this

situation during operation as a master transmitter.

SDA

SCL

FIFO_

EMPTY

A6

S

Next byte in Tx FIFO
has RESTART bit set

Because next byte on Tx FIFO has
been tagged with RESTART bit,
Master issues RESTART and
initiates new transmission

Data availability triggers
START condition on bus

D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0A5 A4 A3 A2 A1 A0 A6 A5 A4 A3 A2 A1 A0 D6D7W Ack Ack AckWAck

SR

Tx FIFO loaded with data
(write data in this example)

Figure 75. Master

Transmitter — Restart

Bit of IC_DATA_CMD

Is Set

Figure 76 illustrates the same situation, but during operation as a master receiver.

SDA

SCL

FIFO_

EMPTY

A6

S

Tx FIFO loaded with command
(read operation in this example)

Next command in Tx FIFO
has RESTART bit set

Master issues NOT ACK as
required before RESTART
when operating as receiver

Because next command on Tx FIFO
has been tagged with RESTART bit,
Master issues RESTART and
initiates new transmission

Command availability triggers
START condition on bus

D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0A5 A4 A3 A2 A1 A0 A6 A5 A4 A3 A2 A1 A0 D7 D6RR Ack Ack Nak Ack

SRFigure 76. Master

Receiver — Restart Bit

of IC_DATA_CMD Is

Set

Figure 77 illustrates operation as a master transmitter where the Stop bit of the IC_DATA_CMD register is set and the Tx

FIFO is not empty

SDA

SCL

FIFO_

EMPTY

A6

S

Tx FIFO loaded with data
(write data in this example)

One byte (not last one)
is popped from Tx FIFO
with STOP bit set

Because more data is available in
Tx FIFO, a new transmission is
immediately initiated (provided
master is granted access to bus)

Data availability triggers
START condition on bus

D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0A5 A4 A3 A2 A1 A0 A6 A5 A4 A3 A2 A1 A0 D6D7W Ack Ack AckWAck

SP

Because STOP bit was set on last
byte popped from Tx FIFO, Master
generates STOP condition

Figure 77. Master

Transmitter — Stop Bit

of IC_DATA_CMD

Set/Tx FIFO Not Empty

Figure 78 illustrates operation as a master transmitter where the first byte loaded into the Tx FIFO is allowed to go

empty with the Restart bit set

RP2040 Datasheet

4.3. I2C 450

SDA

SCL

FIFO_

EMPTY

A6

S

Last byte popped
from Tx FIFO with
STOP bit not set

Tx FIFO loaded
with new command

Master issues RESTART and
initiates new transmission

Because STOP bit was
not set on last byte
popped from Tx FIFO,
Master holds SCL lowData availability triggers START

condition on bus

D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0A5 A4 A3 A2 A1 A0 A6 A5 A4 A3 A2 A1 A0 D6D7W Ack Ack AckWAck

SR

Tx FIFO loaded with data
(write data in this example)

Figure 78. Master

Transmitter — First

Byte Loaded Into Tx

FIFO Allowed to

Empty, Restart Bit Set

Figure 79 illustrates operation as a master receiver where the Stop bit of the IC_DATA_CMD register is set and the Tx

FIFO is not empty

SDA

SCL

FIFO_

EMPTY

A6

S

Tx FIFO loaded with command
(read operation in this example)

One command
(not last one) is
popped from
Tx FIFO with
STOP bit set

Because more commands
are available inTx FIFO, a
new transmission is
immediately initiated
(provided master is granted
access to bus)

Because STOP bit was
set on last command
popped from Tx FIFO,
Master generates
STOP condition

Command availability triggers
START condition on bus

D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0A5 A4 A3 A2 A1 A0 A6 A5 A4 A3 A2 A1 A0 D7 D6RR Ack Ack Ack

SP

Nak

Figure 79. Master

Receiver — Stop Bit of

IC_DATA_CMD Set/Tx

FIFO Not Empty

Figure 80 illustrates operation as a master receiver where the first command loaded after the Tx FIFO is allowed to

empty and the Restart bit is set

SDA

SCL

FIFO_

EMPTY

A6

S

Tx FIFO loaded with command
(read operation in this example)

Last command popped
from Tx FIFO with
STOP bit not set

Tx FIFO loaded
with new command

Next command loaded into
Tx FIFO has RESTART bit set

Master issues NOT ACK as
required before RESTART
when operating as receiver

Master issues RESTART and
initiates new transmission

Because STOP bit
was not set on last
command popped
from Tx FIFO, Master
holds SCL low

Command availability triggers
START condition on bus

D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0A5 A4 A3 A2 A1 A0 A6 A5 A4 A3 A2 A1 A0 D7 D6RR Ack Ack Nak Ack

SRFigure 80. Master

Receiver — First

Command Loaded

After Tx FIFO Allowed

to Empty/Restart Bit

Set

4.3.8. Multiple Master Arbitration

The DW_apb_i2c bus protocol allows multiple masters to reside on the same bus. If there are two masters on the same

I2C-bus, there is an arbitration procedure if both try to take control of the bus at the same time by generating a START

condition at the same time. Once a master (for example, a microcontroller) has control of the bus, no other master can

take control until the first master sends a STOP condition and places the bus in an idle state.

Arbitration takes place on the SDA line, while the SCL line is one. The master, which transmits a one while the other master

transmits zero, loses arbitration and turns off its data output stage. The master that lost arbitration can continue to

generate clocks until the end of the byte transfer. If both masters are addressing the same slave device, the arbitration

could go into the data phase.

Upon detecting that it has lost arbitration to another master, the DW_apb_i2c will stop generating SCL (will disable the

output driver). Figure 81 illustrates the timing of when two masters are arbitrating on the bus.

RP2040 Datasheet

4.3. I2C 451

CLKA

DATA2

SDA

SCL

MSB

MSB

MSB

‘0’

matching data

DATA1 loses arbitration

SDA mirrors DATA2

SDA lines up
with DATA1
START condition

‘1’

Figure 81. Multiple

Master Arbitration

Control of the bus is determined by address or master code and data sent by competing masters, so there is no central

master nor any order of priority on the bus.

Arbitration is not allowed between the following conditions:

• A RESTART condition and a data bit

• A STOP condition and a data bit

• A RESTART condition and a STOP condition

 NOTE

Slaves are not involved in the arbitration process.

4.3.9. Clock Synchronization

When two or more masters try to transfer information on the bus at the same time, they must arbitrate and synchronize

the SCL clock. All masters generate their own clock to transfer messages. Data is valid only during the high period of SCL

clock. Clock synchronization is performed using the wired-AND connection to the SCL signal. When the master

transitions the SCL clock to zero, the master starts counting the low time of the SCL clock and transitions the SCL clock

signal to one at the beginning of the next clock period. However, if another master is holding the SCL line to 0, then the

master goes into a HIGH wait state until the SCL clock line transitions to one.

All masters then count off their high time, and the master with the shortest high time transitions the SCL line to zero. The

masters then count out their low time and the one with the longest low time forces the other masters into a HIGH wait

state. Therefore, a synchronized SCL clock is generated, which is illustrated in Figure 82. Optionally, slaves may hold the

SCL line low to slow down the timing on the I2C bus.

CLKA

CLKB

SCL

Wait State

SCL LOW transition Resets all CLKs
to start counting their LOW periods

SCL transitions HIGH when
all CLKs are in HIGH state

Start counting HIGH period

Figure 82. Multi-

Master Clock

Synchronization

RP2040 Datasheet

4.3. I2C 452

4.3.10. Operation Modes

This section provides information on operation modes.

 NOTE

It is important to note that the DW_apb_i2c should only be set to operate as an I2C Master, or I2C Slave, but not both

simultaneously. This is achieved by ensuring that IC_CON.IC_SLAVE_DISABLE and IC_CON.MASTER_MODE are

never set to zero and one, respectively.

4.3.10.1. Slave Mode Operation

This section discusses slave mode procedures.

4.3.10.1.1. Initial Configuration

To use the DW_apb_i2c as a slave, perform the following steps:

1. Disable the DW_apb_i2c by writing a ‘0’ to IC_ENABLE.ENABLE.

2. Write to the IC_SAR register (bits 9:0) to set the slave address. This is the address to which the DW_apb_i2c

responds.

3. Write to the IC_CON register to specify which type of addressing is supported (7-bit or 10-bit by setting bit 3).

Enable the DW_apb_i2c in slave-only mode by writing a ‘0’ into bit six (IC_SLAVE_DISABLE) and a ‘0’ to bit zero

(MASTER_MODE).

 NOTE

Slaves and masters do not have to be programmed with the same type of addressing 7-bit or 10-bit address. For

instance, a slave can be programmed with 7-bit addressing and a master with 10-bit addressing, and vice versa.

1. Enable the DW_apb_i2c by writing a ‘1’ to IC_ENABLE.ENABLE.

 NOTE

Depending on the reset values chosen, steps two and three may not be necessary because the reset values can be

configured. For instance, if the device is only going to be a master, there would be no need to set the slave address

because you can configure DW_apb_i2c to have the slave disabled after reset and to enable the master after reset.

The values stored are static and do not need to be reprogrammed if the DW_apb_i2c is disabled.

 WARNING

It is recommended that the DW_apb_i2c Slave be brought out of reset only when the I2C bus is IDLE. De-asserting

the reset when a transfer is ongoing on the bus causes internal synchronization flip-flops used to synchronize SDA

and SCL to toggle from a reset value of one to the actual value on the bus. This can result in SDA toggling from one to

zero while SCL is one, thereby causing a false START condition to be detected by the DW_apb_i2c Slave. This

scenario can also be avoided by configuring the DW_apb_i2c with IC_SLAVE_DISABLE = 1 and MASTER_MODE = 1

so that the Slave interface is disabled after reset. It can then be enabled by programming IC_CON[0] = 0 and

IC_CON[6] = 0 after the internal SDA and SCL have synchronized to the value on the bus; this takes approximately six

ic_clk cycles after reset de-assertion.

RP2040 Datasheet

4.3. I2C 453

4.3.10.1.2. Slave-Transmitter Operation for a Single Byte

When another I2C master device on the bus addresses the DW_apb_i2c and requests data, the DW_apb_i2c acts as a

slave-transmitter and the following steps occur:

1. The other I2C master device initiates an I2C transfer with an address that matches the slave address in the IC_SAR

register of the DW_apb_i2c.

2. The DW_apb_i2c acknowledges the sent address and recognizes the direction of the transfer to indicate that it is

acting as a slave-transmitter.

3. The DW_apb_i2c asserts the RD_REQ interrupt (bit five of the IC_RAW_INTR_STAT register) and holds the SCL line

low. It is in a wait state until software responds. If the RD_REQ interrupt has been masked, due to

IC_INTR_MASK.M_RD_REQ being set to zero, then it is recommended that a hardware and/or software timing

routine be used to instruct the CPU to perform periodic reads of the IC_RAW_INTR_STAT register.

a. Reads that indicate IC_RAW_INTR_STAT.RD_REQ being set to one must be treated as the equivalent of the

RD_REQ interrupt being asserted.

b. Software must then act to satisfy the I2C transfer.

c. The timing interval used should be in the order of 10 times the fastest SCL clock period the DW_apb_i2c can

handle. For example, for 400kbps, the timing interval is 25μs.

 NOTE

The value of 10 is recommended here because this is approximately the amount of time required for a single byte of

data transferred on the I2C bus.

1. If there is any data remaining in the Tx FIFO before receiving the read request, then the DW_apb_i2c asserts a

TX_ABRT interrupt (bit six of the IC_RAW_INTR_STAT register) to flush the old data from the TX FIFO. If the

TX_ABRT interrupt has been masked, due to IC_INTR_MASK.M_TX_ABRT being set to zero, then it is recommended

that re-using the timing routine (described in the previous step), or a similar one, be used to read the

IC_RAW_INTR_STAT register.

 NOTE

Because the DW_apb_i2c’s Tx FIFO is forced into a flushed/reset state whenever a TX_ABRT event occurs, it is

necessary for software to release the DW_apb_i2c from this state by reading the IC_CLR_TX_ABRT register before

attempting to write into the Tx FIFO. See register IC_RAW_INTR_STAT for more details.

a. Reads that indicate bit six (R_TX_ABRT) being set to one must be treated as the equivalent of the TX_ABRT

interrupt being asserted.

b. There is no further action required from software.

c. The timing interval used should be similar to that described in the previous step for the

IC_RAW_INTR_STAT.RD_REQ register.

1. Software writes to the IC_DATA_CMD register with the data to be written (by writing a ‘0’ in bit 8).

2. Software must clear the RD_REQ and TX_ABRT interrupts (bits five and six, respectively) of the

IC_RAW_INTR_STAT register before proceeding. If the RD_REQ and/or TX_ABRT interrupts have been

masked, then clearing of the IC_RAW_INTR_STAT register will have already been performed when either the

R_RD_REQ or R_TX_ABRT bit has been read as one.

3. The DW_apb_i2c releases the SCL and transmits the byte.

4. The master may hold the I2C bus by issuing a RESTART condition or release the bus by issuing a STOP

condition.

RP2040 Datasheet

4.3. I2C 454

 NOTE

Slave-Transmitter Operation for a Single Byte is not applicable in Ultra-Fast Mode as Read transfers are not

supported.

4.3.10.1.3. Slave-Receiver Operation for a Single Byte

When another I2C master device on the bus addresses the DW_apb_i2c and is sending data, the DW_apb_i2c acts as a

slave-receiver and the following steps occur:

1. The other I2C master device initiates an I2C transfer with an address that matches the DW_apb_i2c’s slave

address in the IC_SAR register.

2. The DW_apb_i2c acknowledges the sent address and recognizes the direction of the transfer to indicate that the

DW_apb_i2c is acting as a slave-receiver.

3. DW_apb_i2c receives the transmitted byte and places it in the receive buffer.

 NOTE

If the Rx FIFO is completely filled with data when a byte is pushed, then the DW_apb_i2c slave holds the I2C SCL line

low until the Rx FIFO has some space, and then continues with the next read request.

1. DW_apb_i2c asserts the RX_FULL interrupt IC_RAW_INTR_STAT.RX_FULL. If the RX_FULL interrupt has been

masked, due to setting IC_INTR_MASK.M_RX_FULL register to zero or setting IC_TX_TL to a value larger than zero,

then it is recommended that a timing routine (described in Section 4.3.10.1.2) be implemented for periodic reads

of the IC_STATUS register. Reads of the IC_STATUS register, with bit 3 (RFNE) set at one, must then be treated by

software as the equivalent of the RX_FULL interrupt being asserted.

2. Software may read the byte from the IC_DATA_CMD register (bits 7:0).

3. The other master device may hold the I2C bus by issuing a RESTART condition, or release the bus by issuing a

STOP condition.

4.3.10.1.4. Slave-Transfer Operation For Bulk Transfers

In the standard I2C protocol, all transactions are single byte transactions and the programmer responds to a remote

master read request by writing one byte into the slave’s TX FIFO. When a slave (slave-transmitter) is issued with a read

request (RD_REQ) from the remote master (master-receiver), at a minimum there should be at least one entry placed

into the slave-transmitter’s TX FIFO. DW_apb_i2c is designed to handle more data in the TX FIFO so that subsequent

read requests can take that data without raising an interrupt to get more data. Ultimately, this eliminates the possibility

of significant latencies being incurred between raising the interrupt for data each time had there been a restriction of

having only one entry placed in the TX FIFO. This mode only occurs when DW_apb_i2c is acting as a slave-transmitter. If

the remote master acknowledges the data sent by the slave-transmitter and there is no data in the slave’s TX FIFO, the

DW_apb_i2c holds the I2C SCL line low while it raises the read request interrupt (RD_REQ) and waits for data to be written

into the TX FIFO before it can be sent to the remote master.

If the RD_REQ interrupt is masked, due to IC_INTR_STAT.R_RD_REQ set to zero, then it is recommended that a timing

routine be used to activate periodic reads of the IC_RAW_INTR_STAT register. Reads of IC_RAW_INTR_STAT that return

bit five (RD_REQ) set to one must be treated as the equivalent of the RD_REQ interrupt referred to in this section. This

timing routine is similar to that described in Section 4.3.10.1.2.

The RD_REQ interrupt is raised upon a read request, and like interrupts, must be cleared when exiting the interrupt

service handling routine (ISR). The ISR allows you to either write one byte or more than one byte into the Tx FIFO. During

the transmission of these bytes to the master, if the master acknowledges the last byte, then the slave must raise the

RD_REQ again because the master is requesting for more data. If the programmer knows in advance that the remote

master is requesting a packet of 'n' bytes, then when another master addresses DW_apb_i2c and requests data, the Tx

FIFO could be written with 'n' bytes and the remote master receives it as a continuous stream of data. For example, the

RP2040 Datasheet

4.3. I2C 455

DW_apb_i2c slave continues to send data to the remote master as long as the remote master is acknowledging the data

sent and there is data available in the Tx FIFO. There is no need to hold the SCL line low or to issue RD_REQ again.

If the remote master is to receive 'n' bytes from the DW_apb_i2c but the programmer wrote a number of bytes larger

than 'n' to the Tx FIFO, then when the slave finishes sending the requested 'n' bytes, it clears the Tx FIFO and ignores any

excess bytes.

The DW_apb_i2c generates a transmit abort (TX_ABRT) event to indicate the clearing of the Tx FIFO in this example. At

the time an ACK/NACK is expected, if a NACK is received, then the remote master has all the data it wants. At this time,

a flag is raised within the slave’s state machine to clear the leftover data in the Tx FIFO. This flag is transferred to the

processor bus clock domain where the FIFO exists and the contents of the Tx FIFO is cleared at that time.

4.3.10.2. Master Mode Operation

This section discusses master mode procedures.

4.3.10.2.1. Initial Configuration

To use the DW_apb_i2c as a master perform the following steps:

1. Disable the DW_apb_i2c by writing zero to IC_ENABLE.ENABLE.

2. Write to the IC_CON register to set the maximum speed mode supported (bits 2:1) and the desired speed of the

DW_apb_i2c master-initiated transfers, either 7-bit or 10-bit addressing (bit 4). Ensure that bit six

(IC_SLAVE_DISABLE) is written with a ‘1’ and bit zero (MASTER_MODE) is written with a ‘1’.

Note: Slaves and masters do not have to be programmed with the same type of 7-bit or 10-bit address. For instance, a

slave can be programmed with 7-bit addressing and a master with 10-bit addressing, and vice versa.

1. Write to the IC_TAR register the address of the I2C device to be addressed (bits 9:0). This register also indicates

whether a General Call or a START BYTE command is going to be performed by I2C.

2. Enable the DW_apb_i2c by writing a one to IC_ENABLE.ENABLE.

3. Now write transfer direction and data to be sent to the IC_DATA_CMD register. If the IC_DATA_CMD register is

written before the DW_apb_i2c is enabled, the data and commands are lost as the buffers are kept cleared when

DW_apb_i2c is disabled. This step generates the START condition and the address byte on the DW_apb_i2c. Once

DW_apb_i2c is enabled and there is data in the TX FIFO, DW_apb_i2c starts reading the data.

 NOTE

Depending on the reset values chosen, steps two, three, four, and five may not be necessary because the reset

values can be configured. The values stored are static and do not need to be reprogrammed if the DW_apb_i2c is

disabled, with the exception of the transfer direction and data.

4.3.10.2.2. Master Transmit and Master Receive

The DW_apb_i2c supports switching back and forth between reading and writing dynamically. To transmit data, write

the data to be written to the lower byte of the I2C Rx/Tx Data Buffer and Command Register (IC_DATA_CMD). The CMD

bit [8] should be written to zero for I2C write operations. Subsequently, a read command may be issued by writing “don’t

cares” to the lower byte of the IC_DATA_CMD register, and a one should be written to the CMD bit. The DW_apb_i2c

master continues to initiate transfers as long as there are commands present in the transmit FIFO. If the transmit FIFO

becomes empty the master either inserts a STOP condition after completing the current transfers.

• If set to one, it issues a STOP condition after completing the current transfer.

• If set to zero, it holds SCL low until next command is written to the transmit FIFO.

For more details, refer to Section 4.3.7.

RP2040 Datasheet

4.3. I2C 456

4.3.10.3. Disabling DW_apb_i2c

The register IC_ENABLE_STATUS is added to allow software to unambiguously determine when the hardware has

completely shutdown in response to IC_ENABLE.ENABLE being set from one to zero.

Only one register is required to be monitored, as opposed to monitoring two registers (IC_STATUS and

IC_RAW_INTR_STAT) which was a requirement for earlier versions of DW_apb_i2c.

 NOTE

The DW_apb_i2c Master can be disabled only if the current command being processed—when the ic_enable de-

assertion occurs—has the STOP bit set to one. When an attempt is made to disable the DW_apb_i2c Master while

processing a command without the STOP bit set, the DW_apb_i2c Master continues to remain active, holding the SCL

line low until a new command is received in the Tx FIFO. When the DW_apb_i2c Master is processing a command

without the STOP bit set, you can issue the ABORT (IC_ENABLE.ABORT) to relinquish the I2C bus and then disable

DW_apb_i2c.

4.3.10.3.1. Procedure

1. Define a timer interval (ti2c_poll) equal to the 10 times the signalling period for the highest I2C transfer speed used in

the system and supported by DW_apb_i2c. For example, if the highest I2C transfer mode is 400kbps, then this

ti2c_poll is 25μs.

2. Define a maximum time-out parameter, MAX_T_POLL_COUNT, such that if any repeated polling operation exceeds

this maximum value, an error is reported.

3. Execute a blocking thread/process/function that prevents any further I2C master transactions to be started by

software, but allows any pending transfers to be completed.

 NOTE

This step can be ignored if DW_apb_i2c is programmed to operate as an I2C slave only.

1. The variable POLL_COUNT is initialized to zero.

2. Set bit zero of the IC_ENABLE register to zero.

3. Read the IC_ENABLE_STATUS register and test the IC_EN bit (bit 0). Increment POLL_COUNT by one. If

POLL_COUNT >= MAX_T_POLL_COUNT, exit with the relevant error code.

4. If IC_ENABLE_STATUS[0] is one, then sleep for ti2c_poll and proceed to the previous step. Otherwise, exit with a

relevant success code.

4.3.10.4. Aborting I2C Transfers

The ABORT control bit of the IC_ENABLE register allows the software to relinquish the I2C bus before completing the

issued transfer commands from the Tx FIFO. In response to an ABORT request, the controller issues the STOP condition

over the I2C bus, followed by Tx FIFO flush. Aborting the transfer is allowed only in master mode of operation.

4.3.10.4.1. Procedure

1. Stop filling the Tx FIFO (IC_DATA_CMD) with new commands.

2. When operating in DMA mode, disable the transmit DMA by setting TDMAE to zero.

3. Set IC_ENABLE.ABORT to one.

4. Wait for the M_TX_ABRT interrupt.

RP2040 Datasheet

4.3. I2C 457

5. Read the IC_TX_ABRT_SOURCE register to identify the source as ABRT_USER_ABRT.

4.3.11. Spike Suppression

The DW_apb_i2c contains programmable spike suppression logic that match requirements imposed by the I2C Bus

Specification for SS/FS modes. This logic is based on counters that monitor the input signals (SCL and SDA), checking if

they remain stable for a predetermined amount of ic_clk cycles before they are sampled internally. There is one

separate counter for each signal (SCL and SDA). The number of ic_clk cycles can be programmed by the user and should

be calculated taking into account the frequency of ic_clk and the relevant spike length specification. Each counter is

started whenever its input signal changes its value. Depending on the behaviour of the input signal, one of the following

scenarios occurs:

• The input signal remains unchanged until the counter reaches its count limit value. When this happens, the internal

version of the signal is updated with the input value, and the counter is reset and stopped. The counter is not

restarted until a new change on the input signal is detected.

• The input signal changes again before the counter reaches its count limit value. When this happens, the counter is

reset and stopped, but the internal version of the signal is not updated. The counter remains stopped until a new

change on the input signal is detected.

The timing diagram in Figure 83 illustrates the behaviour described above.

Recovery Clocks

Spike length counter

SCL

Internal filtered SCL

0 1 2 3 0 1 2 3 4 5 0

Figure 83. Spike

Suppression Example

 NOTE

There is a 2-stage synchronizer on the SCL input, but for the sake of simplicity this synchronization delay was not

included in the timing diagram in Figure 83.

The I2C Bus Specification calls for different maximum spike lengths according to the operating mode — 50ns for SS

and FS, so this register is required to store the values needed:

• Register IC_FS_SPKLEN holds the maximum spike length for SS and FS modes

This register is 8 bits wide and accessible through the APB interface for read and write purposes; however, they can be

written to only when the DW_apb_i2c is disabled. The minimum value that can be programmed into these registers is

one; attempting to program a value smaller than one results in the value one being written.

The default value for these registers is based on the value of 100ns for ic_clk period, so should be updated for the

clk_sys period in use on RP2040.

RP2040 Datasheet

4.3. I2C 458

 NOTE

• Because the minimum value that can be programmed into the IC_FS_SPKLEN register is one, the spike length

specification can be exceeded for low frequencies of ic_clk. Consider the simple example of a 10MHz (100ns

period) ic_clk; in this case, the minimum spike length that can be programmed is 100ns, which means that

spikes up to this length are suppressed.

• Standard synchronization logic (two flip-flops in series) is implemented upstream of the spike suppression

logic and is not affected in any way by the contents of the spike length registers or the operation of the spike

suppression logic; the two operations (synchronization and spike suppression) are completely independent.

Because the SCL and SDA inputs are asynchronous to ic_clk, there is one ic_clk cycle uncertainty in the sampling

of these signals; that is, depending on when they occur relative to the rising edge of ic_clk, spikes of the same

original length might show a difference of one ic_clk cycle after being sampled.

• Spike suppression is symmetrical; that is, the behaviour is exactly the same for transitions from zero to one and

from one to zero.

4.3.12. Fast Mode Plus Operation

In fast mode plus, the DW_apb_i2c allows the fast mode operation to be extended to support speeds up to 1000kbps.

To enable the DW_apb_i2c for fast mode plus operation, perform the following steps before initiating any data transfer:

1. Set ic_clk frequency greater than or equal to 32MHz (refer to Section 4.3.14.2.1).

2. Program the IC_CON register [2:1] = 2’b10 for fast mode or fast mode plus.

3. Program IC_FS_SCL_LCNT and IC_FS_SCL_HCNT registers to meet the fast mode plus SCL (refer to Section 4.3.14).

4. Program the IC_FS_SPKLEN register to suppress the maximum spike of 50ns.

5. Program the IC_SDA_SETUP register to meet the minimum data setup time (tSU; DAT).

4.3.13. Bus Clear Feature

DW_apb_i2c supports the bus clear feature that provides graceful recovery of data SDA and clock SCL lines during unlikely

events in which either the clock or data line is stuck at LOW.

4.3.13.1. SDA Line Stuck at LOW Recovery

In case of SDA line stuck at LOW, the master performs the following actions to recover as shown in Figure 84 and Figure

85:

1. Master sends a maximum of nine clock pulses to recover the bus LOW within those nine clocks.

◦ The number of clock pulses will vary with the number of bits that remain to be sent by the slave. As the

maximum number of bits is nine, master sends up to nine clock pluses and allows the slave to recover it.

◦ The master attempts to assert a Logic 1 on the SDA line and check whether SDA is recovered. If the SDA is not

recovered, it will continue to send a maximum of nine SCL clocks.

2. If SDA line is recovered within nine clock pulses then the master will send the STOP to release the bus.

3. If SDA line is not recovered even after the ninth clock pulse then system needs a hardware reset.

RP2040 Datasheet

4.3. I2C 459

Recovery Clocks

SDA

SCL

MST_SDA

0 1 2 3 4 5 6 7 8 9 10

Master drives 9 clocks to recover SDA stuck at low

Figure 84. SDA

Recovery with 9 SCL

Clocks

Recovery Clocks

SDA

SCL

MST_SDA

0 1 2 3 4 5 6 7

Master drives 6 clocks to recover SDA stuck at low

Figure 85. SDA

Recovery with 6 SCL

Clocks

4.3.13.2. SCL Line is Stuck at LOW

In the unlikely event (due to an electric failure of a circuit) where the clock (SCL) is stuck to LOW, there is no effective

method to overcome this problem but to reset the bus using the hardware reset signal.

4.3.14. IC_CLK Frequency Configuration

When the DW_apb_i2c is configured as a Standard (SS), Fast (FS)/Fast-Mode Plus (FM+), the *CNT registers must be

set before any I2C bus transaction can take place in order to ensure proper I/O timing. The *CNT registers are:

• IC_SS_SCL_HCNT

• IC_SS_SCL_LCNT

• IC_FS_SCL_HCNT

• IC_FS_SCL_LCNT

 NOTE

The tBUF timing and setup/hold time of START, STOP and RESTART registers uses *HCNT/*LCNT register settings

for the corresponding speed mode.

 NOTE

It is not necessary to program any of the *CNT registers if the DW_apb_i2c is enabled to operate only as an I2C

slave, since these registers are used only to determine the SCL timing requirements for operation as an I2C master.

Table 449 lists the derivation of I2C timing parameters from the *CNT programming registers.

Table 449. Derivation

of I2C Timing

Parameters from

*CNT Registers

Timing Parameter Symbol Standard Speed Fast Speed / Fast Speed Plus

LOW period of the SCL clock tLOW IC_SS_SCL_LCNT IC_FS_SCL_LCNT

HIGH period of the SCL clock tHIGH IC_SS_SCL_HCNT IC_FS_SCL_HCNT

Setup time for a repeated

START condition

tSU;STA IC_SS_SCL_LCNT IC_FS_SCL_HCNT

Hold time (repeated) START

condition*

tHD;STA IC_SS_SCL_HCNT IC_FS_SCL_HCNT

Setup time for STOP

condition

tSU;STO IC_SS_SCL_HCNT IC_FS_SCL_HCNT

RP2040 Datasheet

4.3. I2C 460

Timing Parameter Symbol Standard Speed Fast Speed / Fast Speed Plus

Bus free time between a

STOP and a START

condition

tBUF IC_SS_SCL_LCNT IC_FS_SCL_LCNT

Spike length tSP IC_FS_SPKLEN IC_FS_SPKLEN

Data hold time tHD;DAT IC_SDA_HOLD IC_SDA_HOLD

Data setup time tSU;DAT IC_SDA_SETUP IC_SDA_SETUP

4.3.14.1. Minimum High and Low Counts in SS, FS, and FM+ Modes.

When the DW_apb_i2c operates as an I2C master, in both transmit and receive transfers:

• IC_SS_SCL_LCNT and IC_FS_SCL_LCNT register values must be larger than IC_FS_SPKLEN + 7.

• IC_SS_SCL_HCNT and IC_FS_SCL_HCNT register values must be larger than IC_FS_SPKLEN + 5.

Details regarding the DW_apb_i2c high and low counts are as follows:

• The minimum value of IC_*_SPKLEN + 7 for the *_LCNT registers is due to the time required for the DW_apb_i2c to

drive SDA after a negative edge of SCL.

• The minimum value of IC_*_SPKLEN + 5 for the *_HCNT registers is due to the time required for the DW_apb_i2c to

sample SDA during the high period of SCL.

• The DW_apb_i2c adds one cycle to the programmed *_LCNT value in order to generate the low period of the SCL

clock; this is due to the counting logic for SCL low counting to (*_LCNT + 1).

• The DW_apb_i2c adds IC_*_SPKLEN + 7 cycles to the programmed *_HCNT value in order to generate the high

period of the SCL clock; this is due to the following factors:

◦ The counting logic for SCL high counts to (*_HCNT+1).

◦ The digital filtering applied to the SCL line incurs a delay of SPKLEN + 2 ic_clk cycles, where SPKLEN is:

▪ IC_FS_SPKLEN if the component is operating in SS or FS

◦ Whenever SCL is driven one to zero by the DW_apb_i2c—that is, completing the SCL high time—an internal logic

latency of three ic_clk cycles is incurred. Consequently, the minimum SCL low time of which the DW_apb_i2c is

capable is nine ic_clk periods (7 + 1 + 1), while the minimum SCL high time is thirteen ic_clk periods (6 + 1 + 3

+ 3).

 NOTE

The total high time and low time of SCL generated by the DW_apb_i2c master is also influenced by the rise time and

fall time of the SCL line, as shown in the illustration and equations in Figure 86. It should be noted that the SCL rise and

fall time parameters vary, depending on external factors such as:

• Characteristics of IO driver

• Pull-up resistor value

• Total capacitance on SCL line, and so on

These characteristics are beyond the control of the DW_apb_i2c.

RP2040 Datasheet

4.3. I2C 461

HCNT + IC_*_SPKLEN + 7

SCL
rise time

SCL
fall time

SCL
rise time

LCNT + 1

SCL_High_time = [(HCNT + IC_*_SPKLEN + 7) * ic_clk] + SCL_Fall_time

SCL_low_time = [(LCNT + 1) * ic_clk] - SCL_Fall_time + SCL_Rise_time

ic_clk

ic_clk_in_a/SCL

Figure 86. Impact of

SCL Rise Time and Fall

Time on Generated

SCL

4.3.14.2. Minimum IC_CLK Frequency

This section describes the minimum ic_clk frequencies that the DW_apb_i2c supports for each speed mode, and the

associated high and low count values. In Slave mode, IC_SDA_HOLD (Thd;dat) and IC_SDA_SETUP (Tsu:dat) need to be

programmed to satisfy the I2C protocol timing requirements. The following examples are for the case where

IC_FS_SPKLEN is programmed to two.

4.3.14.2.1. Standard Mode (SM), Fast Mode (FM), and Fast Mode Plus (FM+)

This section details how to derive a minimum ic_clk value for standard and fast modes of the DW_apb_i2c. Although

the following method shows how to do fast mode calculations, you can also use the same method in order to do

calculations for standard mode and fast mode plus.

 NOTE

The following computations do not consider the SCL_Rise_time and SCL_Fall_time.

Given conditions and calculations for the minimum DW_apb_i2c ic_clk value in fast mode:

• Fast mode has data rate of 400kbps; implies SCL period of 1/400kHz = 2.5μs

• Minimum hcnt value of 14 as a seed value; IC_HCNT_FS = 14

• Protocol minimum SCL high and low times:

◦ MIN_SCL_LOWtime_FS = 1300ns

◦ MIN_SCL_HIGHtime_FS = 600ns

Derived equations:

SCL_PERIOD_FS / (IC_HCNT_FS + IC_LCNT_FS) = IC_CLK_PERIOD

IC_LCNT_FS × IC_CLK_PERIOD = MIN_SCL_LOWtime_FS

Combined, the previous equations produce the following:

IC_LCNT_FS × (SCL_PERIOD_FS / (IC_LCNT_FS + IC_HCNT_FS)) = MIN_SCL_LOWtime_FS

Solving for IC_LCNT_FS:

RP2040 Datasheet

4.3. I2C 462

IC_LCNT_FS × (2.5μs / (IC_LCNT_FS + 14)) = 1.3μs

The previous equation gives:

IC_LCNT_FS = roundup(15.166) = 16

These calculations produce IC_LCNT_FS = 16 and IC_HCNT_FS = 14, giving an ic_clk value of:

2.5μs / (16 + 14) = 83.3ns = 12MHz

Testing these results shows that protocol requirements are satisfied.

Table 450 lists the minimum ic_clk values for all modes with high and low count values.

Table 450. ic_clk in

Relation to High and

Low Counts

Speed Mode ic_clkfreq

(MHz)

Minimum

Value of

IC_*_SPKLEN

SCL Low Time

in `ic_clk`s

SCL Low

Program

Value

SCL Low Time SCL High

Time in

`ic_clk`s

SCL High

Program

Value

SCL High

Time

SS 2.7 1 13 12 4.7µs 14 6 5.2µs

FS 12.0 1 16 15 1.33µs 14 6 1.16µs

FM+ 32 2 16 15 500ns 16 7 500ns

• The IC_*_SCL_LCNT and IC_*_SCL_HCNT registers are programmed using the SCL low and high program values in

Table 450, which are calculated using SCL low count minus one, and SCL high counts minus eight, respectively. The

values in Table 450 are based on IC_SDA_RX_HOLD = 0. The maximum IC_SDA_RX_HOLD value depends on the

IC_*CNT registers in Master mode.

• In order to compute the HCNT and LCNT considering RC timings, use the following equations:

◦ IC_HCNT_* = [(HCNT + IC_*_SPKLEN + 7) * ic_clk] + SCL_Fall_time

◦ IC_LCNT_* = [(LCNT + 1) * ic_clk] - SCL_Fall_time + SCL_Rise_time

4.3.14.3. Calculating High and Low Counts

The calculations below show how to calculate SCL high and low counts for each speed mode in the DW_apb_i2c. For the

calculations to work, the ic_clk frequencies used must not be less than the minimum ic_clk frequencies specified in

Table 450.

The default ic_clk period value is set to 100ns, so default SCL high and low count values are calculated for each speed

mode based on this clock. These values need updating according to the guidelines below.

The equation to calculate the proper number of ic_clk signals required for setting the proper SCL clocks high and low

times is as follows:

 IC_xCNT = (ROUNDUP(MIN_SCL_xxxtime*OSCFREQ,0))

 MIN_SCL_HIGHtime = Minimum High Period
 MIN_SCL_HIGHtime = 4000ns for 100kbps,
 600ns for 400kbps,
 260ns for 1000kbps,

 MIN_SCL_LOWtime = Minimum Low Period
 MIN_SCL_LOWtime = 4700ns for 100kbps,

RP2040 Datasheet

4.3. I2C 463

 1300ns for 400kbps,
 500ns for 1000kbps,

 OSCFREQ = ic_clk Clock Frequency (Hz).

For example:

 OSCFREQ = 100MHz
 I2Cmode = fast, 400kbps
 MIN_SCL_HIGHtime = 600ns.
 MIN_SCL_LOWtime = 1300ns.

 IC_xCNT = (ROUNDUP(MIN_SCL_HIGH_LOWtime*OSCFREQ,0))

 IC_HCNT = (ROUNDUP(600ns * 100MHz,0))
 IC_HCNTSCL PERIOD = 60
 IC_LCNT = (ROUNDUP(1300ns * 100MHz,0))
 IC_LCNTSCL PERIOD = 130
 Actual MIN_SCL_HIGHtime = 60*(1/100MHz) = 600ns
 Actual MIN_SCL_LOWtime = 130*(1/100MHz) = 1300ns

4.3.15. DMA Controller Interface

The DW_apb_i2c has built-in DMA capability; it has a handshaking interface to the DMA Controller to request and control

transfers. The APB bus is used to perform the data transfer to or from the DMA. DMA transfers are transferred as single

accesses as data rate is relatively low.

4.3.15.1. Enabling the DMA Controller Interface

To enable the DMA Controller interface on the DW_apb_i2c, you must write the DMA Control Register (IC_DMA_CR).

Writing a one into the TDMAE bit field of IC_DMA_CR register enables the DW_apb_i2c transmit handshaking interface.

Writing a one into the RDMAE bit field of the IC_DMA_CR register enables the DW_apb_i2c receive handshaking

interface.

4.3.15.2. Overview of Operation

The DMA Controller is programmed with the number of data items (transfer count) that are to be transmitted or

received by DW_apb_i2c.

The transfer is broken into single transfers on the bus, each initiated by a request from the DW_apb_i2c.

For example, where the transfer count programmed into the DMA Controller is four. The DMA transfer consists of a

series of four single transactions. If the DW_apb_i2c makes a transmit request to this channel, a single data item is

written to the DW_apb_i2c TX FIFO. Similarly, if the DW_apb_i2c makes a receive request to this channel, a single data

item is read from the DW_apb_i2c RX FIFO. Four separate requests must be made to this DMA channel before all four

data items are written or read.

4.3.15.3. Watermark Levels

In DW_apb_i2c the registers for setting watermarks to allow DMA bursts do not need be set to anything other than their

reset value. Specifically IC_DMA_TDLR and IC_DMA_RDLR can be left at reset values of zero. This is because only single

transfers are needed due to the low bandwidth of I2C relative to system bandwidth, and also the DMA controller

RP2040 Datasheet

4.3. I2C 464

normally has highest priority on the system bus so will generally complete very quickly.

4.3.16. Operation of Interrupt Registers

Table 451 lists the operation of the DW_apb_i2c interrupt registers and how they are set and cleared. Some bits are set

by hardware and cleared by software, whereas other bits are set and cleared by hardware.

Table 451. Clearing

and Setting of

Interrupt Registers

Interrupt Bit Fields Set by Hardware/Cleared by Software Set and Cleared by Hardware

RESTART_DET Y N

GEN_CALL Y N

START_DET Y N

STOP_DET Y N

ACTIVITY Y N

RX_DONE Y N

TX_ABRT Y N

RD_REQ Y N

TX_EMPTY N Y

TX_OVER Y N

RX_FULL N Y

RX_OVER Y N

RX_UNDER Y N

4.3.17. List of Registers

The I2C0 and I2C1 registers start at base addresses of 0x40044000 and 0x40048000 respectively (defined as I2C0_BASE

and I2C1_BASE in SDK).

 NOTE

You may see references to configuration constants in the I2C register descriptions; these are fixed values, set at

hardware design time. A full list of their values can be found in https://github.com/raspberrypi/pico-sdk/blob/

master/src/rp2040/hardware_regs/include/hardware/regs/i2c.h

Table 452. List of I2C

registers
Offset Name Info

0x00 IC_CON I2C Control Register

0x04 IC_TAR I2C Target Address Register

0x08 IC_SAR I2C Slave Address Register

0x10 IC_DATA_CMD I2C Rx/Tx Data Buffer and Command Register

0x14 IC_SS_SCL_HCNT Standard Speed I2C Clock SCL High Count Register

0x18 IC_SS_SCL_LCNT Standard Speed I2C Clock SCL Low Count Register

0x1c IC_FS_SCL_HCNT Fast Mode or Fast Mode Plus I2C Clock SCL High Count Register

0x20 IC_FS_SCL_LCNT Fast Mode or Fast Mode Plus I2C Clock SCL Low Count Register

RP2040 Datasheet

4.3. I2C 465

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_regs/include/hardware/regs/i2c.h
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_regs/include/hardware/regs/i2c.h

Offset Name Info

0x2c IC_INTR_STAT I2C Interrupt Status Register

0x30 IC_INTR_MASK I2C Interrupt Mask Register

0x34 IC_RAW_INTR_STAT I2C Raw Interrupt Status Register

0x38 IC_RX_TL I2C Receive FIFO Threshold Register

0x3c IC_TX_TL I2C Transmit FIFO Threshold Register

0x40 IC_CLR_INTR Clear Combined and Individual Interrupt Register

0x44 IC_CLR_RX_UNDER Clear RX_UNDER Interrupt Register

0x48 IC_CLR_RX_OVER Clear RX_OVER Interrupt Register

0x4c IC_CLR_TX_OVER Clear TX_OVER Interrupt Register

0x50 IC_CLR_RD_REQ Clear RD_REQ Interrupt Register

0x54 IC_CLR_TX_ABRT Clear TX_ABRT Interrupt Register

0x58 IC_CLR_RX_DONE Clear RX_DONE Interrupt Register

0x5c IC_CLR_ACTIVITY Clear ACTIVITY Interrupt Register

0x60 IC_CLR_STOP_DET Clear STOP_DET Interrupt Register

0x64 IC_CLR_START_DET Clear START_DET Interrupt Register

0x68 IC_CLR_GEN_CALL Clear GEN_CALL Interrupt Register

0x6c IC_ENABLE I2C ENABLE Register

0x70 IC_STATUS I2C STATUS Register

0x74 IC_TXFLR I2C Transmit FIFO Level Register

0x78 IC_RXFLR I2C Receive FIFO Level Register

0x7c IC_SDA_HOLD I2C SDA Hold Time Length Register

0x80 IC_TX_ABRT_SOURCE I2C Transmit Abort Source Register

0x84 IC_SLV_DATA_NACK_ONLY Generate Slave Data NACK Register

0x88 IC_DMA_CR DMA Control Register

0x8c IC_DMA_TDLR DMA Transmit Data Level Register

0x90 IC_DMA_RDLR DMA Transmit Data Level Register

0x94 IC_SDA_SETUP I2C SDA Setup Register

0x98 IC_ACK_GENERAL_CALL I2C ACK General Call Register

0x9c IC_ENABLE_STATUS I2C Enable Status Register

0xa0 IC_FS_SPKLEN I2C SS, FS or FM+ spike suppression limit

0xa8 IC_CLR_RESTART_DET Clear RESTART_DET Interrupt Register

0xf4 IC_COMP_PARAM_1 Component Parameter Register 1

0xf8 IC_COMP_VERSION I2C Component Version Register

0xfc IC_COMP_TYPE I2C Component Type Register

I2C: IC_CON Register

RP2040 Datasheet

4.3. I2C 466

Offset: 0x00

Description

I2C Control Register. This register can be written only when the DW_apb_i2c is disabled, which corresponds to the

IC_ENABLE[0] register being set to 0. Writes at other times have no effect.

Read/Write Access: - bit 10 is read only. - bit 11 is read only - bit 16 is read only - bit 17 is read only - bits 18 and 19 are

read only.

Table 453. IC_CON

Register
Bits Name Description Type Reset

31:11 Reserved. - - -

10 STOP_DET_IF_MA

STER_ACTIVE

Master issues the STOP_DET interrupt irrespective of

whether master is active or not

RO 0x0

9 RX_FIFO_FULL_HL

D_CTRL

This bit controls whether DW_apb_i2c should hold the bus

when the Rx FIFO is physically full to its

RX_BUFFER_DEPTH, as described in the

IC_RX_FULL_HLD_BUS_EN parameter.

Reset value: 0x0.

0x0 → Overflow when RX_FIFO is full

0x1 → Hold bus when RX_FIFO is full

RW 0x0

8 TX_EMPTY_CTRL This bit controls the generation of the TX_EMPTY

interrupt, as described in the IC_RAW_INTR_STAT register.

Reset value: 0x0.

0x0 → Default behaviour of TX_EMPTY interrupt

0x1 → Controlled generation of TX_EMPTY interrupt

RW 0x0

7 STOP_DET_IFADD

RESSED

In slave mode: - 1’b1: issues the STOP_DET interrupt only

when it is addressed. - 1’b0: issues the STOP_DET

irrespective of whether it’s addressed or not. Reset value:

0x0

NOTE: During a general call address, this slave does not

issue the STOP_DET interrupt if

STOP_DET_IF_ADDRESSED = 1’b1, even if the slave

responds to the general call address by generating ACK.

The STOP_DET interrupt is generated only when the

transmitted address matches the slave address (SAR).

0x0 → slave issues STOP_DET intr always

0x1 → slave issues STOP_DET intr only if addressed

RW 0x0

6 IC_SLAVE_DISABL

E

This bit controls whether I2C has its slave disabled, which

means once the presetn signal is applied, then this bit is

set and the slave is disabled.

If this bit is set (slave is disabled), DW_apb_i2c functions

only as a master and does not perform any action that

requires a slave.

NOTE: Software should ensure that if this bit is written

with 0, then bit 0 should also be written with a 0.

0x0 → Slave mode is enabled

0x1 → Slave mode is disabled

RW 0x1

RP2040 Datasheet

4.3. I2C 467

Bits Name Description Type Reset

5 IC_RESTART_EN Determines whether RESTART conditions may be sent

when acting as a master. Some older slaves do not

support handling RESTART conditions; however, RESTART

conditions are used in several DW_apb_i2c operations.

When RESTART is disabled, the master is prohibited from

performing the following functions: - Sending a START

BYTE - Performing any high-speed mode operation - High-

speed mode operation - Performing direction changes in

combined format mode - Performing a read operation with

a 10-bit address By replacing RESTART condition followed

by a STOP and a subsequent START condition, split

operations are broken down into multiple DW_apb_i2c

transfers. If the above operations are performed, it will

result in setting bit 6 (TX_ABRT) of the

IC_RAW_INTR_STAT register.

Reset value: ENABLED

0x0 → Master restart disabled

0x1 → Master restart enabled

RW 0x1

4 IC_10BITADDR_M

ASTER

Controls whether the DW_apb_i2c starts its transfers in 7-

or 10-bit addressing mode when acting as a master. - 0: 7-

bit addressing - 1: 10-bit addressing

0x0 → Master 7Bit addressing mode

0x1 → Master 10Bit addressing mode

RW 0x0

3 IC_10BITADDR_SL

AVE

When acting as a slave, this bit controls whether the

DW_apb_i2c responds to 7- or 10-bit addresses. - 0: 7-bit

addressing. The DW_apb_i2c ignores transactions that

involve 10-bit addressing; for 7-bit addressing, only the

lower 7 bits of the IC_SAR register are compared. - 1: 10-

bit addressing. The DW_apb_i2c responds to only 10-bit

addressing transfers that match the full 10 bits of the

IC_SAR register.

0x0 → Slave 7Bit addressing

0x1 → Slave 10Bit addressing

RW 0x0

RP2040 Datasheet

4.3. I2C 468

Bits Name Description Type Reset

2:1 SPEED These bits control at which speed the DW_apb_i2c

operates; its setting is relevant only if one is operating the

DW_apb_i2c in master mode. Hardware protects against

illegal values being programmed by software. These bits

must be programmed appropriately for slave mode also,

as it is used to capture correct value of spike filter as per

the speed mode.

This register should be programmed only with a value in

the range of 1 to IC_MAX_SPEED_MODE; otherwise,

hardware updates this register with the value of

IC_MAX_SPEED_MODE.

1: standard mode (100 kbit/s)

2: fast mode (<=400 kbit/s) or fast mode plus

(<=1000Kbit/s)

3: high speed mode (3.4 Mbit/s)

Note: This field is not applicable when

IC_ULTRA_FAST_MODE=1

0x1 → Standard Speed mode of operation

0x2 → Fast or Fast Plus mode of operation

0x3 → High Speed mode of operation

RW 0x2

0 MASTER_MODE This bit controls whether the DW_apb_i2c master is

enabled.

NOTE: Software should ensure that if this bit is written

with '1' then bit 6 should also be written with a '1'.

0x0 → Master mode is disabled

0x1 → Master mode is enabled

RW 0x1

I2C: IC_TAR Register

Offset: 0x04

Description

I2C Target Address Register

This register is 12 bits wide, and bits 31:12 are reserved. This register can be written to only when IC_ENABLE[0] is set

to 0.

Note: If the software or application is aware that the DW_apb_i2c is not using the TAR address for the pending

commands in the Tx FIFO, then it is possible to update the TAR address even while the Tx FIFO has entries

(IC_STATUS[2]= 0). - It is not necessary to perform any write to this register if DW_apb_i2c is enabled as an I2C slave

only.

Table 454. IC_TAR

Register
Bits Name Description Type Reset

31:12 Reserved. - - -

RP2040 Datasheet

4.3. I2C 469

Bits Name Description Type Reset

11 SPECIAL This bit indicates whether software performs a Device-ID

or General Call or START BYTE command. - 0: ignore bit

10 GC_OR_START and use IC_TAR normally - 1: perform

special I2C command as specified in Device_ID or

GC_OR_START bit Reset value: 0x0

0x0 → Disables programming of GENERAL_CALL or

START_BYTE transmission

0x1 → Enables programming of GENERAL_CALL or

START_BYTE transmission

RW 0x0

10 GC_OR_START If bit 11 (SPECIAL) is set to 1 and bit 13(Device-ID) is set

to 0, then this bit indicates whether a General Call or

START byte command is to be performed by the

DW_apb_i2c. - 0: General Call Address - after issuing a

General Call, only writes may be performed. Attempting to

issue a read command results in setting bit 6 (TX_ABRT)

of the IC_RAW_INTR_STAT register. The DW_apb_i2c

remains in General Call mode until the SPECIAL bit value

(bit 11) is cleared. - 1: START BYTE Reset value: 0x0

0x0 → GENERAL_CALL byte transmission

0x1 → START byte transmission

RW 0x0

9:0 IC_TAR This is the target address for any master transaction.

When transmitting a General Call, these bits are ignored.

To generate a START BYTE, the CPU needs to write only

once into these bits.

If the IC_TAR and IC_SAR are the same, loopback exists

but the FIFOs are shared between master and slave, so full

loopback is not feasible. Only one direction loopback

mode is supported (simplex), not duplex. A master cannot

transmit to itself; it can transmit to only a slave.

RW 0x055

I2C: IC_SAR Register

Offset: 0x08

Description

I2C Slave Address Register

Table 455. IC_SAR

Register
Bits Name Description Type Reset

31:10 Reserved. - - -

RP2040 Datasheet

4.3. I2C 470

Bits Name Description Type Reset

9:0 IC_SAR The IC_SAR holds the slave address when the I2C is

operating as a slave. For 7-bit addressing, only IC_SAR[6:0]

is used.

This register can be written only when the I2C interface is

disabled, which corresponds to the IC_ENABLE[0] register

being set to 0. Writes at other times have no effect.

Note: The default values cannot be any of the reserved

address locations: that is, 0x00 to 0x07, or 0x78 to 0x7f.

The correct operation of the device is not guaranteed if

you program the IC_SAR or IC_TAR to a reserved value.

Refer to Table 448 for a complete list of these reserved

values.

RW 0x055

I2C: IC_DATA_CMD Register

Offset: 0x10

Description

I2C Rx/Tx Data Buffer and Command Register; this is the register the CPU writes to when filling the TX FIFO and the

CPU reads from when retrieving bytes from RX FIFO.

The size of the register changes as follows:

Write: - 11 bits when IC_EMPTYFIFO_HOLD_MASTER_EN=1 - 9 bits when IC_EMPTYFIFO_HOLD_MASTER_EN=0 Read: -

12 bits when IC_FIRST_DATA_BYTE_STATUS = 1 - 8 bits when IC_FIRST_DATA_BYTE_STATUS = 0 Note: In order for the

DW_apb_i2c to continue acknowledging reads, a read command should be written for every byte that is to be received;

otherwise the DW_apb_i2c will stop acknowledging.

Table 456.

IC_DATA_CMD

Register

Bits Name Description Type Reset

31:12 Reserved. - - -

11 FIRST_DATA_BYT

E

Indicates the first data byte received after the address

phase for receive transfer in Master receiver or Slave

receiver mode.

Reset value : 0x0

NOTE: In case of APB_DATA_WIDTH=8,

1. The user has to perform two APB Reads to

IC_DATA_CMD in order to get status on 11 bit.

2. In order to read the 11 bit, the user has to perform the

first data byte read [7:0] (offset 0x10) and then perform

the second read [15:8] (offset 0x11) in order to know the

status of 11 bit (whether the data received in previous

read is a first data byte or not).

3. The 11th bit is an optional read field, user can ignore

2nd byte read [15:8] (offset 0x11) if not interested in

FIRST_DATA_BYTE status.

0x0 → Sequential data byte received

0x1 → Non sequential data byte received

RO 0x0

RP2040 Datasheet

4.3. I2C 471

Bits Name Description Type Reset

10 RESTART This bit controls whether a RESTART is issued before the

byte is sent or received.

1 - If IC_RESTART_EN is 1, a RESTART is issued before the

data is sent/received (according to the value of CMD),

regardless of whether or not the transfer direction is

changing from the previous command; if IC_RESTART_EN

is 0, a STOP followed by a START is issued instead.

0 - If IC_RESTART_EN is 1, a RESTART is issued only if the

transfer direction is changing from the previous

command; if IC_RESTART_EN is 0, a STOP followed by a

START is issued instead.

Reset value: 0x0

0x0 → Don’t Issue RESTART before this command

0x1 → Issue RESTART before this command

SC 0x0

9 STOP This bit controls whether a STOP is issued after the byte is

sent or received.

- 1 - STOP is issued after this byte, regardless of whether

or not the Tx FIFO is empty. If the Tx FIFO is not empty,

the master immediately tries to start a new transfer by

issuing a START and arbitrating for the bus. - 0 - STOP is

not issued after this byte, regardless of whether or not the

Tx FIFO is empty. If the Tx FIFO is not empty, the master

continues the current transfer by sending/receiving data

bytes according to the value of the CMD bit. If the Tx FIFO

is empty, the master holds the SCL line low and stalls the

bus until a new command is available in the Tx FIFO.

Reset value: 0x0

0x0 → Don’t Issue STOP after this command

0x1 → Issue STOP after this command

SC 0x0

RP2040 Datasheet

4.3. I2C 472

Bits Name Description Type Reset

8 CMD This bit controls whether a read or a write is performed.

This bit does not control the direction when the

DW_apb_i2con acts as a slave. It controls only the

direction when it acts as a master.

When a command is entered in the TX FIFO, this bit

distinguishes the write and read commands. In slave-

receiver mode, this bit is a 'don’t care' because writes to

this register are not required. In slave-transmitter mode, a

'0' indicates that the data in IC_DATA_CMD is to be

transmitted.

When programming this bit, you should remember the

following: attempting to perform a read operation after a

General Call command has been sent results in a

TX_ABRT interrupt (bit 6 of the IC_RAW_INTR_STAT

register), unless bit 11 (SPECIAL) in the IC_TAR register

has been cleared. If a '1' is written to this bit after

receiving a RD_REQ interrupt, then a TX_ABRT interrupt

occurs.

Reset value: 0x0

0x0 → Master Write Command

0x1 → Master Read Command

SC 0x0

7:0 DAT This register contains the data to be transmitted or

received on the I2C bus. If you are writing to this register

and want to perform a read, bits 7:0 (DAT) are ignored by

the DW_apb_i2c. However, when you read this register,

these bits return the value of data received on the

DW_apb_i2c interface.

Reset value: 0x0

RW 0x00

I2C: IC_SS_SCL_HCNT Register

Offset: 0x14

Description

Standard Speed I2C Clock SCL High Count Register

Table 457.

IC_SS_SCL_HCNT

Register

Bits Name Description Type Reset

31:16 Reserved. - - -

RP2040 Datasheet

4.3. I2C 473

Bits Name Description Type Reset

15:0 IC_SS_SCL_HCNT This register must be set before any I2C bus transaction

can take place to ensure proper I/O timing. This register

sets the SCL clock high-period count for standard speed.

For more information, refer to 'IC_CLK Frequency

Configuration'.

This register can be written only when the I2C interface is

disabled which corresponds to the IC_ENABLE[0] register

being set to 0. Writes at other times have no effect.

The minimum valid value is 6; hardware prevents values

less than this being written, and if attempted results in 6

being set. For designs with APB_DATA_WIDTH = 8, the

order of programming is important to ensure the correct

operation of the DW_apb_i2c. The lower byte must be

programmed first. Then the upper byte is programmed.

NOTE: This register must not be programmed to a value

higher than 65525, because DW_apb_i2c uses a 16-bit

counter to flag an I2C bus idle condition when this counter

reaches a value of IC_SS_SCL_HCNT + 10.

RW 0x0028

I2C: IC_SS_SCL_LCNT Register

Offset: 0x18

Description

Standard Speed I2C Clock SCL Low Count Register

Table 458.

IC_SS_SCL_LCNT

Register

Bits Name Description Type Reset

31:16 Reserved. - - -

15:0 IC_SS_SCL_LCNT This register must be set before any I2C bus transaction

can take place to ensure proper I/O timing. This register

sets the SCL clock low period count for standard speed.

For more information, refer to 'IC_CLK Frequency

Configuration'

This register can be written only when the I2C interface is

disabled which corresponds to the IC_ENABLE[0] register

being set to 0. Writes at other times have no effect.

The minimum valid value is 8; hardware prevents values

less than this being written, and if attempted, results in 8

being set. For designs with APB_DATA_WIDTH = 8, the

order of programming is important to ensure the correct

operation of DW_apb_i2c. The lower byte must be

programmed first, and then the upper byte is

programmed.

RW 0x002f

I2C: IC_FS_SCL_HCNT Register

Offset: 0x1c

RP2040 Datasheet

4.3. I2C 474

Description

Fast Mode or Fast Mode Plus I2C Clock SCL High Count Register

Table 459.

IC_FS_SCL_HCNT

Register

Bits Name Description Type Reset

31:16 Reserved. - - -

15:0 IC_FS_SCL_HCNT This register must be set before any I2C bus transaction

can take place to ensure proper I/O timing. This register

sets the SCL clock high-period count for fast mode or fast

mode plus. It is used in high-speed mode to send the

Master Code and START BYTE or General CALL. For more

information, refer to 'IC_CLK Frequency Configuration'.

This register goes away and becomes read-only returning

0s if IC_MAX_SPEED_MODE = standard. This register can

be written only when the I2C interface is disabled, which

corresponds to the IC_ENABLE[0] register being set to 0.

Writes at other times have no effect.

The minimum valid value is 6; hardware prevents values

less than this being written, and if attempted results in 6

being set. For designs with APB_DATA_WIDTH == 8 the

order of programming is important to ensure the correct

operation of the DW_apb_i2c. The lower byte must be

programmed first. Then the upper byte is programmed.

RW 0x0006

I2C: IC_FS_SCL_LCNT Register

Offset: 0x20

Description

Fast Mode or Fast Mode Plus I2C Clock SCL Low Count Register

Table 460.

IC_FS_SCL_LCNT

Register

Bits Name Description Type Reset

31:16 Reserved. - - -

RP2040 Datasheet

4.3. I2C 475

Bits Name Description Type Reset

15:0 IC_FS_SCL_LCNT This register must be set before any I2C bus transaction

can take place to ensure proper I/O timing. This register

sets the SCL clock low period count for fast speed. It is

used in high-speed mode to send the Master Code and

START BYTE or General CALL. For more information, refer

to 'IC_CLK Frequency Configuration'.

This register goes away and becomes read-only returning

0s if IC_MAX_SPEED_MODE = standard.

This register can be written only when the I2C interface is

disabled, which corresponds to the IC_ENABLE[0] register

being set to 0. Writes at other times have no effect.

The minimum valid value is 8; hardware prevents values

less than this being written, and if attempted results in 8

being set. For designs with APB_DATA_WIDTH = 8 the

order of programming is important to ensure the correct

operation of the DW_apb_i2c. The lower byte must be

programmed first. Then the upper byte is programmed. If

the value is less than 8 then the count value gets changed

to 8.

RW 0x000d

I2C: IC_INTR_STAT Register

Offset: 0x2c

Description

I2C Interrupt Status Register

Each bit in this register has a corresponding mask bit in the IC_INTR_MASK register. These bits are cleared by reading

the matching interrupt clear register. The unmasked raw versions of these bits are available in the IC_RAW_INTR_STAT

register.

Table 461.

IC_INTR_STAT

Register

Bits Name Description Type Reset

31:13 Reserved. - - -

12 R_RESTART_DET See IC_RAW_INTR_STAT for a detailed description of

R_RESTART_DET bit.

Reset value: 0x0

0x0 → R_RESTART_DET interrupt is inactive

0x1 → R_RESTART_DET interrupt is active

RO 0x0

11 R_GEN_CALL See IC_RAW_INTR_STAT for a detailed description of

R_GEN_CALL bit.

Reset value: 0x0

0x0 → R_GEN_CALL interrupt is inactive

0x1 → R_GEN_CALL interrupt is active

RO 0x0

RP2040 Datasheet

4.3. I2C 476

Bits Name Description Type Reset

10 R_START_DET See IC_RAW_INTR_STAT for a detailed description of

R_START_DET bit.

Reset value: 0x0

0x0 → R_START_DET interrupt is inactive

0x1 → R_START_DET interrupt is active

RO 0x0

9 R_STOP_DET See IC_RAW_INTR_STAT for a detailed description of

R_STOP_DET bit.

Reset value: 0x0

0x0 → R_STOP_DET interrupt is inactive

0x1 → R_STOP_DET interrupt is active

RO 0x0

8 R_ACTIVITY See IC_RAW_INTR_STAT for a detailed description of

R_ACTIVITY bit.

Reset value: 0x0

0x0 → R_ACTIVITY interrupt is inactive

0x1 → R_ACTIVITY interrupt is active

RO 0x0

7 R_RX_DONE See IC_RAW_INTR_STAT for a detailed description of

R_RX_DONE bit.

Reset value: 0x0

0x0 → R_RX_DONE interrupt is inactive

0x1 → R_RX_DONE interrupt is active

RO 0x0

6 R_TX_ABRT See IC_RAW_INTR_STAT for a detailed description of

R_TX_ABRT bit.

Reset value: 0x0

0x0 → R_TX_ABRT interrupt is inactive

0x1 → R_TX_ABRT interrupt is active

RO 0x0

5 R_RD_REQ See IC_RAW_INTR_STAT for a detailed description of

R_RD_REQ bit.

Reset value: 0x0

0x0 → R_RD_REQ interrupt is inactive

0x1 → R_RD_REQ interrupt is active

RO 0x0

4 R_TX_EMPTY See IC_RAW_INTR_STAT for a detailed description of

R_TX_EMPTY bit.

Reset value: 0x0

0x0 → R_TX_EMPTY interrupt is inactive

0x1 → R_TX_EMPTY interrupt is active

RO 0x0

3 R_TX_OVER See IC_RAW_INTR_STAT for a detailed description of

R_TX_OVER bit.

Reset value: 0x0

0x0 → R_TX_OVER interrupt is inactive

0x1 → R_TX_OVER interrupt is active

RO 0x0

RP2040 Datasheet

4.3. I2C 477

Bits Name Description Type Reset

2 R_RX_FULL See IC_RAW_INTR_STAT for a detailed description of

R_RX_FULL bit.

Reset value: 0x0

0x0 → R_RX_FULL interrupt is inactive

0x1 → R_RX_FULL interrupt is active

RO 0x0

1 R_RX_OVER See IC_RAW_INTR_STAT for a detailed description of

R_RX_OVER bit.

Reset value: 0x0

0x0 → R_RX_OVER interrupt is inactive

0x1 → R_RX_OVER interrupt is active

RO 0x0

0 R_RX_UNDER See IC_RAW_INTR_STAT for a detailed description of

R_RX_UNDER bit.

Reset value: 0x0

0x0 → RX_UNDER interrupt is inactive

0x1 → RX_UNDER interrupt is active

RO 0x0

I2C: IC_INTR_MASK Register

Offset: 0x30

Description

I2C Interrupt Mask Register.

These bits mask their corresponding interrupt status bits. This register is active low; a value of 0 masks the interrupt,

whereas a value of 1 unmasks the interrupt.

Table 462.

IC_INTR_MASK

Register

Bits Name Description Type Reset

31:13 Reserved. - - -

12 M_RESTART_DET This bit masks the R_RESTART_DET interrupt in

IC_INTR_STAT register.

Reset value: 0x0

0x0 → RESTART_DET interrupt is masked

0x1 → RESTART_DET interrupt is unmasked

RW 0x0

11 M_GEN_CALL This bit masks the R_GEN_CALL interrupt in

IC_INTR_STAT register.

Reset value: 0x1

0x0 → GEN_CALL interrupt is masked

0x1 → GEN_CALL interrupt is unmasked

RW 0x1

10 M_START_DET This bit masks the R_START_DET interrupt in

IC_INTR_STAT register.

Reset value: 0x0

0x0 → START_DET interrupt is masked

0x1 → START_DET interrupt is unmasked

RW 0x0

RP2040 Datasheet

4.3. I2C 478

Bits Name Description Type Reset

9 M_STOP_DET This bit masks the R_STOP_DET interrupt in

IC_INTR_STAT register.

Reset value: 0x0

0x0 → STOP_DET interrupt is masked

0x1 → STOP_DET interrupt is unmasked

RW 0x0

8 M_ACTIVITY This bit masks the R_ACTIVITY interrupt in IC_INTR_STAT

register.

Reset value: 0x0

0x0 → ACTIVITY interrupt is masked

0x1 → ACTIVITY interrupt is unmasked

RW 0x0

7 M_RX_DONE This bit masks the R_RX_DONE interrupt in IC_INTR_STAT

register.

Reset value: 0x1

0x0 → RX_DONE interrupt is masked

0x1 → RX_DONE interrupt is unmasked

RW 0x1

6 M_TX_ABRT This bit masks the R_TX_ABRT interrupt in IC_INTR_STAT

register.

Reset value: 0x1

0x0 → TX_ABORT interrupt is masked

0x1 → TX_ABORT interrupt is unmasked

RW 0x1

5 M_RD_REQ This bit masks the R_RD_REQ interrupt in IC_INTR_STAT

register.

Reset value: 0x1

0x0 → RD_REQ interrupt is masked

0x1 → RD_REQ interrupt is unmasked

RW 0x1

4 M_TX_EMPTY This bit masks the R_TX_EMPTY interrupt in

IC_INTR_STAT register.

Reset value: 0x1

0x0 → TX_EMPTY interrupt is masked

0x1 → TX_EMPTY interrupt is unmasked

RW 0x1

3 M_TX_OVER This bit masks the R_TX_OVER interrupt in IC_INTR_STAT

register.

Reset value: 0x1

0x0 → TX_OVER interrupt is masked

0x1 → TX_OVER interrupt is unmasked

RW 0x1

2 M_RX_FULL This bit masks the R_RX_FULL interrupt in IC_INTR_STAT

register.

Reset value: 0x1

0x0 → RX_FULL interrupt is masked

0x1 → RX_FULL interrupt is unmasked

RW 0x1

RP2040 Datasheet

4.3. I2C 479

Bits Name Description Type Reset

1 M_RX_OVER This bit masks the R_RX_OVER interrupt in IC_INTR_STAT

register.

Reset value: 0x1

0x0 → RX_OVER interrupt is masked

0x1 → RX_OVER interrupt is unmasked

RW 0x1

0 M_RX_UNDER This bit masks the R_RX_UNDER interrupt in

IC_INTR_STAT register.

Reset value: 0x1

0x0 → RX_UNDER interrupt is masked

0x1 → RX_UNDER interrupt is unmasked

RW 0x1

I2C: IC_RAW_INTR_STAT Register

Offset: 0x34

Description

I2C Raw Interrupt Status Register

Unlike the IC_INTR_STAT register, these bits are not masked so they always show the true status of the DW_apb_i2c.

Table 463.

IC_RAW_INTR_STAT

Register

Bits Name Description Type Reset

31:13 Reserved. - - -

12 RESTART_DET Indicates whether a RESTART condition has occurred on

the I2C interface when DW_apb_i2c is operating in Slave

mode and the slave is being addressed. Enabled only

when IC_SLV_RESTART_DET_EN=1.

Note: However, in high-speed mode or during a START

BYTE transfer, the RESTART comes before the address

field as per the I2C protocol. In this case, the slave is not

the addressed slave when the RESTART is issued,

therefore DW_apb_i2c does not generate the

RESTART_DET interrupt.

Reset value: 0x0

0x0 → RESTART_DET interrupt is inactive

0x1 → RESTART_DET interrupt is active

RO 0x0

11 GEN_CALL Set only when a General Call address is received and it is

acknowledged. It stays set until it is cleared either by

disabling DW_apb_i2c or when the CPU reads bit 0 of the

IC_CLR_GEN_CALL register. DW_apb_i2c stores the

received data in the Rx buffer.

Reset value: 0x0

0x0 → GEN_CALL interrupt is inactive

0x1 → GEN_CALL interrupt is active

RO 0x0

RP2040 Datasheet

4.3. I2C 480

Bits Name Description Type Reset

10 START_DET Indicates whether a START or RESTART condition has

occurred on the I2C interface regardless of whether

DW_apb_i2c is operating in slave or master mode.

Reset value: 0x0

0x0 → START_DET interrupt is inactive

0x1 → START_DET interrupt is active

RO 0x0

9 STOP_DET Indicates whether a STOP condition has occurred on the

I2C interface regardless of whether DW_apb_i2c is

operating in slave or master mode.

In Slave Mode: - If IC_CON[7]=1’b1

(STOP_DET_IFADDRESSED), the STOP_DET interrupt will

be issued only if slave is addressed. Note: During a

general call address, this slave does not issue a

STOP_DET interrupt if STOP_DET_IF_ADDRESSED=1’b1,

even if the slave responds to the general call address by

generating ACK. The STOP_DET interrupt is generated

only when the transmitted address matches the slave

address (SAR). - If IC_CON[7]=1’b0

(STOP_DET_IFADDRESSED), the STOP_DET interrupt is

issued irrespective of whether it is being addressed. In

Master Mode: - If IC_CON[10]=1’b1

(STOP_DET_IF_MASTER_ACTIVE),the STOP_DET interrupt

will be issued only if Master is active. - If IC_CON[10]=1’b0

(STOP_DET_IFADDRESSED),the STOP_DET interrupt will

be issued irrespective of whether master is active or not.

Reset value: 0x0

0x0 → STOP_DET interrupt is inactive

0x1 → STOP_DET interrupt is active

RO 0x0

8 ACTIVITY This bit captures DW_apb_i2c activity and stays set until it

is cleared. There are four ways to clear it: - Disabling the

DW_apb_i2c - Reading the IC_CLR_ACTIVITY register -

Reading the IC_CLR_INTR register - System reset Once

this bit is set, it stays set unless one of the four methods

is used to clear it. Even if the DW_apb_i2c module is idle,

this bit remains set until cleared, indicating that there was

activity on the bus.

Reset value: 0x0

0x0 → RAW_INTR_ACTIVITY interrupt is inactive

0x1 → RAW_INTR_ACTIVITY interrupt is active

RO 0x0

7 RX_DONE When the DW_apb_i2c is acting as a slave-transmitter, this

bit is set to 1 if the master does not acknowledge a

transmitted byte. This occurs on the last byte of the

transmission, indicating that the transmission is done.

Reset value: 0x0

0x0 → RX_DONE interrupt is inactive

0x1 → RX_DONE interrupt is active

RO 0x0

RP2040 Datasheet

4.3. I2C 481

Bits Name Description Type Reset

6 TX_ABRT This bit indicates if DW_apb_i2c, as an I2C transmitter, is

unable to complete the intended actions on the contents

of the transmit FIFO. This situation can occur both as an

I2C master or an I2C slave, and is referred to as a 'transmit

abort'. When this bit is set to 1, the IC_TX_ABRT_SOURCE

register indicates the reason why the transmit abort takes

places.

Note: The DW_apb_i2c flushes/resets/empties the

TX_FIFO and RX_FIFO whenever there is a transmit abort

caused by any of the events tracked by the

IC_TX_ABRT_SOURCE register. The FIFOs remains in this

flushed state until the register IC_CLR_TX_ABRT is read.

Once this read is performed, the Tx FIFO is then ready to

accept more data bytes from the APB interface.

Reset value: 0x0

0x0 → TX_ABRT interrupt is inactive

0x1 → TX_ABRT interrupt is active

RO 0x0

5 RD_REQ This bit is set to 1 when DW_apb_i2c is acting as a slave

and another I2C master is attempting to read data from

DW_apb_i2c. The DW_apb_i2c holds the I2C bus in a wait

state (SCL=0) until this interrupt is serviced, which means

that the slave has been addressed by a remote master

that is asking for data to be transferred. The processor

must respond to this interrupt and then write the

requested data to the IC_DATA_CMD register. This bit is

set to 0 just after the processor reads the IC_CLR_RD_REQ

register.

Reset value: 0x0

0x0 → RD_REQ interrupt is inactive

0x1 → RD_REQ interrupt is active

RO 0x0

4 TX_EMPTY The behavior of the TX_EMPTY interrupt status differs

based on the TX_EMPTY_CTRL selection in the IC_CON

register. - When TX_EMPTY_CTRL = 0: This bit is set to 1

when the transmit buffer is at or below the threshold value

set in the IC_TX_TL register. - When TX_EMPTY_CTRL = 1:

This bit is set to 1 when the transmit buffer is at or below

the threshold value set in the IC_TX_TL register and the

transmission of the address/data from the internal shift

register for the most recently popped command is

completed. It is automatically cleared by hardware when

the buffer level goes above the threshold. When

IC_ENABLE[0] is set to 0, the TX FIFO is flushed and held

in reset. There the TX FIFO looks like it has no data within

it, so this bit is set to 1, provided there is activity in the

master or slave state machines. When there is no longer

any activity, then with ic_en=0, this bit is set to 0.

Reset value: 0x0.

0x0 → TX_EMPTY interrupt is inactive

0x1 → TX_EMPTY interrupt is active

RO 0x0

RP2040 Datasheet

4.3. I2C 482

Bits Name Description Type Reset

3 TX_OVER Set during transmit if the transmit buffer is filled to

IC_TX_BUFFER_DEPTH and the processor attempts to

issue another I2C command by writing to the

IC_DATA_CMD register. When the module is disabled, this

bit keeps its level until the master or slave state machines

go into idle, and when ic_en goes to 0, this interrupt is

cleared.

Reset value: 0x0

0x0 → TX_OVER interrupt is inactive

0x1 → TX_OVER interrupt is active

RO 0x0

2 RX_FULL Set when the receive buffer reaches or goes above the

RX_TL threshold in the IC_RX_TL register. It is

automatically cleared by hardware when buffer level goes

below the threshold. If the module is disabled

(IC_ENABLE[0]=0), the RX FIFO is flushed and held in reset;

therefore the RX FIFO is not full. So this bit is cleared once

the IC_ENABLE bit 0 is programmed with a 0, regardless of

the activity that continues.

Reset value: 0x0

0x0 → RX_FULL interrupt is inactive

0x1 → RX_FULL interrupt is active

RO 0x0

1 RX_OVER Set if the receive buffer is completely filled to

IC_RX_BUFFER_DEPTH and an additional byte is received

from an external I2C device. The DW_apb_i2c

acknowledges this, but any data bytes received after the

FIFO is full are lost. If the module is disabled

(IC_ENABLE[0]=0), this bit keeps its level until the master

or slave state machines go into idle, and when ic_en goes

to 0, this interrupt is cleared.

Note: If bit 9 of the IC_CON register

(RX_FIFO_FULL_HLD_CTRL) is programmed to HIGH, then

the RX_OVER interrupt never occurs, because the Rx FIFO

never overflows.

Reset value: 0x0

0x0 → RX_OVER interrupt is inactive

0x1 → RX_OVER interrupt is active

RO 0x0

0 RX_UNDER Set if the processor attempts to read the receive buffer

when it is empty by reading from the IC_DATA_CMD

register. If the module is disabled (IC_ENABLE[0]=0), this

bit keeps its level until the master or slave state machines

go into idle, and when ic_en goes to 0, this interrupt is

cleared.

Reset value: 0x0

0x0 → RX_UNDER interrupt is inactive

0x1 → RX_UNDER interrupt is active

RO 0x0

I2C: IC_RX_TL Register

RP2040 Datasheet

4.3. I2C 483

Offset: 0x38

Description

I2C Receive FIFO Threshold Register

Table 464. IC_RX_TL

Register
Bits Name Description Type Reset

31:8 Reserved. - - -

7:0 RX_TL Receive FIFO Threshold Level.

Controls the level of entries (or above) that triggers the

RX_FULL interrupt (bit 2 in IC_RAW_INTR_STAT register).

The valid range is 0-255, with the additional restriction that

hardware does not allow this value to be set to a value

larger than the depth of the buffer. If an attempt is made

to do that, the actual value set will be the maximum depth

of the buffer. A value of 0 sets the threshold for 1 entry,

and a value of 255 sets the threshold for 256 entries.

RW 0x00

I2C: IC_TX_TL Register

Offset: 0x3c

Description

I2C Transmit FIFO Threshold Register

Table 465. IC_TX_TL

Register
Bits Name Description Type Reset

31:8 Reserved. - - -

7:0 TX_TL Transmit FIFO Threshold Level.

Controls the level of entries (or below) that trigger the

TX_EMPTY interrupt (bit 4 in IC_RAW_INTR_STAT

register). The valid range is 0-255, with the additional

restriction that it may not be set to value larger than the

depth of the buffer. If an attempt is made to do that, the

actual value set will be the maximum depth of the buffer.

A value of 0 sets the threshold for 0 entries, and a value of

255 sets the threshold for 255 entries.

RW 0x00

I2C: IC_CLR_INTR Register

Offset: 0x40

Description

Clear Combined and Individual Interrupt Register

Table 466.

IC_CLR_INTR Register
Bits Name Description Type Reset

31:1 Reserved. - - -

RP2040 Datasheet

4.3. I2C 484

Bits Name Description Type Reset

0 CLR_INTR Read this register to clear the combined interrupt, all

individual interrupts, and the IC_TX_ABRT_SOURCE

register. This bit does not clear hardware clearable

interrupts but software clearable interrupts. Refer to Bit 9

of the IC_TX_ABRT_SOURCE register for an exception to

clearing IC_TX_ABRT_SOURCE.

Reset value: 0x0

RO 0x0

I2C: IC_CLR_RX_UNDER Register

Offset: 0x44

Description

Clear RX_UNDER Interrupt Register

Table 467.

IC_CLR_RX_UNDER

Register

Bits Name Description Type Reset

31:1 Reserved. - - -

0 CLR_RX_UNDER Read this register to clear the RX_UNDER interrupt (bit 0)

of the IC_RAW_INTR_STAT register.

Reset value: 0x0

RO 0x0

I2C: IC_CLR_RX_OVER Register

Offset: 0x48

Description

Clear RX_OVER Interrupt Register

Table 468.

IC_CLR_RX_OVER

Register

Bits Name Description Type Reset

31:1 Reserved. - - -

0 CLR_RX_OVER Read this register to clear the RX_OVER interrupt (bit 1) of

the IC_RAW_INTR_STAT register.

Reset value: 0x0

RO 0x0

I2C: IC_CLR_TX_OVER Register

Offset: 0x4c

Description

Clear TX_OVER Interrupt Register

RP2040 Datasheet

4.3. I2C 485

Table 469.

IC_CLR_TX_OVER

Register

Bits Name Description Type Reset

31:1 Reserved. - - -

0 CLR_TX_OVER Read this register to clear the TX_OVER interrupt (bit 3) of

the IC_RAW_INTR_STAT register.

Reset value: 0x0

RO 0x0

I2C: IC_CLR_RD_REQ Register

Offset: 0x50

Description

Clear RD_REQ Interrupt Register

Table 470.

IC_CLR_RD_REQ

Register

Bits Name Description Type Reset

31:1 Reserved. - - -

0 CLR_RD_REQ Read this register to clear the RD_REQ interrupt (bit 5) of

the IC_RAW_INTR_STAT register.

Reset value: 0x0

RO 0x0

I2C: IC_CLR_TX_ABRT Register

Offset: 0x54

Description

Clear TX_ABRT Interrupt Register

Table 471.

IC_CLR_TX_ABRT

Register

Bits Name Description Type Reset

31:1 Reserved. - - -

0 CLR_TX_ABRT Read this register to clear the TX_ABRT interrupt (bit 6) of

the IC_RAW_INTR_STAT register, and the

IC_TX_ABRT_SOURCE register. This also releases the TX

FIFO from the flushed/reset state, allowing more writes to

the TX FIFO. Refer to Bit 9 of the IC_TX_ABRT_SOURCE

register for an exception to clearing

IC_TX_ABRT_SOURCE.

Reset value: 0x0

RO 0x0

I2C: IC_CLR_RX_DONE Register

Offset: 0x58

Description

Clear RX_DONE Interrupt Register

RP2040 Datasheet

4.3. I2C 486

Table 472.

IC_CLR_RX_DONE

Register

Bits Name Description Type Reset

31:1 Reserved. - - -

0 CLR_RX_DONE Read this register to clear the RX_DONE interrupt (bit 7) of

the IC_RAW_INTR_STAT register.

Reset value: 0x0

RO 0x0

I2C: IC_CLR_ACTIVITY Register

Offset: 0x5c

Description

Clear ACTIVITY Interrupt Register

Table 473.

IC_CLR_ACTIVITY

Register

Bits Name Description Type Reset

31:1 Reserved. - - -

0 CLR_ACTIVITY Reading this register clears the ACTIVITY interrupt if the

I2C is not active anymore. If the I2C module is still active

on the bus, the ACTIVITY interrupt bit continues to be set.

It is automatically cleared by hardware if the module is

disabled and if there is no further activity on the bus. The

value read from this register to get status of the ACTIVITY

interrupt (bit 8) of the IC_RAW_INTR_STAT register.

Reset value: 0x0

RO 0x0

I2C: IC_CLR_STOP_DET Register

Offset: 0x60

Description

Clear STOP_DET Interrupt Register

Table 474.

IC_CLR_STOP_DET

Register

Bits Name Description Type Reset

31:1 Reserved. - - -

0 CLR_STOP_DET Read this register to clear the STOP_DET interrupt (bit 9)

of the IC_RAW_INTR_STAT register.

Reset value: 0x0

RO 0x0

I2C: IC_CLR_START_DET Register

Offset: 0x64

Description

Clear START_DET Interrupt Register

RP2040 Datasheet

4.3. I2C 487

Table 475.

IC_CLR_START_DET

Register

Bits Name Description Type Reset

31:1 Reserved. - - -

0 CLR_START_DET Read this register to clear the START_DET interrupt (bit

10) of the IC_RAW_INTR_STAT register.

Reset value: 0x0

RO 0x0

I2C: IC_CLR_GEN_CALL Register

Offset: 0x68

Description

Clear GEN_CALL Interrupt Register

Table 476.

IC_CLR_GEN_CALL

Register

Bits Name Description Type Reset

31:1 Reserved. - - -

0 CLR_GEN_CALL Read this register to clear the GEN_CALL interrupt (bit 11)

of IC_RAW_INTR_STAT register.

Reset value: 0x0

RO 0x0

I2C: IC_ENABLE Register

Offset: 0x6c

Description

I2C Enable Register

Table 477. IC_ENABLE

Register
Bits Name Description Type Reset

31:3 Reserved. - - -

2 TX_CMD_BLOCK In Master mode: - 1’b1: Blocks the transmission of data on

I2C bus even if Tx FIFO has data to transmit. - 1’b0: The

transmission of data starts on I2C bus automatically, as

soon as the first data is available in the Tx FIFO. Note: To

block the execution of Master commands, set the

TX_CMD_BLOCK bit only when Tx FIFO is empty

(IC_STATUS[2]==1) and Master is in Idle state

(IC_STATUS[5] == 0). Any further commands put in the Tx

FIFO are not executed until TX_CMD_BLOCK bit is unset.

Reset value: IC_TX_CMD_BLOCK_DEFAULT

0x0 → Tx Command execution not blocked

0x1 → Tx Command execution blocked

RW 0x0

RP2040 Datasheet

4.3. I2C 488

Bits Name Description Type Reset

1 ABORT When set, the controller initiates the transfer abort. - 0:

ABORT not initiated or ABORT done - 1: ABORT operation

in progress The software can abort the I2C transfer in

master mode by setting this bit. The software can set this

bit only when ENABLE is already set; otherwise, the

controller ignores any write to ABORT bit. The software

cannot clear the ABORT bit once set. In response to an

ABORT, the controller issues a STOP and flushes the Tx

FIFO after completing the current transfer, then sets the

TX_ABORT interrupt after the abort operation. The ABORT

bit is cleared automatically after the abort operation.

For a detailed description on how to abort I2C transfers,

refer to 'Aborting I2C Transfers'.

Reset value: 0x0

0x0 → ABORT operation not in progress

0x1 → ABORT operation in progress

RW 0x0

0 ENABLE Controls whether the DW_apb_i2c is enabled. - 0: Disables

DW_apb_i2c (TX and RX FIFOs are held in an erased state)

- 1: Enables DW_apb_i2c Software can disable

DW_apb_i2c while it is active. However, it is important that

care be taken to ensure that DW_apb_i2c is disabled

properly. A recommended procedure is described in

'Disabling DW_apb_i2c'.

When DW_apb_i2c is disabled, the following occurs: - The

TX FIFO and RX FIFO get flushed. - Status bits in the

IC_INTR_STAT register are still active until DW_apb_i2c

goes into IDLE state. If the module is transmitting, it stops

as well as deletes the contents of the transmit buffer after

the current transfer is complete. If the module is receiving,

the DW_apb_i2c stops the current transfer at the end of

the current byte and does not acknowledge the transfer.

In systems with asynchronous pclk and ic_clk when

IC_CLK_TYPE parameter set to asynchronous (1), there is

a two ic_clk delay when enabling or disabling the

DW_apb_i2c. For a detailed description on how to disable

DW_apb_i2c, refer to 'Disabling DW_apb_i2c'

Reset value: 0x0

0x0 → I2C is disabled

0x1 → I2C is enabled

RW 0x0

I2C: IC_STATUS Register

Offset: 0x70

Description

I2C Status Register

This is a read-only register used to indicate the current transfer status and FIFO status. The status register may be read

at any time. None of the bits in this register request an interrupt.

RP2040 Datasheet

4.3. I2C 489

When the I2C is disabled by writing 0 in bit 0 of the IC_ENABLE register: - Bits 1 and 2 are set to 1 - Bits 3 and 10 are set

to 0 When the master or slave state machines goes to idle and ic_en=0: - Bits 5 and 6 are set to 0

Table 478. IC_STATUS

Register
Bits Name Description Type Reset

31:7 Reserved. - - -

6 SLV_ACTIVITY Slave FSM Activity Status. When the Slave Finite State

Machine (FSM) is not in the IDLE state, this bit is set. - 0:

Slave FSM is in IDLE state so the Slave part of

DW_apb_i2c is not Active - 1: Slave FSM is not in IDLE

state so the Slave part of DW_apb_i2c is Active Reset

value: 0x0

0x0 → Slave is idle

0x1 → Slave not idle

RO 0x0

5 MST_ACTIVITY Master FSM Activity Status. When the Master Finite State

Machine (FSM) is not in the IDLE state, this bit is set. - 0:

Master FSM is in IDLE state so the Master part of

DW_apb_i2c is not Active - 1: Master FSM is not in IDLE

state so the Master part of DW_apb_i2c is Active Note:

IC_STATUS[0]-that is, ACTIVITY bit-is the OR of

SLV_ACTIVITY and MST_ACTIVITY bits.

Reset value: 0x0

0x0 → Master is idle

0x1 → Master not idle

RO 0x0

4 RFF Receive FIFO Completely Full. When the receive FIFO is

completely full, this bit is set. When the receive FIFO

contains one or more empty location, this bit is cleared. -

0: Receive FIFO is not full - 1: Receive FIFO is full Reset

value: 0x0

0x0 → Rx FIFO not full

0x1 → Rx FIFO is full

RO 0x0

3 RFNE Receive FIFO Not Empty. This bit is set when the receive

FIFO contains one or more entries; it is cleared when the

receive FIFO is empty. - 0: Receive FIFO is empty - 1:

Receive FIFO is not empty Reset value: 0x0

0x0 → Rx FIFO is empty

0x1 → Rx FIFO not empty

RO 0x0

2 TFE Transmit FIFO Completely Empty. When the transmit FIFO

is completely empty, this bit is set. When it contains one

or more valid entries, this bit is cleared. This bit field does

not request an interrupt. - 0: Transmit FIFO is not empty -

1: Transmit FIFO is empty Reset value: 0x1

0x0 → Tx FIFO not empty

0x1 → Tx FIFO is empty

RO 0x1

1 TFNF Transmit FIFO Not Full. Set when the transmit FIFO

contains one or more empty locations, and is cleared

when the FIFO is full. - 0: Transmit FIFO is full - 1: Transmit

FIFO is not full Reset value: 0x1

0x0 → Tx FIFO is full

0x1 → Tx FIFO not full

RO 0x1

RP2040 Datasheet

4.3. I2C 490

Bits Name Description Type Reset

0 ACTIVITY I2C Activity Status. Reset value: 0x0

0x0 → I2C is idle

0x1 → I2C is active

RO 0x0

I2C: IC_TXFLR Register

Offset: 0x74

Description

I2C Transmit FIFO Level Register This register contains the number of valid data entries in the transmit FIFO buffer.

It is cleared whenever: - The I2C is disabled - There is a transmit abort - that is, TX_ABRT bit is set in the

IC_RAW_INTR_STAT register - The slave bulk transmit mode is aborted The register increments whenever data is

placed into the transmit FIFO and decrements when data is taken from the transmit FIFO.

Table 479. IC_TXFLR

Register
Bits Name Description Type Reset

31:5 Reserved. - - -

4:0 TXFLR Transmit FIFO Level. Contains the number of valid data

entries in the transmit FIFO.

Reset value: 0x0

RO 0x00

I2C: IC_RXFLR Register

Offset: 0x78

Description

I2C Receive FIFO Level Register This register contains the number of valid data entries in the receive FIFO buffer. It

is cleared whenever: - The I2C is disabled - Whenever there is a transmit abort caused by any of the events tracked

in IC_TX_ABRT_SOURCE The register increments whenever data is placed into the receive FIFO and decrements

when data is taken from the receive FIFO.

Table 480. IC_RXFLR

Register
Bits Name Description Type Reset

31:5 Reserved. - - -

4:0 RXFLR Receive FIFO Level. Contains the number of valid data

entries in the receive FIFO.

Reset value: 0x0

RO 0x00

I2C: IC_SDA_HOLD Register

Offset: 0x7c

Description

I2C SDA Hold Time Length Register

The bits [15:0] of this register are used to control the hold time of SDA during transmit in both slave and master mode

(after SCL goes from HIGH to LOW).

The bits [23:16] of this register are used to extend the SDA transition (if any) whenever SCL is HIGH in the receiver in

either master or slave mode.

Writes to this register succeed only when IC_ENABLE[0]=0.

The values in this register are in units of ic_clk period. The value programmed in IC_SDA_TX_HOLD must be greater than

the minimum hold time in each mode (one cycle in master mode, seven cycles in slave mode) for the value to be

implemented.

RP2040 Datasheet

4.3. I2C 491

The programmed SDA hold time during transmit (IC_SDA_TX_HOLD) cannot exceed at any time the duration of the low

part of scl. Therefore the programmed value cannot be larger than N_SCL_LOW-2, where N_SCL_LOW is the duration of

the low part of the scl period measured in ic_clk cycles.

Table 481.

IC_SDA_HOLD

Register

Bits Name Description Type Reset

31:24 Reserved. - - -

23:16 IC_SDA_RX_HOLD Sets the required SDA hold time in units of ic_clk period,

when DW_apb_i2c acts as a receiver.

Reset value: IC_DEFAULT_SDA_HOLD[23:16].

RW 0x00

15:0 IC_SDA_TX_HOLD Sets the required SDA hold time in units of ic_clk period,

when DW_apb_i2c acts as a transmitter.

Reset value: IC_DEFAULT_SDA_HOLD[15:0].

RW 0x0001

I2C: IC_TX_ABRT_SOURCE Register

Offset: 0x80

Description

I2C Transmit Abort Source Register

This register has 32 bits that indicate the source of the TX_ABRT bit. Except for Bit 9, this register is cleared whenever

the IC_CLR_TX_ABRT register or the IC_CLR_INTR register is read. To clear Bit 9, the source of the

ABRT_SBYTE_NORSTRT must be fixed first; RESTART must be enabled (IC_CON[5]=1), the SPECIAL bit must be cleared

(IC_TAR[11]), or the GC_OR_START bit must be cleared (IC_TAR[10]).

Once the source of the ABRT_SBYTE_NORSTRT is fixed, then this bit can be cleared in the same manner as other bits in

this register. If the source of the ABRT_SBYTE_NORSTRT is not fixed before attempting to clear this bit, Bit 9 clears for

one cycle and is then re-asserted.

Table 482.

IC_TX_ABRT_SOURCE

Register

Bits Name Description Type Reset

31:23 TX_FLUSH_CNT This field indicates the number of Tx FIFO Data

Commands which are flushed due to TX_ABRT interrupt. It

is cleared whenever I2C is disabled.

Reset value: 0x0

Role of DW_apb_i2c: Master-Transmitter or Slave-

Transmitter

RO 0x000

22:17 Reserved. - - -

16 ABRT_USER_ABR

T

This is a master-mode-only bit. Master has detected the

transfer abort (IC_ENABLE[1])

Reset value: 0x0

Role of DW_apb_i2c: Master-Transmitter

0x0 → Transfer abort detected by master- scenario not

present

0x1 → Transfer abort detected by master

RO 0x0

RP2040 Datasheet

4.3. I2C 492

Bits Name Description Type Reset

15 ABRT_SLVRD_INT

X

1: When the processor side responds to a slave mode

request for data to be transmitted to a remote master and

user writes a 1 in CMD (bit 8) of IC_DATA_CMD register.

Reset value: 0x0

Role of DW_apb_i2c: Slave-Transmitter

0x0 → Slave trying to transmit to remote master in read

mode- scenario not present

0x1 → Slave trying to transmit to remote master in read

mode

RO 0x0

14 ABRT_SLV_ARBL

OST

This field indicates that a Slave has lost the bus while

transmitting data to a remote master.

IC_TX_ABRT_SOURCE[12] is set at the same time. Note:

Even though the slave never 'owns' the bus, something

could go wrong on the bus. This is a fail safe check. For

instance, during a data transmission at the low-to-high

transition of SCL, if what is on the data bus is not what is

supposed to be transmitted, then DW_apb_i2c no longer

own the bus.

Reset value: 0x0

Role of DW_apb_i2c: Slave-Transmitter

0x0 → Slave lost arbitration to remote master- scenario

not present

0x1 → Slave lost arbitration to remote master

RO 0x0

13 ABRT_SLVFLUSH_

TXFIFO

This field specifies that the Slave has received a read

command and some data exists in the TX FIFO, so the

slave issues a TX_ABRT interrupt to flush old data in TX

FIFO.

Reset value: 0x0

Role of DW_apb_i2c: Slave-Transmitter

0x0 → Slave flushes existing data in TX-FIFO upon getting

read command- scenario not present

0x1 → Slave flushes existing data in TX-FIFO upon getting

read command

RO 0x0

12 ARB_LOST This field specifies that the Master has lost arbitration, or

if IC_TX_ABRT_SOURCE[14] is also set, then the slave

transmitter has lost arbitration.

Reset value: 0x0

Role of DW_apb_i2c: Master-Transmitter or Slave-

Transmitter

0x0 → Master or Slave-Transmitter lost arbitration-

scenario not present

0x1 → Master or Slave-Transmitter lost arbitration

RO 0x0

RP2040 Datasheet

4.3. I2C 493

Bits Name Description Type Reset

11 ABRT_MASTER_DI

S

This field indicates that the User tries to initiate a Master

operation with the Master mode disabled.

Reset value: 0x0

Role of DW_apb_i2c: Master-Transmitter or Master-

Receiver

0x0 → User initiating master operation when MASTER

disabled- scenario not present

0x1 → User initiating master operation when MASTER

disabled

RO 0x0

10 ABRT_10B_RD_N

ORSTRT

This field indicates that the restart is disabled

(IC_RESTART_EN bit (IC_CON[5]) =0) and the master

sends a read command in 10-bit addressing mode.

Reset value: 0x0

Role of DW_apb_i2c: Master-Receiver

0x0 → Master not trying to read in 10Bit addressing mode

when RESTART disabled

0x1 → Master trying to read in 10Bit addressing mode

when RESTART disabled

RO 0x0

9 ABRT_SBYTE_NO

RSTRT

To clear Bit 9, the source of the ABRT_SBYTE_NORSTRT

must be fixed first; restart must be enabled (IC_CON[5]=1),

the SPECIAL bit must be cleared (IC_TAR[11]), or the

GC_OR_START bit must be cleared (IC_TAR[10]). Once the

source of the ABRT_SBYTE_NORSTRT is fixed, then this

bit can be cleared in the same manner as other bits in this

register. If the source of the ABRT_SBYTE_NORSTRT is

not fixed before attempting to clear this bit, bit 9 clears for

one cycle and then gets reasserted. When this field is set

to 1, the restart is disabled (IC_RESTART_EN bit

(IC_CON[5]) =0) and the user is trying to send a START

Byte.

Reset value: 0x0

Role of DW_apb_i2c: Master

0x0 → User trying to send START byte when RESTART

disabled- scenario not present

0x1 → User trying to send START byte when RESTART

disabled

RO 0x0

RP2040 Datasheet

4.3. I2C 494

Bits Name Description Type Reset

8 ABRT_HS_NORST

RT

This field indicates that the restart is disabled

(IC_RESTART_EN bit (IC_CON[5]) =0) and the user is trying

to use the master to transfer data in High Speed mode.

Reset value: 0x0

Role of DW_apb_i2c: Master-Transmitter or Master-

Receiver

0x0 → User trying to switch Master to HS mode when

RESTART disabled- scenario not present

0x1 → User trying to switch Master to HS mode when

RESTART disabled

RO 0x0

7 ABRT_SBYTE_AC

KDET

This field indicates that the Master has sent a START Byte

and the START Byte was acknowledged (wrong behavior).

Reset value: 0x0

Role of DW_apb_i2c: Master

0x0 → ACK detected for START byte- scenario not present

0x1 → ACK detected for START byte

RO 0x0

6 ABRT_HS_ACKDE

T

This field indicates that the Master is in High Speed mode

and the High Speed Master code was acknowledged

(wrong behavior).

Reset value: 0x0

Role of DW_apb_i2c: Master

0x0 → HS Master code ACKed in HS Mode- scenario not

present

0x1 → HS Master code ACKed in HS Mode

RO 0x0

5 ABRT_GCALL_RE

AD

This field indicates that DW_apb_i2c in the master mode

has sent a General Call but the user programmed the byte

following the General Call to be a read from the bus

(IC_DATA_CMD[9] is set to 1).

Reset value: 0x0

Role of DW_apb_i2c: Master-Transmitter

0x0 → GCALL is followed by read from bus-scenario not

present

0x1 → GCALL is followed by read from bus

RO 0x0

4 ABRT_GCALL_NO

ACK

This field indicates that DW_apb_i2c in master mode has

sent a General Call and no slave on the bus acknowledged

the General Call.

Reset value: 0x0

Role of DW_apb_i2c: Master-Transmitter

0x0 → GCALL not ACKed by any slave-scenario not

present

0x1 → GCALL not ACKed by any slave

RO 0x0

RP2040 Datasheet

4.3. I2C 495

Bits Name Description Type Reset

3 ABRT_TXDATA_N

OACK

This field indicates the master-mode only bit. When the

master receives an acknowledgement for the address, but

when it sends data byte(s) following the address, it did not

receive an acknowledge from the remote slave(s).

Reset value: 0x0

Role of DW_apb_i2c: Master-Transmitter

0x0 → Transmitted data non-ACKed by addressed slave-

scenario not present

0x1 → Transmitted data not ACKed by addressed slave

RO 0x0

2 ABRT_10ADDR2_

NOACK

This field indicates that the Master is in 10-bit address

mode and that the second address byte of the 10-bit

address was not acknowledged by any slave.

Reset value: 0x0

Role of DW_apb_i2c: Master-Transmitter or Master-

Receiver

0x0 → This abort is not generated

0x1 → Byte 2 of 10Bit Address not ACKed by any slave

RO 0x0

1 ABRT_10ADDR1_

NOACK

This field indicates that the Master is in 10-bit address

mode and the first 10-bit address byte was not

acknowledged by any slave.

Reset value: 0x0

Role of DW_apb_i2c: Master-Transmitter or Master-

Receiver

0x0 → This abort is not generated

0x1 → Byte 1 of 10Bit Address not ACKed by any slave

RO 0x0

0 ABRT_7B_ADDR_

NOACK

This field indicates that the Master is in 7-bit addressing

mode and the address sent was not acknowledged by any

slave.

Reset value: 0x0

Role of DW_apb_i2c: Master-Transmitter or Master-

Receiver

0x0 → This abort is not generated

0x1 → This abort is generated because of NOACK for 7-bit

address

RO 0x0

I2C: IC_SLV_DATA_NACK_ONLY Register

Offset: 0x84

Description

Generate Slave Data NACK Register

The register is used to generate a NACK for the data part of a transfer when DW_apb_i2c is acting as a slave-receiver.

This register only exists when the IC_SLV_DATA_NACK_ONLY parameter is set to 1. When this parameter disabled, this

register does not exist and writing to the register’s address has no effect.

RP2040 Datasheet

4.3. I2C 496

A write can occur on this register if both of the following conditions are met: - DW_apb_i2c is disabled (IC_ENABLE[0] =

0) - Slave part is inactive (IC_STATUS[6] = 0) Note: The IC_STATUS[6] is a register read-back location for the internal

slv_activity signal; the user should poll this before writing the ic_slv_data_nack_only bit.

Table 483.

IC_SLV_DATA_NACK_

ONLY Register

Bits Name Description Type Reset

31:1 Reserved. - - -

0 NACK Generate NACK. This NACK generation only occurs when

DW_apb_i2c is a slave-receiver. If this register is set to a

value of 1, it can only generate a NACK after a data byte is

received; hence, the data transfer is aborted and the data

received is not pushed to the receive buffer.

When the register is set to a value of 0, it generates

NACK/ACK, depending on normal criteria. - 1: generate

NACK after data byte received - 0: generate NACK/ACK

normally Reset value: 0x0

0x0 → Slave receiver generates NACK normally

0x1 → Slave receiver generates NACK upon data

reception only

RW 0x0

I2C: IC_DMA_CR Register

Offset: 0x88

Description

DMA Control Register

The register is used to enable the DMA Controller interface operation. There is a separate bit for transmit and receive.

This can be programmed regardless of the state of IC_ENABLE.

Table 484.

IC_DMA_CR Register
Bits Name Description Type Reset

31:2 Reserved. - - -

1 TDMAE Transmit DMA Enable. This bit enables/disables the

transmit FIFO DMA channel. Reset value: 0x0

0x0 → transmit FIFO DMA channel disabled

0x1 → Transmit FIFO DMA channel enabled

RW 0x0

0 RDMAE Receive DMA Enable. This bit enables/disables the receive

FIFO DMA channel. Reset value: 0x0

0x0 → Receive FIFO DMA channel disabled

0x1 → Receive FIFO DMA channel enabled

RW 0x0

I2C: IC_DMA_TDLR Register

Offset: 0x8c

Description

DMA Transmit Data Level Register

Table 485.

IC_DMA_TDLR

Register

Bits Name Description Type Reset

31:4 Reserved. - - -

RP2040 Datasheet

4.3. I2C 497

Bits Name Description Type Reset

3:0 DMATDL Transmit Data Level. This bit field controls the level at

which a DMA request is made by the transmit logic. It is

equal to the watermark level; that is, the dma_tx_req signal

is generated when the number of valid data entries in the

transmit FIFO is equal to or below this field value, and

TDMAE = 1.

Reset value: 0x0

RW 0x0

I2C: IC_DMA_RDLR Register

Offset: 0x90

Description

I2C Receive Data Level Register

Table 486.

IC_DMA_RDLR

Register

Bits Name Description Type Reset

31:4 Reserved. - - -

3:0 DMARDL Receive Data Level. This bit field controls the level at

which a DMA request is made by the receive logic. The

watermark level = DMARDL+1; that is, dma_rx_req is

generated when the number of valid data entries in the

receive FIFO is equal to or more than this field value + 1,

and RDMAE =1. For instance, when DMARDL is 0, then

dma_rx_req is asserted when 1 or more data entries are

present in the receive FIFO.

Reset value: 0x0

RW 0x0

I2C: IC_SDA_SETUP Register

Offset: 0x94

Description

I2C SDA Setup Register

This register controls the amount of time delay (in terms of number of ic_clk clock periods) introduced in the rising edge

of SCL - relative to SDA changing - when DW_apb_i2c services a read request in a slave-transmitter operation. The

relevant I2C requirement is tSU:DAT (note 4) as detailed in the I2C Bus Specification. This register must be programmed

with a value equal to or greater than 2.

Writes to this register succeed only when IC_ENABLE[0] = 0.

Note: The length of setup time is calculated using [(IC_SDA_SETUP - 1) * (ic_clk_period)], so if the user requires 10 ic_clk

periods of setup time, they should program a value of 11. The IC_SDA_SETUP register is only used by the DW_apb_i2c

when operating as a slave transmitter.

RP2040 Datasheet

4.3. I2C 498

Table 487.

IC_SDA_SETUP

Register

Bits Name Description Type Reset

31:8 Reserved. - - -

7:0 SDA_SETUP SDA Setup. It is recommended that if the required delay is

1000ns, then for an ic_clk frequency of 10 MHz,

IC_SDA_SETUP should be programmed to a value of 11.

IC_SDA_SETUP must be programmed with a minimum

value of 2.

RW 0x64

I2C: IC_ACK_GENERAL_CALL Register

Offset: 0x98

Description

I2C ACK General Call Register

The register controls whether DW_apb_i2c responds with a ACK or NACK when it receives an I2C General Call address.

This register is applicable only when the DW_apb_i2c is in slave mode.

Table 488.

IC_ACK_GENERAL_CA

LL Register

Bits Name Description Type Reset

31:1 Reserved. - - -

0 ACK_GEN_CALL ACK General Call. When set to 1, DW_apb_i2c responds

with a ACK (by asserting ic_data_oe) when it receives a

General Call. Otherwise, DW_apb_i2c responds with a

NACK (by negating ic_data_oe).

0x0 → Generate NACK for a General Call

0x1 → Generate ACK for a General Call

RW 0x1

I2C: IC_ENABLE_STATUS Register

Offset: 0x9c

Description

I2C Enable Status Register

The register is used to report the DW_apb_i2c hardware status when the IC_ENABLE[0] register is set from 1 to 0; that is,

when DW_apb_i2c is disabled.

If IC_ENABLE[0] has been set to 1, bits 2:1 are forced to 0, and bit 0 is forced to 1.

If IC_ENABLE[0] has been set to 0, bits 2:1 is only be valid as soon as bit 0 is read as '0'.

Note: When IC_ENABLE[0] has been set to 0, a delay occurs for bit 0 to be read as 0 because disabling the DW_apb_i2c

depends on I2C bus activities.

Table 489.

IC_ENABLE_STATUS

Register

Bits Name Description Type Reset

31:3 Reserved. - - -

RP2040 Datasheet

4.3. I2C 499

Bits Name Description Type Reset

2 SLV_RX_DATA_LO

ST

Slave Received Data Lost. This bit indicates if a Slave-

Receiver operation has been aborted with at least one

data byte received from an I2C transfer due to the setting

bit 0 of IC_ENABLE from 1 to 0. When read as 1,

DW_apb_i2c is deemed to have been actively engaged in

an aborted I2C transfer (with matching address) and the

data phase of the I2C transfer has been entered, even

though a data byte has been responded with a NACK.

Note: If the remote I2C master terminates the transfer

with a STOP condition before the DW_apb_i2c has a

chance to NACK a transfer, and IC_ENABLE[0] has been

set to 0, then this bit is also set to 1.

When read as 0, DW_apb_i2c is deemed to have been

disabled without being actively involved in the data phase

of a Slave-Receiver transfer.

Note: The CPU can safely read this bit when IC_EN (bit 0)

is read as 0.

Reset value: 0x0

0x0 → Slave RX Data is not lost

0x1 → Slave RX Data is lost

RO 0x0

RP2040 Datasheet

4.3. I2C 500

Bits Name Description Type Reset

1 SLV_DISABLED_W

HILE_BUSY

Slave Disabled While Busy (Transmit, Receive). This bit

indicates if a potential or active Slave operation has been

aborted due to the setting bit 0 of the IC_ENABLE register

from 1 to 0. This bit is set when the CPU writes a 0 to the

IC_ENABLE register while:

(a) DW_apb_i2c is receiving the address byte of the Slave-

Transmitter operation from a remote master;

OR,

(b) address and data bytes of the Slave-Receiver operation

from a remote master.

When read as 1, DW_apb_i2c is deemed to have forced a

NACK during any part of an I2C transfer, irrespective of

whether the I2C address matches the slave address set in

DW_apb_i2c (IC_SAR register) OR if the transfer is

completed before IC_ENABLE is set to 0 but has not taken

effect.

Note: If the remote I2C master terminates the transfer

with a STOP condition before the DW_apb_i2c has a

chance to NACK a transfer, and IC_ENABLE[0] has been

set to 0, then this bit will also be set to 1.

When read as 0, DW_apb_i2c is deemed to have been

disabled when there is master activity, or when the I2C

bus is idle.

Note: The CPU can safely read this bit when IC_EN (bit 0)

is read as 0.

Reset value: 0x0

0x0 → Slave is disabled when it is idle

0x1 → Slave is disabled when it is active

RO 0x0

0 IC_EN ic_en Status. This bit always reflects the value driven on

the output port ic_en. - When read as 1, DW_apb_i2c is

deemed to be in an enabled state. - When read as 0,

DW_apb_i2c is deemed completely inactive. Note: The

CPU can safely read this bit anytime. When this bit is read

as 0, the CPU can safely read SLV_RX_DATA_LOST (bit 2)

and SLV_DISABLED_WHILE_BUSY (bit 1).

Reset value: 0x0

0x0 → I2C disabled

0x1 → I2C enabled

RO 0x0

I2C: IC_FS_SPKLEN Register

Offset: 0xa0

Description

I2C SS, FS or FM+ spike suppression limit

RP2040 Datasheet

4.3. I2C 501

This register is used to store the duration, measured in ic_clk cycles, of the longest spike that is filtered out by the spike

suppression logic when the component is operating in SS, FS or FM+ modes. The relevant I2C requirement is tSP (table

4) as detailed in the I2C Bus Specification. This register must be programmed with a minimum value of 1.

Table 490.

IC_FS_SPKLEN

Register

Bits Name Description Type Reset

31:8 Reserved. - - -

7:0 IC_FS_SPKLEN This register must be set before any I2C bus transaction

can take place to ensure stable operation. This register

sets the duration, measured in ic_clk cycles, of the longest

spike in the SCL or SDA lines that will be filtered out by the

spike suppression logic. This register can be written only

when the I2C interface is disabled which corresponds to

the IC_ENABLE[0] register being set to 0. Writes at other

times have no effect. The minimum valid value is 1;

hardware prevents values less than this being written, and

if attempted results in 1 being set. or more information,

refer to 'Spike Suppression'.

RW 0x07

I2C: IC_CLR_RESTART_DET Register

Offset: 0xa8

Description

Clear RESTART_DET Interrupt Register

Table 491.

IC_CLR_RESTART_DET

Register

Bits Name Description Type Reset

31:1 Reserved. - - -

0 CLR_RESTART_DE

T

Read this register to clear the RESTART_DET interrupt (bit

12) of IC_RAW_INTR_STAT register.

Reset value: 0x0

RO 0x0

I2C: IC_COMP_PARAM_1 Register

Offset: 0xf4

Description

Component Parameter Register 1

Note This register is not implemented and therefore reads as 0. If it was implemented it would be a constant read-only

register that contains encoded information about the component’s parameter settings. Fields shown below are the

settings for those parameters

Table 492.

IC_COMP_PARAM_1

Register

Bits Name Description Type Reset

31:24 Reserved. - - -

23:16 TX_BUFFER_DEPT

H

TX Buffer Depth = 16 RO 0x00

15:8 RX_BUFFER_DEPT

H

RX Buffer Depth = 16 RO 0x00

7 ADD_ENCODED_P

ARAMS

Encoded parameters not visible RO 0x0

6 HAS_DMA DMA handshaking signals are enabled RO 0x0

5 INTR_IO COMBINED Interrupt outputs RO 0x0

RP2040 Datasheet

4.3. I2C 502

Bits Name Description Type Reset

4 HC_COUNT_VALU

ES

Programmable count values for each mode. RO 0x0

3:2 MAX_SPEED_MO

DE

MAX SPEED MODE = FAST MODE RO 0x0

1:0 APB_DATA_WIDT

H

APB data bus width is 32 bits RO 0x0

I2C: IC_COMP_VERSION Register

Offset: 0xf8

Description

I2C Component Version Register

Table 493.

IC_COMP_VERSION

Register

Bits Name Description Type Reset

31:0 IC_COMP_VERSION RO 0x3230312a

I2C: IC_COMP_TYPE Register

Offset: 0xfc

Description

I2C Component Type Register

Table 494.

IC_COMP_TYPE

Register

Bits Name Description Type Reset

31:0 IC_COMP_TYPE Designware Component Type number = 0x44_57_01_40.

This assigned unique hex value is constant and is derived

from the two ASCII letters 'DW' followed by a 16-bit

unsigned number.

RO 0x44570140

4.4. SPI

ARM Documentation

Excerpted from the ARM PrimeCell Synchronous Serial Port (PL022) Technical Reference Manual. Used

with permission.

RP2040 has two identical SPI controllers, both based on an ARM Primecell Synchronous Serial Port (SSP) (PL022)

(Revision r1p4). Note this is NOT the same as the QSPI interface covered in Section 4.10.

Each controller supports the following features:

• Master or Slave modes

◦ Motorola SPI-compatible interface

◦ Texas Instruments synchronous serial interface

◦ National Semiconductor Microwire interface

• 8 deep Tx and Rx FIFOs

• Interrupt generation to service FIFOs or indicate error conditions

RP2040 Datasheet

4.4. SPI 503

https://developer.arm.com/documentation/ddi0194/latest

• Can be driven from DMA

• Programmable clock rate

• Programmable data size 4-16 bits

Each controller can be connected to a number of GPIO pins as defined in the GPIO muxing Table 279 in Section 2.19.2.

Connections to the GPIO muxing are prefixed with the SPI instance name spi0_ or spi1_, and include the following:

• clock sclk (connects to SSPCLKOUT in the following sections when the controller is operating in master mode, or

SSPCLKIN when in slave mode)

• active low chip select or frame sync ss_n (referred to as SSPFSSOUT in the following sections)

• transmit data tx (referred to as SSPTXD in the following sections, noting that nSSPOE is NOT connected to the tx

pad, so output data is not tristated by the SPI controller)

• receive data rd (referred to as SSPRXD in the following sections)

The SPI TX pin function is wired to always assert the pad output enable, and is not driven from nSSPOE. When multiple

SPI slaves are sharing a bus software would need to switch the output enable. This could be done by toggling oeover

field of the relevant iobank0.ctrl register, or by switching GPIO function.

The SPI uses clk_peri as its reference clock for SPI timing, and is referred to as SSPCLK in the following sections.

clk_sys is used as the bus clock, and is referred to as PCLK in the following sections (also see Section 2.15.1).

4.4.1. Overview

The PrimeCell SSP is a master or slave interface for synchronous serial communication with peripheral devices that

have Motorola SPI, National Semiconductor Microwire, or Texas Instruments synchronous serial interfaces.

The PrimeCell SSP performs serial-to-parallel conversion on data received from a peripheral device. The CPU accesses

data, control, and status information through the AMBA APB interface. The transmit and receive paths are buffered with

internal FIFO memories enabling up to eight 16-bit values to be stored independently in both transmit and receive

modes. Serial data is transmitted on SSPTXD and received on SSPRXD.

The PrimeCell SSP includes a programmable bit rate clock divider and prescaler to generate the serial output clock,

SSPCLKOUT, from the input clock, SSPCLK. Bit rates are supported to 2MHz and higher, subject to choice of frequency

for SSPCLK, and the maximum bit rate is determined by peripheral devices.

You can use the control registers SSPCR0 and SSPCR1 to program the PrimeCell SSP operating mode, frame format,

and size.

The following individually maskable interrupts are generated:

• SSPTXINTR requests servicing of the transmit buffer

• SSPRXINTR requests servicing of the receive buffer

• SSPRORINTR indicates an overrun condition in the receive FIFO

• SSPRTINTR indicates that a timeout period expired while data was present in the receive FIFO.

A single combined interrupt is asserted if any of the individual interrupts are asserted and unmasked. This interrupt is

connected to the processor interrupt controllers in RP2040.

In addition to the above interrupts, a set of DMA signals are provided for interfacing with a DMA controller.

Depending on the operating mode selected, the SSPFSSOUT output operates as:

• an active-HIGH frame synchronization output for Texas Instruments synchronous serial frame format

• an active-LOW slave select for SPI and Microwire.

RP2040 Datasheet

4.4. SPI 504

4.4.2. Functional Description

PRESETn

PSEL

PENABLE

PWRITE

PADDR[11:2]

PWDATA[15:0]

PRDATA[15:0]

PCLK

AMBA

APB

interface

FIFO status

and interrupt

generation

Transmit and

receive logic

PWDATAIn[15:0] SSPTXINTR

TxRdDataIn[15:0]

SSPRXINTR

SSPRORINTR

SSPRTINTR

PCLK

SSPTXINTR

SSPRXDMACLR

SSPTXDMACLR

SSPRXDMASREQ

SSPRXDMABREQ

SSPTXDMASREQ

SSPTXDMABREQ

RxFRdData

[15:0]

nSSPRST

PCLK

SSPCLKDIV

RxWrData[15:0]

Prescale value

Tx/Rx FIFO watermark levels

Tx/Rx params

SSPCLK

nSSPOE

SSPTXD

SSPFSSOUT

SSPCLKOUT

nSSPCTLOE

SSPCLKIN

SSPFSSIN

SSPRXD

SSPRTRINTR

SSPRORINTR

SSPRXRINTR

SSPINTR

PCLK

PCLK

Tx FIFO

16 bits wide,

8 locations

deep

Rx FIFO

16 bits wide,

8 locations

deep

Clock

prescaler

Register

block

DMA

interface

SSPCLK

SSPCLK

DATAOUTDATAIN

Figure 87. PrimeCell

SSP block diagram.

For clarity, does not

show the test logic.

4.4.2.1. AMBA APB interface

The AMBA APB interface generates read and write decodes for accesses to status and control registers, and transmit

and receive FIFO memories.

4.4.2.2. Register block

The register block stores data written, or to be read, across the AMBA APB interface.

4.4.2.3. Clock prescaler

When configured as a master, an internal prescaler, comprising two free-running reloadable serially linked counters,

provides the serial output clock SSPCLKOUT.

You can program the clock prescaler, using the SSPCPSR register, to divide SSPCLK by a factor of 2-254 in steps of two.

By not utilizing the least significant bit of the SSPCPSR register, division by an odd number is not possible which

ensures that a symmetrical, equal mark space ratio, clock is generated. See SSPCPSR.

The output of the prescaler is divided again by a factor of 1-256, by programming the SSPCR0 control register, to give

the final master output clock SSPCLKOUT.

RP2040 Datasheet

4.4. SPI 505

 NOTE

The PCLK and SSPCLK clock inputs in Figure 87 are connected to the clk_sys and clk_peri system-level clock nets on

RP2040, respectively. By default clk_peri is attached directly to the system clock, but can be detached to maintain

constant SPI frequency if the system clock is varied dynamically. See Figure 28 for an overview of the RP2040 clock

architecture.

4.4.2.4. Transmit FIFO

The common transmit FIFO is a 16-bit wide, 8-locations deep memory buffer. CPU data written across the AMBA APB

interface are stored in the buffer until read out by the transmit logic.

When configured as a master or a slave, parallel data is written into the transmit FIFO prior to serial conversion, and

transmission to the attached slave or master respectively, through the SSPTXD pin.

4.4.2.5. Receive FIFO

The common receive FIFO is a 16-bit wide, 8-locations deep memory buffer. Received data from the serial interface are

stored in the buffer until read out by the CPU across the AMBA APB interface.

When configured as a master or slave, serial data received through the SSPRXD pin is registered prior to parallel loading

into the attached slave or master receive FIFO respectively.

4.4.2.6. Transmit and receive logic

When configured as a master, the clock to the attached slaves is derived from a divided-down version of SSPCLK

through the previously described prescaler operations. The master transmit logic successively reads a value from its

transmit FIFO and performs parallel to serial conversion on it. Then, the serial data stream and frame control signal,

synchronized to SSPCLKOUT, are output through the SSPTXD pin to the attached slaves. The master receive logic

performs serial to parallel conversion on the incoming synchronous SSPRXD data stream, extracting and storing values

into its receive FIFO, for subsequent reading through the APB interface.

When configured as a slave, the SSPCLKIN clock is provided by an attached master and used to time its transmission

and reception sequences. The slave transmit logic, under control of the master clock, successively reads a value from

its transmit FIFO, performs parallel to serial conversion, then outputs the serial data stream and frame control signal

through the slave SSPTXD pin. The slave receive logic performs serial to parallel conversion on the incoming SSPRXD

data stream, extracting and storing values into its receive FIFO, for subsequent reading through the APB interface.

4.4.2.7. Interrupt generation logic

The PrimeCell SSP generates four individual maskable, active-HIGH interrupts. A combined interrupt output is generated

as an OR function of the individual interrupt requests.

The transmit and receive dynamic data-flow interrupts, SSPTXINTR and SSPRXINTR, are separated from the status

interrupts so that data can be read or written in response to the FIFO trigger levels.

4.4.2.8. DMA interface

The PrimeCell SSP provides an interface to connect to a DMA controller, see Section 4.4.3.16.

RP2040 Datasheet

4.4. SPI 506

4.4.2.9. Synchronizing registers and logic

The PrimeCell SSP supports both asynchronous and synchronous operation of the clocks, PCLK and SSPCLK.

Synchronization registers and handshaking logic have been implemented, and are active at all times. Synchronization of

control signals is performed on both directions of data flow, that is:

• from the PCLK to the SSPCLK domain

• from the SSPCLK to the PCLK domain.

4.4.3. Operation

4.4.3.1. Interface reset

The PrimeCell SSP is reset by the global reset signal, PRESETn, and a block-specific reset signal, nSSPRST. The device

reset controller asserts nSSPRST asynchronously and negate it synchronously to SSPCLK.

4.4.3.2. Configuring the SSP

Following reset, the PrimeCell SSP logic is disabled and must be configured when in this state. It is necessary to

program control registers SSPCR0 and SSPCR1 to configure the peripheral as a master or slave operating under one of

the following protocols:

• Motorola SPI

• Texas Instruments SSI

• National Semiconductor.

The bit rate, derived from the external SSPCLK, requires the programming of the clock prescale register SSPCPSR.

4.4.3.3. Enable PrimeCell SSP operation

You can either prime the transmit FIFO, by writing up to eight 16-bit values when the PrimeCell SSP is disabled, or permit

the transmit FIFO service request to interrupt the CPU. Once enabled, transmission or reception of data begins on the

transmit, SSPTXD, and receive, SSPRXD, pins.

4.4.3.4. Clock ratios

There is a constraint on the ratio of the frequencies of PCLK to SSPCLK. The frequency of SSPCLK must be less than or

equal to that of PCLK. This ensures that control signals from the SSPCLK domain to the PCLK domain are guaranteed

to get synchronized before one frame duration:

.

In the slave mode of operation, the SSPCLKIN signal from the external master is double-synchronized and then delayed

to detect an edge. It takes three SSPCLKs to detect an edge on SSPCLKIN. SSPTXD has less setup time to the falling

edge of SSPCLKIN on which the master is sampling the line.

The setup and hold times on SSPRXD, with reference to SSPCLKIN, must be more conservative to ensure that it is at the

right value when the actual sampling occurs within the SSPMS. To ensure correct device operation, SSPCLK must be at

least 12 times faster than the maximum expected frequency of SSPCLKIN.

The frequency selected for SSPCLK must accommodate the desired range of bit clock rates. The ratio of minimum

SSPCLK frequency to SSPCLKOUT maximum frequency in the case of the slave mode is 12, and for the master mode, it

is two.

RP2040 Datasheet

4.4. SPI 507

For example, at the maximum SSPCLK (clk_peri) frequency on RP2040 of 133MHz, the maximum peak bit rate in

master mode is 62.5Mbps. This is achieved with the SSPCPSR register programmed with a value of 2, and the SCR[7:0]

field in the SSPCR0 register programmed with a value of 0.

In slave mode, the same maximum SSPCLK frequency of 133MHz can achieve a peak bit rate of 133 / 12 =

~11.083Mbps. The SSPCPSR register can be programmed with a value of 12, and the SCR[7:0] field in the SSPCR0

register can be programmed with a value of 0. Similarly, the ratio of SSPCLK maximum frequency to SSPCLKOUT

minimum frequency is 254 × 256.

The minimum frequency of SSPCLK is governed by the following inequalities, both of which must be satisfied:

, for master mode

, for slave mode.

The maximum frequency of SSPCLK is governed by the following inequalities, both of which must be satisfied:

, for master mode

, for slave mode.

4.4.3.5. Programming the SSPCR0 Control Register

The SSPCR0 register is used to:

• program the serial clock rate

• select one of the three protocols

• select the data word size, where applicable.

The Serial Clock Rate (SCR) value, in conjunction with the SSPCPSR clock prescale divisor value, CPSDVSR, is used to

derive the PrimeCell SSP transmit and receive bit rate from the external SSPCLK.

The frame format is programmed through the FRF bits, and the data word size through the DSS bits.

Bit phase and polarity, applicable to Motorola SPI format only, are programmed through the SPH and SPO bits.

4.4.3.6. Programming the SSPCR1 Control Register

The SSPCR1 register is used to:

• select master or slave mode

• enable a loop back test feature

• enable the PrimeCell SSP peripheral.

To configure the PrimeCell SSP as a master, clear the SSPCR1 register master or slave selection bit, MS, to 0. This is the

default value on reset.

Setting the SSPCR1 register MS bit to 1 configures the PrimeCell SSP as a slave. When configured as a slave, enabling

or disabling of the PrimeCell SSP SSPTXD signal is provided through the SSPCR1 slave mode SSPTXD output disable

bit, SOD. You can use this in some multi-slave environments where masters might parallel broadcast.

To enable the operation of the PrimeCell SSP, set the Synchronous Serial Port Enable (SSE) bit to 1.

4.4.3.6.1. Bit rate generation

The serial bit rate is derived by dividing down the input clock, SSPCLK. The clock is first divided by an even prescale

value CPSDVSR in the range 2-254, and is programmed in SSPCPSR. The clock is divided again by a value in the range 1-

256, that is 1 + SCR, where SCR is the value programmed in SSPCR0.

RP2040 Datasheet

4.4. SPI 508

The following equation defines the frequency of the output signal bit clock, SSPCLKOUT:

For example, if SSPCLK is 125MHz, and CPSDVSR = 2, then SSPCLKOUT has a frequency range from 244kHz -

62.5MHz.

4.4.3.7. Frame format

Each data frame is between 4-16 bits long, depending on the size of data programmed, and is transmitted starting with

the MSB. You can select the following basic frame types:

• Texas Instruments synchronous serial

• Motorola SPI

• National Semiconductor Microwire.

For all formats, the serial clock, SSPCLKOUT, is held inactive while the PrimeCell SSP is idle, and transitions at the

programmed frequency only during active transmission or reception of data. The idle state of SSPCLKOUT is utilized to

provide a receive timeout indication that occurs when the receive FIFO still contains data after a timeout period.

For Motorola SPI and National Semiconductor Microwire frame formats, the serial frame, SSPFSSOUT, pin is active-

LOW, and is asserted, pulled-down, during the entire transmission of the frame.

For Texas Instruments synchronous serial frame format, the SSPFSSOUT pin is pulsed for one serial clock period,

starting at its rising edge, prior to the transmission of each frame. For this frame format, both the PrimeCell SSP and the

off-chip slave device drive their output data on the rising edge of SSPCLKOUT, and latch data from the other device on

the falling edge.

Unlike the full-duplex transmission of the other two frame formats, the National Semiconductor Microwire format uses a

special master-slave messaging technique that operates at half-duplex. In this mode, when a frame begins, an 8-bit

control message is transmitted to the off-chip slave. During this transmit, the SSS receives no incoming data. After the

message has been sent, the off-chip slave decodes it and, after waiting one serial clock after the last bit of the 8-bit

control message has been sent, responds with the requested data. The returned data can be 4-16 bits in length, making

the total frame length in the range 13-25 bits.

4.4.3.8. Texas Instruments synchronous serial frame format

Figure 88 shows the Texas Instruments synchronous serial frame format for a single transmitted frame.

SSPCLKOUT/SSPCLIN

SSPFSSOUT/SSPFSSIN

SSPTXD/SSPRXD

nSSPOE

MSB LSB

4 to 16 bits

Figure 88. Texas

Instruments

synchronous serial

frame format, single

transfer

In this mode, SSPCLKOUT and SSPFSSOUT are forced LOW, and the transmit data line, SSPTXD is tristated whenever

the PrimeCell SSP is idle. When the bottom entry of the transmit FIFO contains data, SSPFSSOUT is pulsed HIGH for one

SSPCLKOUT period. The value to be transmitted is also transferred from the transmit FIFO to the serial shift register of

the transmit logic. On the next rising edge of SSPCLKOUT, the MSB of the 4-bit to 16-bit data frame is shifted out on the

SSPTXD pin. In a similar way, the MSB of the received data is shifted onto the SSPRXD pin by the off-chip serial slave

device.

RP2040 Datasheet

4.4. SPI 509

Both the PrimeCell SSP and the off-chip serial slave device then clock each data bit into their serial shifter on the falling

edge of each SSPCLKOUT. The received data is transferred from the serial shifter to the receive FIFO on the first rising

edge of PCLK after the LSB has been latched.

Figure 89 shows the Texas Instruments synchronous serial frame format when back-to-back frames are transmitted.

SSPCLKOUT/SSPCLIN

SSPFSSOUT/SSPFSSIN

SSPTXD/SSPRXD

nSSPOE (=0)

MSB LSB

4 to 16 bits

Figure 89. Texas

Instruments

synchronous serial

frame format,

continuous transfer

4.4.3.9. Motorola SPI frame format

The Motorola SPI interface is a four-wire interface where the SSPFSSOUT signal behaves as a slave select. The main

feature of the Motorola SPI format is that you can program the inactive state and phase of the SSPCLKOUT signal using

the SPO and SPH bits of the SSPSCR0 control register.

4.4.3.9.1. SPO, clock polarity

When the SPO clock polarity control bit is LOW, it produces a steady state LOW value on the SSPCLKOUT pin. If the SPO

clock polarity control bit is HIGH, a steady state HIGH value is placed on the SSPCLKOUT pin when data is not being

transferred.

4.4.3.9.2. SPH, clock phase

The SPH control bit selects the clock edge that captures data and enables it to change state. It has the most impact on

the first bit transmitted by either permitting or not permitting a clock transition before the first data capture edge.

When the SPH phase control bit is LOW, data is captured on the first clock edge transition.

When the SPH clock phase control bit is HIGH, data is captured on the second clock edge transition.

4.4.3.10. Motorola SPI Format with SPO=0, SPH=0

Figure 90 and Figure 91 shows a continuous transmission signal sequence for Motorola SPI frame format with SPO=0,

SPH=0. Figure 90 shows a single transmission signal sequence for Motorola SPI frame format with SPO=0, SPH=0.

SSPCLKOUT/SSPCLIN

SSPFSSOUT/SSPFSSIN

SSPRXD MSB LSB Q

SSPRXD MSB LSB

4 to 16 bits

nSSPOE

Figure 90. Motorola

SPI frame format,

single transfer, with

SPO=0 and SPH=0

Figure 91 shows a continuous transmission signal sequence for Motorola SPI frame format with SPO=0, SPH=0.

RP2040 Datasheet

4.4. SPI 510

SSPCLKOUT/SSPCLIN

SSPFSSOUT/SSPFSSIN

SSPTXD/SSPRXD

nSSPOE (=0)

MSBLSB LSB MSB

4 to 16 bits

Figure 91. Motorola

SPI frame format,

single transfer, with

SPO=0 and SPH=0

In this configuration, during idle periods:

• the SSPCLKOUT signal is forced LOW

• the SSPFSSOUT signal is forced HIGH

• the transmit data line SSPTXD is arbitrarily forced LOW

• the nSSPOE pad enable signal is forced HIGH (note this is not connected to the pad in RP2040)

• when the PrimeCell SSP is configured as a master, the nSSPCTLOE line is driven LOW, enabling the SSPCLKOUT

pad, active-LOW enable

• when the PrimeCell SSP is configured as a slave, the nSSPCTLOE line is driven HIGH, disabling the SSPCLKOUT

pad, active-LOW enable.

If the PrimeCell SSP is enable, and there is valid data within the transmit FIFO, the start of transmission is signified by

the SSPFSSOUT master signal being driven LOW. This causes slave data to be enabled onto the SSPRXD input line of

the master. The nSSPOE line is driven LOW, enabling the master SSPTXD output pad.

One-half SSPCLKOUT period later, valid master data is transferred to the SSPTXD pin. Now that both the master and

slave data have been set, the SSPCLKOUT master clock pin goes HIGH after one additional half SSPCLKOUT period.

The data is now captured on the rising and propagated on the falling edges of the SSPCLKOUT signal.

In the case of a single word transmission, after all bits of the data word have been transferred, the SSPFSSOUT line is

returned to its idle HIGH state one SSPCLKOUT period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSPFSSOUT signal must be pulsed HIGH between

each data word transfer. This is because the slave select pin freezes the data in its serial peripheral register and does

not permit it to be altered if the SPH bit is logic zero. Therefore, the master device must raise the SSPFSSIN pin of the

slave device between each data transfer to enable the serial peripheral data write. On completion of the continuous

transfer, the SSPFSSOUT pin is returned to its idle state one SSPCLKOUT period after the last bit has been captured.

4.4.3.11. Motorola SPI Format with SPO=0, SPH=1

Figure 92 shows the transfer signal sequence for Motorola SPI format with SPO=0, SPH=1, and it covers both single and

continuous transfers.

SSPCLKOUT/SSPCLIN

SSPFSSOUT/SSPFSSIN

SSPRXD MSB LSBQ Q

SSPRXD MSB LSB

4 to 16 bits

nSSPOE

Figure 92. Motorola

SPI frame format with

SPO=0 and SPH=1,

single and continuous

transfers

In this configuration, during idle periods:

• the SSPCLKOUT signal is forced LOW

• The SSPFSSOUT signal is forced HIGH

• the transmit data line SSPTXD is arbitrarily forced LOW

RP2040 Datasheet

4.4. SPI 511

• the nSSPOE pad enable signal is forced HIGH (note this is not connected to the pad in RP2040)

• when the PrimeCell SSP is configured as a master, the nSSPCTLOE line is driven LOW, enabling the SSPCLKOUT

pad, active-LOW enable

• when the PrimeCell SSP is configured as a slave, the nSSPCTLOE line is driven HIGH, disabling the SSPCLKOUT

pad, active-LOW enable.

If the PrimeCell SSP is enabled, and there is valid data within the transmit FIFO, the start of transmission is signified by

the SSPFSSOUT master signal being driven LOW. The nSSPOE line is driven LOW, enabling the master SSPTXD output

pad. After an additional one half SSPCLKOUT period, both master and slave valid data is enabled onto their respective

transmission lines. At the same time, the SSPCLKOUT is enabled with a rising edge transition.

Data is then captured on the falling edges and propagated on the rising edges of the SSPCLKOUT signal.

In the case of a single word transfer, after all bits have been transferred, the SSPFSSOUT line is returned to its idle HIGH

state one SSPCLKOUT period after the last bit has been captured. For continuous back-to-back transfers, the

SSPFSSOUT pin is held LOW between successive data words and termination is the same as that of the single word

transfer.

4.4.3.12. Motorola SPI Format with SPO=1, SPH=0

Figure 93 and Figure 94 show single and continuous transmission signal sequences for Motorola SPI format with

SPO=1, SPH=0.

Figure 93 shows a single transmission signal sequence for Motorola SPI format with SPO=1, SPH=0.

SSPCLKOUT/SSPCLIN

SSPFSSOUT/SSPFSSIN

SSPRXD MSB LSB Q

SSPRXD MSB LSB

4 to 16 bits

nSSPOE

Figure 93. Motorola

SPI frame format,

single transfer, with

SPO=1 and SPH=0

Figure 94 shows a continuous transmission signal sequence for Motorola SPI format with SPO=1, SPH=0.

 NOTE

In Figure 93, Q is an undefined signal.

SSPCLKOUT/SSPCLIN

SSPFSSOUT/SSPFSSIN

SSPTXD/SSPRXD

nSSPOE (=0)

MSBLSB LSB MSB

4 to 16 bits

Figure 94. Motorola

SPI frame format,

continuous transfer,

with SPO=1 and

SPH=0

In this configuration, during idle periods:

• the SSPCLKOUT signal is forced HIGH

• the SSPFSSOUT signal is forced HIGH

• the transmit data line SSPTXD is arbitrarily forced LOW

• the nSSPOE pad enable signal is forced HIGH (note this is not connected to the pad in RP2040)

• when the PrimeCell SSP is configured as a master, the nSSPCTLOE line is driven LOW, enabling the SSPCLKOUT

pad, active-LOW enable

RP2040 Datasheet

4.4. SPI 512

• when the PrimeCell SSP is configured as a slave, the nSSPCTLOE line is driven HIGH, disabling the SSPCLKOUT

pad, active-LOW enable.

If the PrimeCell SSP is enabled, and there is valid data within the transmit FIFO, the start of transmission is signified by

the SSPFSSOUT master signal being driven LOW, and this causes slave data to be immediately transferred onto the

SSPRXD line of the master. The nSSPOE line is driven LOW, enabling the master SSPTXD output pad.

One half period later, valid master data is transferred to the SSPTXD line. Now that both the master and slave data have

been set, the SSPCLKOUT master clock pin becomes LOW after one additional half SSPCLKOUT period. This means

that data is captured on the falling edges and be propagated on the rising edges of the SSPCLKOUT signal.

In the case of a single word transmission, after all bits of the data word are transferred, the SSPFSSOUT line is returned

to its idle HIGH state one SSPCLKOUT period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSPFSSOUT signal must be pulsed HIGH between

each data word transfer. This is because the slave select pin freezes the data in its serial peripheral register and does

not permit it to be altered if the SPH bit is logic zero. Therefore, the master device must raise the SSPFSSIN pin of the

slave device between each data transfer to enable the serial peripheral data write. On completion of the continuous

transfer, the SSPFSSOUT pin is returned to its idle state one SSPCLKOUT period after the last bit has been captured.

4.4.3.13. Motorola SPI Format with SPO=1, SPH=1

Figure 95 shows the transfer signal sequence for Motorola SPI format with SPO=1, SPH=1, and it covers both single and

continuous transfers.

SSPCLKOUT/SSPCLIN

SSPFSSOUT/SSPFSSIN

SSPRXD MSB LSBQ Q

SSPRXD MSB LSB

4 to 16 bits

nSSPOE

Figure 95. Motorola

SPI frame format with

SPO=1 and SPH=1,

single and continuous

transfers

 NOTE

In Figure 95, Q is an undefined signal.

In this configuration, during idle periods:

• the SSPCLKOUT signal is forced HIGH

• the SSPFSSOUT signal is forced HIGH

• the transmit data line SSPTXD is arbitrarily forced LOW

• the nSSPOE pad enable signal is forced HIGH (note this is not connected to the pad in RP2040)

• when the PrimeCell SSP is configured as a master, the nSSPCTLOE line is driven LOW, enabling the SSPCLKOUT

pad, active-LOW enable

• when the PrimeCell SSP is configured as a slave, the nSSPCTLOE line is driven HIGH, disabling the SSPCLKOUT

pad, active-LOW enable.

If the PrimeCell SSP is enabled, and there is valid data within the transmit FIFO, the start of transmission is signified by

the SSPFSSOUT master signal being driven LOW. The nSSPOE line is driven LOW, enabling the master SSPTXD output

pad. After an additional one half SSPCLKOUT period, both master and slave data are enabled onto their respective

transmission lines. At the same time, the SSPCLKOUT is enabled with a falling edge transition. Data is then captured on

the rising edges and propagated on the falling edges of the SSPCLKOUT signal.

After all bits have been transferred, in the case of a single word transmission, the SSPFSSOUT line is returned to its idle

HIGH state one SSPCLKOUT period after the last bit has been captured.

RP2040 Datasheet

4.4. SPI 513

For continuous back-to-back transmissions, the SSPFSSOUT pin remains in its active-LOW state, until the final bit of the

last word has been captured, and then returns to its idle state as the previous section describes.

For continuous back-to-back transfers, the SSPFSSOUT pin is held LOW between successive data words and

termination is the same as that of the single word transfer.

4.4.3.14. National Semiconductor Microwire frame format

Figure 96 shows the National Semiconductor Microwire frame format for a single frame. Figure 97 shows the same

format when back to back frames are transmitted.

SSPCLKOUT/SSPCLIN

SSPFSSOUT/SSPFSSIN

SSPTXD

SSPRXD

nSSPOE

MSB LSB

MSB0 LSB

8-bit control

4 to 16 bits output data

Figure 96. Microwire

frame format, single

transfer

Microwire format is very similar to SPI format, except that transmission is half-duplex instead of full-duplex, using a

master-slave message passing technique. Each serial transmission begins with an 8-bit control word that is transmitted

from the PrimeCell SSP to the off-chip slave device. During this transmission, the PrimeCell SSP receives no incoming

data. After the message has been sent, the off-chip slave decodes it and, after waiting one serial clock after the last bit

of the 8-bit control message has been sent, responds with the required data. The returned data is 4 to 16 bits in length,

making the total frame length in the range 13-25 bits.

In this configuration, during idle periods:

• SSPCLKOUT is forced LOW

• SSPFSSOUT is forced HIGH

• the transmit data line, SSPTXD, is arbitrarily forced LOW

• the nSSPOE pad enable signal is forced HIGH (note this is not connected to the pad in RP2040)

A transmission is triggered by writing a control byte to the transmit FIFO. The falling edge of SSPFSSOUT causes the

value contained in the bottom entry of the transmit FIFO to be transferred to the serial shift register of the transmit logic,

and the MSB of the 8-bit control frame to be shifted out onto the SSPTXD pin. SSPFSSOUT remains LOW for the

duration of the frame transmission. The SSPRXD pin remains tristated during this transmission.

The off-chip serial slave device latches each control bit into its serial shifter on the rising edge of each SSPCLKOUT.

After the last bit is latched by the slave device, the control byte is decoded during a one clock wait-state, and the slave

responds by transmitting data back to the PrimeCell SSP. Each bit is driven onto SSPRXD line on the falling edge of

SSPCLKOUT. The PrimeCell SSP in turn latches each bit on the rising edge of SSPCLKOUT. At the end of the frame, for

single transfers, the SSPFSSOUT signal is pulled HIGH one clock period after the last bit has been latched in the receive

serial shifter, that causes the data to be transferred to the receive FIFO.

 NOTE

The off-chip slave device can tristate the receive line either on the falling edge of SSPCLKOUT after the LSB has

been latched by the receive shifter, or when the SSPFSSOUT pin goes HIGH.

For continuous transfers, data transmission begins and ends in the same manner as a single transfer. However, the

SSPFSSOUT line is continuously asserted, held LOW, and transmission of data occurs back-to-back. The control byte of

the next frame follows directly after the LSB of the received data from the current frame. Each of the received values is

transferred from the receive shifter on the falling edge SSPCLKOUT, after the LSB of the frame has been latched into the

PrimeCell SSP.

Figure 97 shows the National Semiconductor Microwire frame format when back-to-back frames are transmitted.

RP2040 Datasheet

4.4. SPI 514

SSPCLKOUT/SSPCLIN

SSPFSSOUT/SSPFSSIN

SSPTXD

SSPRXD

nSSPOE

MSB LSBLSB

MSB0 MSBLSB

8-bit control

4 to 16 bits output data

Figure 97. Microwire

frame format,

continuous transfers

In Microwire mode, the PrimeCell SSP slave samples the first bit of receive data on the rising edge of SSPCLKIN after

SSPFSSIN has gone LOW. Masters that drive a free-running SSPCKLIN must ensure that the SSPFSSIN signal has

sufficient setup and hold margins with respect to the rising edge of SSPCLKIN.

Figure 98 shows these setup and hold time requirements.

With respect to the SSPCLKIN rising edge on which the first bit of receive data is to be sampled by the PrimeCell SSP

slave, SSPFSSIN must have a setup of at least two times the period of SSPCLK on which the PrimeCell SSP operates.

With respect to the SSPCLKIN rising edge previous to this edge, SSPFSSIN must have a hold of at least one SSPCLK

period.

SSPCLKIN

SSPFSSIN

SSPRXD

t
Hold

=t
SSPCLK

t
Setup

=(2×t
SSPCLK

)

First RX data bit to be
sampled by SSP slave

Figure 98. Microwire

frame format,

SSPFSSIN input setup

and hold requirements

4.4.3.15. Examples of master and slave configurations

Figure 99, Figure 100, and Figure 101 shows how you can connect the PrimeCell SSP (PL022) peripheral to other

synchronous serial peripherals, when it is configured as a master or a slave.

 NOTE

The SSP (PL022) does not support dynamic switching between master and slave in a system. Each instance is

configured and connected either as a master or slave.

Figure 99 shows the PrimeCell SSP (PL022) instanced twice, as a single master and one slave. The master can

broadcast to the slave through the master SSPTXD line. In response, the slave drives its nSSPOE signal HIGH, enabling

its SSPTXD data onto the SSPRXD line of the master.

PL022 configured

as master

PL022 configured

as slave

SSPRXD

nSSPOE

SSPTXD

SSPFSSIN

SSPFSSOUT

SSPCLKIN

nSSPCTLOE

SSPCLKOUT

SSPTXD

nSSPOE

SSPRXD

SSPFSSOUT

SSPFSSIN

SSPCLKOUT

nSSPCTLOE

SSPCLKIN

OV

OV

Figure 99. PrimeCell

SSP master coupled to

a PL022 slave

RP2040 Datasheet

4.4. SPI 515

Figure 100 shows how an PrimeCell SSP (PL022), configured as master, interfaces to a Motorola SPI slave. The SPI

Slave Select (SS) signal is permanently tied LOW and configures it as a slave. Similar to the above operation, the master

can broadcast to the slave through the master PrimeCell SSP SSPTXD line. In response, the slave drives its SPI MISO

port onto the SSPRXD line of the master.

PL022 configured

as master

SPI slave

MOSI

MISO

SCK

SS

SSPTXD

nSSPOE

SSPRXD

SSPFSSOUT

SSPFSSIN

SSPCLKOUT

nSSPCTLOE

SSPCLKIN

OV

OV

Figure 100. PrimeCell

SSP master coupled to

an SPI slave

Figure 101 shows a Motorola SPI configured as a master and interfaced to an instance of a PrimeCell SSP (PL022)

configured as a slave. In this case, the slave Select Signal (SS) is permanently tied HIGH to configure it as a master. The

master can broadcast to the slave through the master SPI MOSI line and in response, the slave drives its nSSPOE signal

LOW. This enables its SSPTXD data onto the MISO line of the master.

SPI master PL022 configured

as slave

MOSI

MISO

SCK

SS

SSPRXD

nSSPOE

SSPTXD

OV

SSPFSSIN

SSPFSSOUT

SSPCLKIN

nSSPCTLOE

SSPCLKOUT

Vdd

Figure 101. SPI master

coupled to a PrimeCell

SSP slave

4.4.3.16. PrimeCell DMA interface

The PrimeCell SSP provides an interface to connect to the DMA controller. The PrimeCell SSP DMA control register,

SSPDMACR controls the DMA operation of the PrimeCell SSP.

The DMA interface includes the following signals, for receive:

SSPRXDMASREQ

Single-character DMA transfer request, asserted by the SSP. This signal is asserted when the receive FIFO contains

at least one character.

SSPRXDMABREQ

Burst DMA transfer request, asserted by the SSP. This signal is asserted when the receive FIFO contains four or

more characters.

RP2040 Datasheet

4.4. SPI 516

SSPRXDMACLR

DMA request clear, asserted by the DMA controller to clear the receive request signals. If DMA burst transfer is

requested, the clear signal is asserted during the transfer of the last data in the burst.

The DMA interface includes the following signals, for transmit:

SSPTXDMASREQ

Single-character DMA transfer request, asserted by the SSP. This signal is asserted when there is at least one

empty location in the transmit FIFO.

SSPTXDMABREQ

Burst DMA transfer request, asserted by the SSP. This signal is asserted when the transmit FIFO contains four

characters or fewer.

SSPTXDMACLR

DMA request clear, asserted by the DMA controller, to clear the transmit request signals. If a DMA burst transfer is

requested, the clear signal is asserted during the transfer of the last data in the burst.

The burst transfer and single transfer request signals are not mutually exclusive. They can both be asserted at the same

time. For example, when there is more data than the watermark level of four in the receive FIFO, the burst transfer

request, and the single transfer request, are asserted. When the amount of data left in the receive FIFO is less than the

watermark level, the single request only is asserted. This is useful for situations where the number of characters left to

be received in the stream is less than a burst.

For example, if 19 characters must be received, the DMA controller then transfers four bursts of four characters, and

three single transfers to complete the stream.

 NOTE

For the remaining three characters, the PrimeCell SSP does not assert the burst request.

Each request signal remains asserted until the relevant DMA clear signal is asserted. After the request clear signal is

deasserted, a request signal can become active again, depending on the conditions that previous sections describe. All

request signals are deasserted if the PrimeCell SSP is disabled, or the DMA enable signal is cleared.

Table 495 shows the trigger points for DMABREQ, for both the transmit and receive FIFOs.

Table 495. DMA

trigger points for the

transmit and receive

FIFOs

Burst length

Watermark level Transmit, number of empty locations Receive, number of filled locations

1/2 4 4

Figure 102 shows the timing diagram for both a single transfer request, and a burst transfer request, with the

appropriate DMA clear signal. The signals are all synchronous to PCLK.

PCLK

DMABREQ

DMASREQ

DMACLR

Figure 102. DMA

transfer waveforms

4.4.4. List of Registers

The SPI0 and SPI1 registers start at base addresses of 0x4003c000 and 0x40040000 respectively (defined as SPI0_BASE

and SPI1_BASE in SDK).

Table 496. List of SPI

registers
Offset Name Info

0x000 SSPCR0 Control register 0, SSPCR0 on page 3-4

0x004 SSPCR1 Control register 1, SSPCR1 on page 3-5

RP2040 Datasheet

4.4. SPI 517

Offset Name Info

0x008 SSPDR Data register, SSPDR on page 3-6

0x00c SSPSR Status register, SSPSR on page 3-7

0x010 SSPCPSR Clock prescale register, SSPCPSR on page 3-8

0x014 SSPIMSC Interrupt mask set or clear register, SSPIMSC on page 3-9

0x018 SSPRIS Raw interrupt status register, SSPRIS on page 3-10

0x01c SSPMIS Masked interrupt status register, SSPMIS on page 3-11

0x020 SSPICR Interrupt clear register, SSPICR on page 3-11

0x024 SSPDMACR DMA control register, SSPDMACR on page 3-12

0xfe0 SSPPERIPHID0 Peripheral identification registers, SSPPeriphID0-3 on page 3-13

0xfe4 SSPPERIPHID1 Peripheral identification registers, SSPPeriphID0-3 on page 3-13

0xfe8 SSPPERIPHID2 Peripheral identification registers, SSPPeriphID0-3 on page 3-13

0xfec SSPPERIPHID3 Peripheral identification registers, SSPPeriphID0-3 on page 3-13

0xff0 SSPPCELLID0 PrimeCell identification registers, SSPPCellID0-3 on page 3-16

0xff4 SSPPCELLID1 PrimeCell identification registers, SSPPCellID0-3 on page 3-16

0xff8 SSPPCELLID2 PrimeCell identification registers, SSPPCellID0-3 on page 3-16

0xffc SSPPCELLID3 PrimeCell identification registers, SSPPCellID0-3 on page 3-16

SPI: SSPCR0 Register

Offset: 0x000

Description

Control register 0, SSPCR0 on page 3-4

Table 497. SSPCR0

Register
Bits Name Description Type Reset

31:16 Reserved. - - -

15:8 SCR Serial clock rate. The value SCR is used to generate the

transmit and receive bit rate of the PrimeCell SSP. The bit

rate is: F SSPCLK CPSDVSR x (1+SCR) where CPSDVSR is

an even value from 2-254, programmed through the

SSPCPSR register and SCR is a value from 0-255.

RW 0x00

7 SPH SSPCLKOUT phase, applicable to Motorola SPI frame

format only. See Motorola SPI frame format on page 2-10.

RW 0x0

6 SPO SSPCLKOUT polarity, applicable to Motorola SPI frame

format only. See Motorola SPI frame format on page 2-10.

RW 0x0

5:4 FRF Frame format: 00 Motorola SPI frame format. 01 TI

synchronous serial frame format. 10 National Microwire

frame format. 11 Reserved, undefined operation.

RW 0x0

RP2040 Datasheet

4.4. SPI 518

Bits Name Description Type Reset

3:0 DSS Data Size Select: 0000 Reserved, undefined operation.

0001 Reserved, undefined operation. 0010 Reserved,

undefined operation. 0011 4-bit data. 0100 5-bit data.

0101 6-bit data. 0110 7-bit data. 0111 8-bit data. 1000 9-

bit data. 1001 10-bit data. 1010 11-bit data. 1011 12-bit

data. 1100 13-bit data. 1101 14-bit data. 1110 15-bit data.

1111 16-bit data.

RW 0x0

SPI: SSPCR1 Register

Offset: 0x004

Description

Control register 1, SSPCR1 on page 3-5

Table 498. SSPCR1

Register
Bits Name Description Type Reset

31:4 Reserved. - - -

3 SOD Slave-mode output disable. This bit is relevant only in the

slave mode, MS=1. In multiple-slave systems, it is possible

for an PrimeCell SSP master to broadcast a message to

all slaves in the system while ensuring that only one slave

drives data onto its serial output line. In such systems the

RXD lines from multiple slaves could be tied together. To

operate in such systems, the SOD bit can be set if the

PrimeCell SSP slave is not supposed to drive the SSPTXD

line: 0 SSP can drive the SSPTXD output in slave mode. 1

SSP must not drive the SSPTXD output in slave mode.

RW 0x0

2 MS Master or slave mode select. This bit can be modified only

when the PrimeCell SSP is disabled, SSE=0: 0 Device

configured as master, default. 1 Device configured as

slave.

RW 0x0

1 SSE Synchronous serial port enable: 0 SSP operation disabled.

1 SSP operation enabled.

RW 0x0

0 LBM Loop back mode: 0 Normal serial port operation enabled.

1 Output of transmit serial shifter is connected to input of

receive serial shifter internally.

RW 0x0

SPI: SSPDR Register

Offset: 0x008

Description

Data register, SSPDR on page 3-6

RP2040 Datasheet

4.4. SPI 519

Table 499. SSPDR

Register
Bits Name Description Type Reset

31:16 Reserved. - - -

15:0 DATA Transmit/Receive FIFO: Read Receive FIFO. Write

Transmit FIFO. You must right-justify data when the

PrimeCell SSP is programmed for a data size that is less

than 16 bits. Unused bits at the top are ignored by

transmit logic. The receive logic automatically right-

justifies.

RWF -

SPI: SSPSR Register

Offset: 0x00c

Description

Status register, SSPSR on page 3-7

Table 500. SSPSR

Register
Bits Name Description Type Reset

31:5 Reserved. - - -

4 BSY PrimeCell SSP busy flag, RO: 0 SSP is idle. 1 SSP is

currently transmitting and/or receiving a frame or the

transmit FIFO is not empty.

RO 0x0

3 RFF Receive FIFO full, RO: 0 Receive FIFO is not full. 1 Receive

FIFO is full.

RO 0x0

2 RNE Receive FIFO not empty, RO: 0 Receive FIFO is empty. 1

Receive FIFO is not empty.

RO 0x0

1 TNF Transmit FIFO not full, RO: 0 Transmit FIFO is full. 1

Transmit FIFO is not full.

RO 0x1

0 TFE Transmit FIFO empty, RO: 0 Transmit FIFO is not empty. 1

Transmit FIFO is empty.

RO 0x1

SPI: SSPCPSR Register

Offset: 0x010

Description

Clock prescale register, SSPCPSR on page 3-8

Table 501. SSPCPSR

Register
Bits Name Description Type Reset

31:8 Reserved. - - -

7:0 CPSDVSR Clock prescale divisor. Must be an even number from 2-

254, depending on the frequency of SSPCLK. The least

significant bit always returns zero on reads.

RW 0x00

SPI: SSPIMSC Register

Offset: 0x014

Description

Interrupt mask set or clear register, SSPIMSC on page 3-9

Table 502. SSPIMSC

Register
Bits Name Description Type Reset

31:4 Reserved. - - -

RP2040 Datasheet

4.4. SPI 520

Bits Name Description Type Reset

3 TXIM Transmit FIFO interrupt mask: 0 Transmit FIFO half empty

or less condition interrupt is masked. 1 Transmit FIFO half

empty or less condition interrupt is not masked.

RW 0x0

2 RXIM Receive FIFO interrupt mask: 0 Receive FIFO half full or

less condition interrupt is masked. 1 Receive FIFO half full

or less condition interrupt is not masked.

RW 0x0

1 RTIM Receive timeout interrupt mask: 0 Receive FIFO not empty

and no read prior to timeout period interrupt is masked. 1

Receive FIFO not empty and no read prior to timeout

period interrupt is not masked.

RW 0x0

0 RORIM Receive overrun interrupt mask: 0 Receive FIFO written to

while full condition interrupt is masked. 1 Receive FIFO

written to while full condition interrupt is not masked.

RW 0x0

SPI: SSPRIS Register

Offset: 0x018

Description

Raw interrupt status register, SSPRIS on page 3-10

Table 503. SSPRIS

Register
Bits Name Description Type Reset

31:4 Reserved. - - -

3 TXRIS Gives the raw interrupt state, prior to masking, of the

SSPTXINTR interrupt

RO 0x1

2 RXRIS Gives the raw interrupt state, prior to masking, of the

SSPRXINTR interrupt

RO 0x0

1 RTRIS Gives the raw interrupt state, prior to masking, of the

SSPRTINTR interrupt

RO 0x0

0 RORRIS Gives the raw interrupt state, prior to masking, of the

SSPRORINTR interrupt

RO 0x0

SPI: SSPMIS Register

Offset: 0x01c

Description

Masked interrupt status register, SSPMIS on page 3-11

Table 504. SSPMIS

Register
Bits Name Description Type Reset

31:4 Reserved. - - -

3 TXMIS Gives the transmit FIFO masked interrupt state, after

masking, of the SSPTXINTR interrupt

RO 0x0

2 RXMIS Gives the receive FIFO masked interrupt state, after

masking, of the SSPRXINTR interrupt

RO 0x0

1 RTMIS Gives the receive timeout masked interrupt state, after

masking, of the SSPRTINTR interrupt

RO 0x0

RP2040 Datasheet

4.4. SPI 521

Bits Name Description Type Reset

0 RORMIS Gives the receive over run masked interrupt status, after

masking, of the SSPRORINTR interrupt

RO 0x0

SPI: SSPICR Register

Offset: 0x020

Description

Interrupt clear register, SSPICR on page 3-11

Table 505. SSPICR

Register
Bits Name Description Type Reset

31:2 Reserved. - - -

1 RTIC Clears the SSPRTINTR interrupt WC 0x0

0 RORIC Clears the SSPRORINTR interrupt WC 0x0

SPI: SSPDMACR Register

Offset: 0x024

Description

DMA control register, SSPDMACR on page 3-12

Table 506. SSPDMACR

Register
Bits Name Description Type Reset

31:2 Reserved. - - -

1 TXDMAE Transmit DMA Enable. If this bit is set to 1, DMA for the

transmit FIFO is enabled.

RW 0x0

0 RXDMAE Receive DMA Enable. If this bit is set to 1, DMA for the

receive FIFO is enabled.

RW 0x0

SPI: SSPPERIPHID0 Register

Offset: 0xfe0

Description

Peripheral identification registers, SSPPeriphID0-3 on page 3-13

Table 507.

SSPPERIPHID0

Register

Bits Name Description Type Reset

31:8 Reserved. - - -

7:0 PARTNUMBER0 These bits read back as 0x22 RO 0x22

SPI: SSPPERIPHID1 Register

Offset: 0xfe4

Description

Peripheral identification registers, SSPPeriphID0-3 on page 3-13

Table 508.

SSPPERIPHID1

Register

Bits Name Description Type Reset

31:8 Reserved. - - -

7:4 DESIGNER0 These bits read back as 0x1 RO 0x1

3:0 PARTNUMBER1 These bits read back as 0x0 RO 0x0

RP2040 Datasheet

4.4. SPI 522

SPI: SSPPERIPHID2 Register

Offset: 0xfe8

Description

Peripheral identification registers, SSPPeriphID0-3 on page 3-13

Table 509.

SSPPERIPHID2

Register

Bits Name Description Type Reset

31:8 Reserved. - - -

7:4 REVISION These bits return the peripheral revision RO 0x3

3:0 DESIGNER1 These bits read back as 0x4 RO 0x4

SPI: SSPPERIPHID3 Register

Offset: 0xfec

Description

Peripheral identification registers, SSPPeriphID0-3 on page 3-13

Table 510.

SSPPERIPHID3

Register

Bits Name Description Type Reset

31:8 Reserved. - - -

7:0 CONFIGURATION These bits read back as 0x00 RO 0x00

SPI: SSPPCELLID0 Register

Offset: 0xff0

Description

PrimeCell identification registers, SSPPCellID0-3 on page 3-16

Table 511.

SSPPCELLID0 Register
Bits Name Description Type Reset

31:8 Reserved. - - -

7:0 SSPPCELLID0 These bits read back as 0x0D RO 0x0d

SPI: SSPPCELLID1 Register

Offset: 0xff4

Description

PrimeCell identification registers, SSPPCellID0-3 on page 3-16

Table 512.

SSPPCELLID1 Register
Bits Name Description Type Reset

31:8 Reserved. - - -

7:0 SSPPCELLID1 These bits read back as 0xF0 RO 0xf0

SPI: SSPPCELLID2 Register

Offset: 0xff8

Description

PrimeCell identification registers, SSPPCellID0-3 on page 3-16

Table 513.

SSPPCELLID2 Register
Bits Name Description Type Reset

31:8 Reserved. - - -

RP2040 Datasheet

4.4. SPI 523

Bits Name Description Type Reset

7:0 SSPPCELLID2 These bits read back as 0x05 RO 0x05

SPI: SSPPCELLID3 Register

Offset: 0xffc

Description

PrimeCell identification registers, SSPPCellID0-3 on page 3-16

Table 514.

SSPPCELLID3 Register
Bits Name Description Type Reset

31:8 Reserved. - - -

7:0 SSPPCELLID3 These bits read back as 0xB1 RO 0xb1

4.5. PWM

4.5.1. Overview

Pulse width modulation (PWM) is a scheme where a digital signal provides a smoothly varying average voltage. This is

achieved with positive pulses of some controlled width, at regular intervals. The fraction of time spent high is known as

the duty cycle. This may be used to approximate an analog output, or control switchmode power electronics.

The RP2040 PWM block has 8 identical slices. Each slice can drive two PWM output signals, or measure the frequency

or duty cycle of an input signal. This gives a total of up to 16 controllable PWM outputs. All 30 GPIO pins can be driven

by the PWM block.

Figure 103. A single

PWM slice. A 16-bit

counter counts from 0

up to some

programmed value,

and then wraps to

zero, or counts back

down again,

depending on PWM

mode. The A and B

outputs transition high

and low based on the

current count value

and the

preprogrammed A and

B thresholds. The

counter advances

based on a number of

events: it may be free-

running, or gated by

level or edge of an

input signal on the B

pin. A fractional

divider slows the

overall count rate for

finer control of output

frequency.

Each PWM slice is equipped with the following:

• 16-bit counter

• 8.4 fractional clock divider

• Two independent output channels, duty cycle from 0% to 100% inclusive

• Dual slope and trailing edge modulation

• Edge-sensitive input mode for frequency measurement

• Level-sensitive input mode for duty cycle measurement

• Configurable counter wrap value

◦ Wrap and level registers are double buffered and can be changed race-free while PWM is running

• Interrupt request and DMA request on counter wrap

RP2040 Datasheet

4.5. PWM 524

• Phase can be precisely advanced or retarded while running (increments of one count)

Slices can be enabled or disabled simultaneously via a single, global control register. The slices then run in perfect

lockstep, so that more complex power circuitry can be switched by the outputs of multiple slices.

4.5.2. Programmer’s Model

All 30 GPIO pins on RP2040 can be used for PWM:

Table 515. Mapping of

PWM channels to

GPIO pins on RP2040.

This is also shown in

the main GPIO

function table, Table

279

GPIO 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PWM Channel 0A 0B 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 7A 7B

GPIO 16 17 18 19 20 21 22 23 24 25 26 27 28 29

PWM Channel 0A 0B 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B

• The 16 PWM channels (8 2-channel slices) appear on GPIO0 to GPIO15, in the order PWM0 A, PWM0 B, PWM1 A…

• This repeats for GPIO16 to GPIO29. GPIO16 is PWM0 A, GPIO17 is PWM0 B, so on up to PWM6 B on GPIO29

• The same PWM output can be selected on two GPIO pins; the same signal will appear on each GPIO.

• If a PWM B pin is used as an input, and is selected on multiple GPIO pins, then the PWM slice will see the logical

OR of those two GPIO inputs

4.5.2.1. Pulse Width Modulation

The PWM hardware functions by continuously comparing the input value to a free-running counter. This produces a

toggling output where the amount of time spent at the high output level is proportional to the input value. The fraction of

time spent at the high signal level is known as the duty cycle of the signal.

The counting period is controlled by the TOP register, with a maximum possible period of 65536 cycles, as the counter

and TOP are 16 bits in size. The input values are configured via the CC register.

RP2040 Datasheet

4.5. PWM 525

TOP

Count

IOVDD

TOP/3

V

Input (Count)

Counter compare level

Counter

0
T 2T 3T

t

Output (Pulse)

GPIO pulse output

0
T 2T 3T

t

Figure 104. The

counter repeatedly

counts from 0 to TOP,

forming a sawtooth

shape. The counter is

continuously

compared with some

input value. When the

input value is higher

than the counter, the

output is driven high.

Otherwise, the output

is low. The output

period T is defined by

the TOP value of the

counter, and how fast

the counter is

configured to count.

The average output

voltage, as a fraction

of the IO power

supply, is the input

value divided by the

counter period (TOP +

1)

This example shows the counting period and the A and B counter compare levels being configured on one of RP2040’s

PWM slices.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pwm/hello_pwm/hello_pwm.c Lines 15 - 29

15 // Tell GPIO 0 and 1 they are allocated to the PWM
16 gpio_set_function(0, GPIO_FUNC_PWM);
17 gpio_set_function(1, GPIO_FUNC_PWM);
18
19 // Find out which PWM slice is connected to GPIO 0 (it's slice 0)
20 uint slice_num = pwm_gpio_to_slice_num(0);
21
22 // Set period of 4 cycles (0 to 3 inclusive)
23 pwm_set_wrap(slice_num, 3);
24 // Set channel A output high for one cycle before dropping
25 pwm_set_chan_level(slice_num, PWM_CHAN_A, 1);
26 // Set initial B output high for three cycles before dropping
27 pwm_set_chan_level(slice_num, PWM_CHAN_B, 3);
28 // Set the PWM running
29 pwm_set_enabled(slice_num, true);

Figure 105 shows how the PWM hardware operates once it has been configured in this way.

A

B

Count 0 1 2 3 0 1 2 3 0 1 2 3

Figure 105. The slice

counts repeatedly

from 0 to 3, which is

configured as the TOP

value. The output

waves therefore have

a period of 4. Output A

is high for 1 cycle in 4,

so the average output

voltage is 1/4 of the

IO supply voltage.

Output B is high for 3

cycles in every 4. Note

the rising edges of A

and B are always

aligned.

The default behaviour of a PWM slice is to count upward until the value of the TOP register is reached, and then

immediately wrap to 0. PWM slices also offer a phase-correct mode, enabled by setting CSR_PH_CORRECT to 1, where the

counter starts to count downward after reaching TOP, until it reaches 0 again.

It is called phase-correct mode because the pulse is always centred on the same point, no matter the duty cycle. In

other words, its phase is not a function of duty cycle. The output frequency is halved when phase-correct mode is

enabled.

RP2040 Datasheet

4.5. PWM 526

https://github.com/raspberrypi/pico-examples/blob/master/pwm/hello_pwm/hello_pwm.c#L15-L29

TOP

Count

IOVDD

TOP/3

V

Input (Count)

Counter compare level

Counter

0
T 2T 3T

t

Output (Pulse)

GPIO pulse output

0
T 2T 3T

t

Figure 106. In phase-

correct mode, the

counter counts back

down from TOP to 0

once it reaches TOP.

4.5.2.2. 0% and 100% Duty Cycle

The RP2040 PWM can produce toggle-free 0% and 100% duty cycle output.

TOP

Input (Count)
Count

Counter compare level

Counter

0
T 2T 3T

t

IOVDD

Output (Pulse)
V

GPIO pulse output

0
T 2T 3T

t

Figure 107. Glitch-free

0% duty cycle output

for CC = 0, and glitch-

free 100% duty cycle

output for CC = TOP +

1

A CC value of 0 will produce a 0% output, i.e. the output signal is always low. A CC value of TOP + 1 (i.e. equal to the period,

in non-phase-correct mode) will produce a 100% output. For example, if TOP is programmed to 254, the counter will have

a period of 255 cycles, and CC values in the range of 0 to 255 inclusive will produce duty cycles in the range 0% to 100%

inclusive.

Glitch-free output at 0% and 100% is important e.g. to avoid switching losses when a MOSFET is controlled at its

minimum and maximum current levels.

4.5.2.3. Double Buffering

Figure 108 shows how a change in input value will produce a change in output duty cycle. This can be used to

approximate some analog waveform such as a sine wave.

RP2040 Datasheet

4.5. PWM 527

TOP

Count

IOVDD

TOP/3

2×TOP/3

V

Input (Count)

Counter compare level

Counter

0
T 2T 3T

t

Output (Pulse)

GPIO pulse output

0
T 5T/3T/3 2T 3T

t

Figure 108. The input

value varies with each

counter period: first

TOP / 3, then 2 × TOP

/ 3, and finally TOP + 1

for 100% duty cycle.

Each increase in the

input value causes a

corresponding

increase in the output

duty cycle.

In Figure 108, the input value only changes at the instant where the counter wraps through 0. Figure 109 shows what

happens if the input value is allowed to change at any other time: an unwanted glitch is produced at the output.

TOP

Count

IOVDD

TOP/3

2×TOP/3

V

Input (Count)

Counter compare level

Counter

0
T 2T 3T

t

Output (Pulse)

GPIO pulse output

0
T 5T/3T/3 2T 3T

t

Figure 109. The input

value changes whilst

the counter is mid-

ramp. This produces

additional toggling at

the output.

The behaviour becomes even more perplexing if the TOP register is also modified. It would be difficult for software to

write to CC or TOP with the correct timing. To solve this, each slice has two copies of the CC and TOP registers: one copy

which software can modify, and another, internal copy which is updated from the first register at the instant the counter

wraps. Software can modify its copy of the register at will, but the changes are not captured by the PWM output until the

next wrap.

Figure 110 shows the sequence of events where a software interrupt handler changes the value of CC_A each time the

counter wraps.

RP2040 Datasheet

4.5. PWM 528

Counter at top

0 1 2 3

IRQ

CC_A

0 1 2CC_A latched

Figure 110. Each

counter wrap causes

the interrupt request

signal to assert. The

processor enters its

interrupt handler,

writes to its copy of

the CC register, and

clears the interrupt.

When the counter

wraps again, the

latched version of the

CC register is

instantaneously

updated with the most

recent value written by

software, and this

value controls the duty

cycle for the next

period. The IRQ is

reasserted so that

software can write

another fresh value to

its copy of the CC

register.

There is no limitation on what values can be written to CC or TOP, or when they are written. In normal PWM mode

(CSR_PH_CORRECT is 0) the latched copies are updated when the counter wraps to 0, which occurs once every TOP + 1

cycles. In phase-correct mode (CSR_PH_CORRECT is 1), the latched copies are updated on the 0 to 0 count transition, i.e. the

point where the counter stops counting downward and begins to count upward again.

4.5.2.4. Clock Divider

Each slice has a fractional clock divider, configured by the DIV register. This is an 8 integer bit, 4 fractional bit clock

divider, which allows the count rate to be slowed by up to a factor of 256. The clock divider allows much lower output

frequencies to be achieved — approximately 7.5Hz from a 125MHz system clock. Lower frequencies than this will

require a system timer interrupt (Section 4.6)

It does this by generating an enable signal which gates the operation of the counter.

.0DIV_FRAC

1DIV_INT

.0DIV_FRAC

Counter enable

3DIV_INT

Counter enable

.5DIV_FRAC

Counter enable

2DIV_INT

Figure 111. The clock

divider generates an

enable signal. The

counter only counts on

cycles where this

signal is high. A clock

divisor of 1 causes the

enable to be asserted

on every cycle, so the

counter counts by one

on every system clock

cycle. Higher divisors

cause the count

enable to be asserted

less frequently.

Fractional division

achieves an average

fractional counting

rate by spacing some

enable pulses further

apart than others.

The fractional divider is a first-order delta-sigma type.

The clock divider also allows the effective count range to be extended, when using level-sensitive or edge-sensitive

modes to take duty cycle or frequency measurements.

4.5.2.5. Level-sensitive and Edge-sensitive Triggering

RP2040 Datasheet

4.5. PWM 529

Count

enable

Fractional Clock

Divider (8.4)

Rising edge

Input

(pin B)

Event select

1

Falling edge

Phase

Advance

Phase

Retard

EN

Figure 112. PWM slice

event selection. The

counter advances

when its enable input

is high, and this

enable is generated in

two sequential stages.

First, any one of four

event types (always

on, pin B high, pin B

rise, pin B fall) can

generate enable

pulses for the

fractional clock

divider. The divider

can reduce the rate of

the enable pulses,

before passing them

on to the counter.

By default, each slice’s counter is free-running, and will count continuously whenever the slice is enabled. There are

three other options available:

• Count continuously when a high level is detected on the B pin

• Count once with each rising edge detected on the B pin

• Count once with each falling edge detected on the B pin

These modes are selected by the DIVMODE field in each slice’s CSR. In free-running mode, the A and B pins are both

outputs. In any other mode, the B pin becomes an input, and controls the operation of the counter. CC_B is ignored when

not in free-running mode.

By allowing the slice to run for a fixed amount of time in level-sensitive or edge-sensitive mode, it’s possible to measure

the duty cycle or frequency of an input signal. Due to the type of edge-detect circuit used, the low period and high period

of the measured signal must both be strictly greater than the system clock period when taking frequency

measurements.

The clock divider is still operational in level-sensitive and edge-sensitive mode. At maximum division (writing 0 to

DIV_INT), the counter will only advance once per 256 high input cycles in level-sensitive modes, or once per 256 edges in

edge-sensitive mode. This allows longer-running measurements to be taken, although the resolution is still just 16 bits.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pwm/measure_duty_cycle/measure_duty_cycle.c Lines 19 - 37

19 float measure_duty_cycle(uint gpio) {
20 // Only the PWM B pins can be used as inputs.
21 assert(pwm_gpio_to_channel(gpio) == PWM_CHAN_B);
22 uint slice_num = pwm_gpio_to_slice_num(gpio);
23
24 // Count once for every 100 cycles the PWM B input is high
25 pwm_config cfg = pwm_get_default_config();
26 pwm_config_set_clkdiv_mode(&cfg, PWM_DIV_B_HIGH);
27 pwm_config_set_clkdiv(&cfg, 100);
28 pwm_init(slice_num, &cfg, false);
29 gpio_set_function(gpio, GPIO_FUNC_PWM);
30
31 pwm_set_enabled(slice_num, true);
32 sleep_ms(10);
33 pwm_set_enabled(slice_num, false);
34 float counting_rate = clock_get_hz(clk_sys) / 100;
35 float max_possible_count = counting_rate * 0.01;
36 return pwm_get_counter(slice_num) / max_possible_count;
37 }

4.5.2.6. Configuring PWM Period

When free-running, the period of a PWM slice’s output (measured in system clock cycles) is controlled by three

parameters:

RP2040 Datasheet

4.5. PWM 530

https://github.com/raspberrypi/pico-examples/blob/master/pwm/measure_duty_cycle/measure_duty_cycle.c#L19-L37

• The TOP register

• Whether phase-correct mode is enabled (CSR_PH_CORRECT)

• The DIV register

The slice counts from 0 to TOP, and then either wraps, or begins counting backward, depending on the setting of

CSR_PH_CORRECT. The rate of counting is slowed by the clock divider, with a maximum speed of one count per cycle, and a

minimum speed of one count per cycles. The period in clock cycles can be calculated as:

The output frequency can then be determined based on the system clock frequency:

4.5.2.7. Interrupt Request (IRQ) and DMA Data Request (DREQ)

The PWM block has a single IRQ output. The interrupt status registers INTR, INTS and INTE allow software to control which

slices will assert this IRQ output, to check which slices are the cause of the IRQ’s assertion, and to clear and

acknowledge the interrupt.

A slice generates an interrupt request each time its counter wraps (or, if CSR_PH_CORRECT is enabled, each time the counter

returns to 0). This sets the flag corresponding to this slice in the raw interrupt status register, INTR. If this slice’s interrupt

is enabled in INTE, then this flag will cause the PWM block’s IRQ to be asserted, and the flag will also appear in the

masked interrupt status register INTS.

Flags are cleared by writing a mask back to INTR. This is demonstrated in the "LED fade" SDK example.

This scheme allows multiple slices to generate interrupts concurrently, and a system interrupt handler to determine

which slices caused the most recent interruption, and handle appropriately. Normally this would mean reloading those

slices' TOP or CC registers, but the PWM block can also be used as a source of regular interrupt requests for non-PWM-

related purposes.

The same pulse which sets the interrupt flag in INTR is also available as a one-cycle data request to the RP2040 system

DMA. For each cycle the DMA sees a DREQ asserted, it will make one data transfer to its programmed location, in as

timely a manner as possible. In combination with the double-buffered behaviour of CC and TOP, this allows the DMA to

efficiently stream data to a PWM slice at a rate of one transfer per counter period. Alternatively, a PWM slice could

serve as a pacing timer for DMA transfers to some other memory-mapped hardware.

4.5.2.8. On-the-fly Phase Adjustment

For some applications it is necessary to control the phase relationship between two PWM outputs on different slices.

The global enable register EN contains an alias of the CSR_EN flag for each slice, and allows multiple slices to be started

and stopped simultaneously. If two slices with the same output frequency are started at the same time, they will run in

perfect lockstep, and have a fixed phase relationship, determined by the initial counter values.

The CSR_PH_ADV and CSR_PH_RET fields will advance or retard a slice’s output phase by one count, whilst it is running. They

do so by inserting or deleting pulses from the clock enable (the output of the clock divider), as shown in Figure 113.

RP2040 Datasheet

4.5. PWM 531

Clock

2

0 1 2 3 4 5

DIV_INT

Count

0 1 2 3 4 5 6Count

DIV_INT

CSR_PH_ADV

2

Clock enable

Clock enable

0 1 2 3 4Count

DIV_INT

CSR_PH_RET

2

Clock enable

Figure 113. The clock

enable signal, output

by the clock divider,

controls the rate of

counting. Phase

advance forces the

clock enable high on

cycles where it is low,

causing the counter to

jump forward by one

count. Phase retard

forces the clock

enable low when it

would be high, holding

the counter back by

one count.

The counter can not count faster than once per cycle, so PH_ADV requires DIV_INT > 1 or DIV_FRAC > 0. Likewise, the counter

will not start to count backward if PH_RET is asserted when the clock enable is permanently low.

To advance or retard the phase by one count, software writes 1 to PH_ADV or PH_RET. Once an enable pulse has been

inserted or deleted, the PH_ADV or PH_RET register bit will return to 0, and software can poll the CSR until this happens. PH_ADV

will always insert a pulse into the next available gap, and PH_RET will always delete the next available pulse.

4.5.3. List of Registers

The PWM registers start at a base address of 0x40050000 (defined as PWM_BASE in SDK).

Table 516. List of

PWM registers
Offset Name Info

0x00 CH0_CSR Control and status register

0x04 CH0_DIV INT and FRAC form a fixed-point fractional number.

Counting rate is system clock frequency divided by this number.

Fractional division uses simple 1st-order sigma-delta.

0x08 CH0_CTR Direct access to the PWM counter

0x0c CH0_CC Counter compare values

0x10 CH0_TOP Counter wrap value

0x14 CH1_CSR Control and status register

0x18 CH1_DIV INT and FRAC form a fixed-point fractional number.

Counting rate is system clock frequency divided by this number.

Fractional division uses simple 1st-order sigma-delta.

0x1c CH1_CTR Direct access to the PWM counter

0x20 CH1_CC Counter compare values

0x24 CH1_TOP Counter wrap value

0x28 CH2_CSR Control and status register

0x2c CH2_DIV INT and FRAC form a fixed-point fractional number.

Counting rate is system clock frequency divided by this number.

Fractional division uses simple 1st-order sigma-delta.

RP2040 Datasheet

4.5. PWM 532

Offset Name Info

0x30 CH2_CTR Direct access to the PWM counter

0x34 CH2_CC Counter compare values

0x38 CH2_TOP Counter wrap value

0x3c CH3_CSR Control and status register

0x40 CH3_DIV INT and FRAC form a fixed-point fractional number.

Counting rate is system clock frequency divided by this number.

Fractional division uses simple 1st-order sigma-delta.

0x44 CH3_CTR Direct access to the PWM counter

0x48 CH3_CC Counter compare values

0x4c CH3_TOP Counter wrap value

0x50 CH4_CSR Control and status register

0x54 CH4_DIV INT and FRAC form a fixed-point fractional number.

Counting rate is system clock frequency divided by this number.

Fractional division uses simple 1st-order sigma-delta.

0x58 CH4_CTR Direct access to the PWM counter

0x5c CH4_CC Counter compare values

0x60 CH4_TOP Counter wrap value

0x64 CH5_CSR Control and status register

0x68 CH5_DIV INT and FRAC form a fixed-point fractional number.

Counting rate is system clock frequency divided by this number.

Fractional division uses simple 1st-order sigma-delta.

0x6c CH5_CTR Direct access to the PWM counter

0x70 CH5_CC Counter compare values

0x74 CH5_TOP Counter wrap value

0x78 CH6_CSR Control and status register

0x7c CH6_DIV INT and FRAC form a fixed-point fractional number.

Counting rate is system clock frequency divided by this number.

Fractional division uses simple 1st-order sigma-delta.

0x80 CH6_CTR Direct access to the PWM counter

0x84 CH6_CC Counter compare values

0x88 CH6_TOP Counter wrap value

0x8c CH7_CSR Control and status register

0x90 CH7_DIV INT and FRAC form a fixed-point fractional number.

Counting rate is system clock frequency divided by this number.

Fractional division uses simple 1st-order sigma-delta.

0x94 CH7_CTR Direct access to the PWM counter

0x98 CH7_CC Counter compare values

0x9c CH7_TOP Counter wrap value

RP2040 Datasheet

4.5. PWM 533

Offset Name Info

0xa0 EN This register aliases the CSR_EN bits for all channels.

Writing to this register allows multiple channels to be enabled

or disabled simultaneously, so they can run in perfect sync.

For each channel, there is only one physical EN register bit,

which can be accessed through here or CHx_CSR.

0xa4 INTR Raw Interrupts

0xa8 INTE Interrupt Enable

0xac INTF Interrupt Force

0xb0 INTS Interrupt status after masking & forcing

PWM: CH0_CSR, CH1_CSR, …, CH6_CSR, CH7_CSR Registers

Offsets: 0x00, 0x14, …, 0x78, 0x8c

Description

Control and status register

Table 517. CH0_CSR,

CH1_CSR, …,

CH6_CSR, CH7_CSR

Registers

Bits Name Description Type Reset

31:8 Reserved. - - -

7 PH_ADV Advance the phase of the counter by 1 count, while it is

running.

Self-clearing. Write a 1, and poll until low. Counter must be

running

at less than full speed (div_int + div_frac / 16 > 1)

SC 0x0

6 PH_RET Retard the phase of the counter by 1 count, while it is

running.

Self-clearing. Write a 1, and poll until low. Counter must be

running.

SC 0x0

5:4 DIVMODE 0x0 → Free-running counting at rate dictated by fractional

divider

0x1 → Fractional divider operation is gated by the PWM B

pin.

0x2 → Counter advances with each rising edge of the

PWM B pin.

0x3 → Counter advances with each falling edge of the

PWM B pin.

RW 0x0

3 B_INV Invert output B RW 0x0

2 A_INV Invert output A RW 0x0

1 PH_CORRECT 1: Enable phase-correct modulation. 0: Trailing-edge RW 0x0

0 EN Enable the PWM channel. RW 0x0

PWM: CH0_DIV, CH1_DIV, …, CH6_DIV, CH7_DIV Registers

Offsets: 0x04, 0x18, …, 0x7c, 0x90

Description

INT and FRAC form a fixed-point fractional number.

Counting rate is system clock frequency divided by this number.

Fractional division uses simple 1st-order sigma-delta.

RP2040 Datasheet

4.5. PWM 534

Table 518. CH0_DIV,

CH1_DIV, …, CH6_DIV,

CH7_DIV Registers

Bits Name Description Type Reset

31:12 Reserved. - - -

11:4 INT RW 0x01

3:0 FRAC RW 0x0

PWM: CH0_CTR, CH1_CTR, …, CH6_CTR, CH7_CTR Registers

Offsets: 0x08, 0x1c, …, 0x80, 0x94

Table 519. CH0_CTR,

CH1_CTR, …,

CH6_CTR, CH7_CTR

Registers

Bits Description Type Reset

31:16 Reserved. - -

15:0 Direct access to the PWM counter RW 0x0000

PWM: CH0_CC, CH1_CC, …, CH6_CC, CH7_CC Registers

Offsets: 0x0c, 0x20, …, 0x84, 0x98

Description

Counter compare values

Table 520. CH0_CC,

CH1_CC, …, CH6_CC,

CH7_CC Registers

Bits Name Description Type Reset

31:16 B RW 0x0000

15:0 A RW 0x0000

PWM: CH0_TOP, CH1_TOP, …, CH6_TOP, CH7_TOP Registers

Offsets: 0x10, 0x24, …, 0x88, 0x9c

Table 521. CH0_TOP,

CH1_TOP, …,

CH6_TOP, CH7_TOP

Registers

Bits Description Type Reset

31:16 Reserved. - -

15:0 Counter wrap value RW 0xffff

PWM: EN Register

Offset: 0xa0

Description

This register aliases the CSR_EN bits for all channels.

Writing to this register allows multiple channels to be enabled

or disabled simultaneously, so they can run in perfect sync.

For each channel, there is only one physical EN register bit,

which can be accessed through here or CHx_CSR.

Table 522. EN Register
Bits Name Description Type Reset

31:8 Reserved. - - -

7 CH7 RW 0x0

6 CH6 RW 0x0

5 CH5 RW 0x0

4 CH4 RW 0x0

3 CH3 RW 0x0

RP2040 Datasheet

4.5. PWM 535

Bits Name Description Type Reset

2 CH2 RW 0x0

1 CH1 RW 0x0

0 CH0 RW 0x0

PWM: INTR Register

Offset: 0xa4

Description

Raw Interrupts

Table 523. INTR

Register
Bits Name Description Type Reset

31:8 Reserved. - - -

7 CH7 WC 0x0

6 CH6 WC 0x0

5 CH5 WC 0x0

4 CH4 WC 0x0

3 CH3 WC 0x0

2 CH2 WC 0x0

1 CH1 WC 0x0

0 CH0 WC 0x0

PWM: INTE Register

Offset: 0xa8

Description

Interrupt Enable

Table 524. INTE

Register
Bits Name Description Type Reset

31:8 Reserved. - - -

7 CH7 RW 0x0

6 CH6 RW 0x0

5 CH5 RW 0x0

4 CH4 RW 0x0

3 CH3 RW 0x0

2 CH2 RW 0x0

1 CH1 RW 0x0

0 CH0 RW 0x0

PWM: INTF Register

Offset: 0xac

RP2040 Datasheet

4.5. PWM 536

Description

Interrupt Force

Table 525. INTF

Register
Bits Name Description Type Reset

31:8 Reserved. - - -

7 CH7 RW 0x0

6 CH6 RW 0x0

5 CH5 RW 0x0

4 CH4 RW 0x0

3 CH3 RW 0x0

2 CH2 RW 0x0

1 CH1 RW 0x0

0 CH0 RW 0x0

PWM: INTS Register

Offset: 0xb0

Description

Interrupt status after masking & forcing

Table 526. INTS

Register
Bits Name Description Type Reset

31:8 Reserved. - - -

7 CH7 RO 0x0

6 CH6 RO 0x0

5 CH5 RO 0x0

4 CH4 RO 0x0

3 CH3 RO 0x0

2 CH2 RO 0x0

1 CH1 RO 0x0

0 CH0 RO 0x0

4.6. Timer

4.6.1. Overview

The system timer peripheral on RP2040 provides a global microsecond timebase for the system, and generates

interrupts based on this timebase. It supports the following features:

• A single 64-bit counter, incrementing once per microsecond

• This counter can be read from a pair of latching registers, for race-free reads over a 32-bit bus.

• Four alarms: match on the lower 32 bits of counter, IRQ on match.

The timer uses a one microsecond reference that is generated in the Watchdog (see Section 4.7.2), and derived from

RP2040 Datasheet

4.6. Timer 537

the reference clock (Figure 28), which itself is usually connected directly to the crystal oscillator (Section 2.16).

The 64-bit counter effectively can not overflow (thousands of years at 1MHz), so the system timer is completely

monotonic in practice.

4.6.1.1. Other Timer Resources on RP2040

The system timer is intended to provide a global timebase for software. RP2040 has a number of other programmable

counter resources which can provide regular interrupts, or trigger DMA transfers.

• The PWM (Section 4.5) contains 8× 16-bit programmable counters, which run at up to system speed, can generate

interrupts, and can be continuously reprogrammed via the DMA, or trigger DMA transfers to other peripherals.

• 8× PIO state machines (Chapter 3) can count 32-bit values at system speed, and generate interrupts.

• The DMA (Section 2.5) has four internal pacing timers, which trigger transfers at regular intervals.

• Each Cortex-M0+ core (Section 2.4) has a standard 24-bit SysTick timer, counting either the microsecond tick

(Section 4.7.2) or the system clock.

4.6.2. Counter

The timer has a 64-bit counter, but RP2040 only has a 32-bit data bus. This means that the TIME value is accessed

through a pair of registers. These are:

• TIMEHW and TIMELW to write the time

• TIMEHR and TIMELR to read the time

These pairs are used by accessing the lower register, L, followed by the higher register, H. In the read case, reading the L

register latches the value in the H register so that an accurate time can be read. Alternatively, TIMERAWH and

TIMERAWL can be used to read the raw time without any latching.

 CAUTION

While it is technically possible to force a new time value by writing to the TIMEHW and TIMELW registers,

programmers are discouraged from doing this. This is because the timer value is expected to be monotonically

increasing by the SDK which uses it for timeouts, elapsed time etc.

4.6.3. Alarms

The timer has 4 alarms, and outputs a separate interrupt for each alarm. The alarms match on the lower 32 bits of the

64-bit counter which means they can be fired at a maximum of 232 microseconds into the future. This is equivalent to:

• 232 ÷ 106: ~4295 seconds

• 4295 ÷ 60: ~72 minutes

 NOTE

This timer is expected to be used for short sleeps. If you want a longer alarm see Section 4.8.

To enable an alarm:

• Enable the interrupt at the timer with a write to the appropriate alarm bit in INTE: i.e. (1 << 0) for ALARM0

• Enable the appropriate timer interrupt at the processor (see Section 2.3.2)

• Write the time you would like the interrupt to fire to ALARM0 (i.e. the current value in TIMERAWL plus your desired

alarm time in microseconds). Writing the time to the ALARM register sets the ARMED bit as a side effect.

RP2040 Datasheet

4.6. Timer 538

Once the alarm has fired, the ARMED bit will be set to 0. To clear the latched interrupt, write a 1 to the appropriate bit in

INTR.

4.6.4. Programmer’s Model

 NOTE

The Watchdog tick (see Section 4.7.2) must be running for the timer to start counting. The SDK starts this tick as

part of the platform initialisation code.

4.6.4.1. Reading the time

 NOTE

Time here refers to the number of microseconds since the timer was started, it is not a clock. For that - see Section

4.8.

The simplest form of reading the 64-bit time is to read TIMELR followed by TIMEHR. However, because RP2040 has 2

cores, it is unsafe to do this if the second core is executing code that can also access the timer, or if the timer is read

concurrently in an IRQ handler and in thread mode. This is because reading TIMELR latches the value in TIMEHR (i.e.

stops it updating) until TIMEHR is read. If one core reads TIMELR followed by another core reading TIMELR, the value in

TIMEHR isn’t necessarily accurate. The example below shows the simplest form of getting the 64-bit time.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/timer/timer_lowlevel/timer_lowlevel.c Lines 13 - 21

13 // Simplest form of getting 64 bit time from the timer.
14 // It isn't safe when called from 2 cores because of the latching
15 // so isn't implemented this way in the sdk
16 static uint64_t get_time(void) {
17 // Reading low latches the high value
18 uint32_t lo = timer_hw->timelr;
19 uint32_t hi = timer_hw->timehr;
20 return ((uint64_t) hi << 32u) | lo;
21 }

The SDK provides a time_us_64 function that uses a more thorough method to get the 64-bit time, which makes use of

the TIMERAWH and TIMERAWL registers. The RAW registers don’t latch, and therefore make time_us_64 safe to call from

multiple cores at once.

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_timer/timer.c Lines 41 - 57

41 uint64_t time_us_64() {
42 // Need to make sure that the upper 32 bits of the timer
43 // don't change, so read that first
44 uint32_t hi = timer_hw->timerawh;
45 uint32_t lo;
46 do {
47 // Read the lower 32 bits
48 lo = timer_hw->timerawl;
49 // Now read the upper 32 bits again and
50 // check that it hasn't incremented. If it has loop around
51 // and read the lower 32 bits again to get an accurate value
52 uint32_t next_hi = timer_hw->timerawh;
53 if (hi == next_hi) break;
54 hi = next_hi;

RP2040 Datasheet

4.6. Timer 539

https://github.com/raspberrypi/pico-examples/blob/master/timer/timer_lowlevel/timer_lowlevel.c#L13-L21
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_timer/timer.c#L41-L57

55 } while (true);
56 return ((uint64_t) hi << 32u) | lo;
57 }

4.6.4.2. Set an alarm

The standalone timer example, timer_lowlevel, demonstrates how to set an alarm at a hardware level, without the

additional abstraction over the timer that the SDK provides. To use these abstractions see Section 4.6.4.4.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/timer/timer_lowlevel/timer_lowlevel.c Lines 25 - 71

25 // Use alarm 0
26 #define ALARM_NUM 0
27 #define ALARM_IRQ TIMER_IRQ_0
28
29 // Alarm interrupt handler
30 static volatile bool alarm_fired;
31
32 static void alarm_irq(void) {
33 // Clear the alarm irq
34 hw_clear_bits(&timer_hw->intr, 1u << ALARM_NUM);
35
36 // Assume alarm 0 has fired
37 printf("Alarm IRQ fired\n");
38 alarm_fired = true;
39 }
40
41 static void alarm_in_us(uint32_t delay_us) {
42 // Enable the interrupt for our alarm (the timer outputs 4 alarm irqs)
43 hw_set_bits(&timer_hw->inte, 1u << ALARM_NUM);
44 // Set irq handler for alarm irq
45 irq_set_exclusive_handler(ALARM_IRQ, alarm_irq);
46 // Enable the alarm irq
47 irq_set_enabled(ALARM_IRQ, true);
48 // Enable interrupt in block and at processor
49
50 // Alarm is only 32 bits so if trying to delay more
51 // than that need to be careful and keep track of the upper
52 // bits
53 uint64_t target = timer_hw->timerawl + delay_us;
54
55 // Write the lower 32 bits of the target time to the alarm which
56 // will arm it
57 timer_hw->alarm[ALARM_NUM] = (uint32_t) target;
58 }
59
60 int main() {
61 stdio_init_all();
62 printf("Timer lowlevel!\n");
63
64 // Set alarm every 2 seconds
65 while (1) {
66 alarm_fired = false;
67 alarm_in_us(1000000 * 2);
68 // Wait for alarm to fire
69 while (!alarm_fired);
70 }
71 }

RP2040 Datasheet

4.6. Timer 540

https://github.com/raspberrypi/pico-examples/blob/master/timer/timer_lowlevel/timer_lowlevel.c#L25-L71

4.6.4.3. Busy wait

If you don’t want to use an alarm to wait for a period of time, instead use a while loop. The SDK provides various

busy_wait_ functions to do this:

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_timer/timer.c Lines 61 - 106

 61 void busy_wait_us_32(uint32_t delay_us) {
 62 if (0 <= (int32_t)delay_us) {
 63 // we only allow 31 bits, otherwise we could have a race in the loop below with
 64 // values very close to 2^32
 65 uint32_t start = timer_hw->timerawl;
 66 while (timer_hw->timerawl - start < delay_us) {
 67 tight_loop_contents();
 68 }
 69 } else {
 70 busy_wait_us(delay_us);
 71 }
 72 }
 73
 74 void busy_wait_us(uint64_t delay_us) {
 75 uint64_t base = time_us_64();
 76 uint64_t target = base + delay_us;
 77 if (target < base) {
 78 target = (uint64_t)-1;
 79 }
 80 absolute_time_t t;
 81 update_us_since_boot(&t, target);
 82 busy_wait_until(t);
 83 }
 84
 85 void busy_wait_ms(uint32_t delay_ms)
 86 {
 87 if (delay_ms <= 0x7fffffffu / 1000) {
 88 busy_wait_us_32(delay_ms * 1000);
 89 } else {
 90 busy_wait_us(delay_ms * 1000ull);
 91 }
 92 }
 93
 94 void busy_wait_until(absolute_time_t t) {
 95 uint64_t target = to_us_since_boot(t);
 96 uint32_t hi_target = (uint32_t)(target >> 32u);
 97 uint32_t hi = timer_hw->timerawh;
 98 while (hi < hi_target) {
 99 hi = timer_hw->timerawh;
100 tight_loop_contents();
101 }
102 while (hi == hi_target && timer_hw->timerawl < (uint32_t) target) {
103 hi = timer_hw->timerawh;
104 tight_loop_contents();
105 }
106 }

4.6.4.4. Complete example using SDK

RP2040 Datasheet

4.6. Timer 541

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_timer/timer.c#L61-L106

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/timer/hello_timer/hello_timer.c Lines 11 - 57

11 volatile bool timer_fired = false;
12
13 int64_t alarm_callback(alarm_id_t id, void *user_data) {
14 printf("Timer %d fired!\n", (int) id);
15 timer_fired = true;
16 // Can return a value here in us to fire in the future
17 return 0;
18 }
19
20 bool repeating_timer_callback(struct repeating_timer *t) {
21 printf("Repeat at %lld\n", time_us_64());
22 return true;
23 }
24
25 int main() {
26 stdio_init_all();
27 printf("Hello Timer!\n");
28
29 // Call alarm_callback in 2 seconds
30 add_alarm_in_ms(2000, alarm_callback, NULL, false);
31
32 // Wait for alarm callback to set timer_fired
33 while (!timer_fired) {
34 tight_loop_contents();
35 }
36
37 // Create a repeating timer that calls repeating_timer_callback.
38 // If the delay is > 0 then this is the delay between the previous callback ending and the
 next starting.
39 // If the delay is negative (see below) then the next call to the callback will be exactly
 500ms after the
40 // start of the call to the last callback
41 struct repeating_timer timer;
42 add_repeating_timer_ms(500, repeating_timer_callback, NULL, &timer);
43 sleep_ms(3000);
44 bool cancelled = cancel_repeating_timer(&timer);
45 printf("cancelled... %d\n", cancelled);
46 sleep_ms(2000);
47
48 // Negative delay so means we will call repeating_timer_callback, and call it again
49 // 500ms later regardless of how long the callback took to execute
50 add_repeating_timer_ms(-500, repeating_timer_callback, NULL, &timer);
51 sleep_ms(3000);
52 cancelled = cancel_repeating_timer(&timer);
53 printf("cancelled... %d\n", cancelled);
54 sleep_ms(2000);
55 printf("Done\n");
56 return 0;
57 }

4.6.5. List of Registers

The Timer registers start at a base address of 0x40054000 (defined as TIMER_BASE in SDK).

Table 527. List of

TIMER registers
Offset Name Info

0x00 TIMEHW Write to bits 63:32 of time

always write timelw before timehw

RP2040 Datasheet

4.6. Timer 542

https://github.com/raspberrypi/pico-examples/blob/master/timer/hello_timer/hello_timer.c#L11-L57

Offset Name Info

0x04 TIMELW Write to bits 31:0 of time

writes do not get copied to time until timehw is written

0x08 TIMEHR Read from bits 63:32 of time

always read timelr before timehr

0x0c TIMELR Read from bits 31:0 of time

0x10 ALARM0 Arm alarm 0, and configure the time it will fire.

Once armed, the alarm fires when TIMER_ALARM0 == TIMELR.

The alarm will disarm itself once it fires, and can

be disarmed early using the ARMED status register.

0x14 ALARM1 Arm alarm 1, and configure the time it will fire.

Once armed, the alarm fires when TIMER_ALARM1 == TIMELR.

The alarm will disarm itself once it fires, and can

be disarmed early using the ARMED status register.

0x18 ALARM2 Arm alarm 2, and configure the time it will fire.

Once armed, the alarm fires when TIMER_ALARM2 == TIMELR.

The alarm will disarm itself once it fires, and can

be disarmed early using the ARMED status register.

0x1c ALARM3 Arm alarm 3, and configure the time it will fire.

Once armed, the alarm fires when TIMER_ALARM3 == TIMELR.

The alarm will disarm itself once it fires, and can

be disarmed early using the ARMED status register.

0x20 ARMED Indicates the armed/disarmed status of each alarm.

A write to the corresponding ALARMx register arms the alarm.

Alarms automatically disarm upon firing, but writing ones here

will disarm immediately without waiting to fire.

0x24 TIMERAWH Raw read from bits 63:32 of time (no side effects)

0x28 TIMERAWL Raw read from bits 31:0 of time (no side effects)

0x2c DBGPAUSE Set bits high to enable pause when the corresponding debug

ports are active

0x30 PAUSE Set high to pause the timer

0x34 INTR Raw Interrupts

0x38 INTE Interrupt Enable

0x3c INTF Interrupt Force

0x40 INTS Interrupt status after masking & forcing

TIMER: TIMEHW Register

Offset: 0x00

RP2040 Datasheet

4.6. Timer 543

Table 528. TIMEHW

Register
Bits Description Type Reset

31:0 Write to bits 63:32 of time

always write timelw before timehw

WF 0x00000000

TIMER: TIMELW Register

Offset: 0x04

Table 529. TIMELW

Register
Bits Description Type Reset

31:0 Write to bits 31:0 of time

writes do not get copied to time until timehw is written

WF 0x00000000

TIMER: TIMEHR Register

Offset: 0x08

Table 530. TIMEHR

Register
Bits Description Type Reset

31:0 Read from bits 63:32 of time

always read timelr before timehr

RO 0x00000000

TIMER: TIMELR Register

Offset: 0x0c

Table 531. TIMELR

Register
Bits Description Type Reset

31:0 Read from bits 31:0 of time RO 0x00000000

TIMER: ALARM0 Register

Offset: 0x10

Table 532. ALARM0

Register
Bits Description Type Reset

31:0 Arm alarm 0, and configure the time it will fire.

Once armed, the alarm fires when TIMER_ALARM0 == TIMELR.

The alarm will disarm itself once it fires, and can

be disarmed early using the ARMED status register.

RW 0x00000000

TIMER: ALARM1 Register

Offset: 0x14

Table 533. ALARM1

Register
Bits Description Type Reset

31:0 Arm alarm 1, and configure the time it will fire.

Once armed, the alarm fires when TIMER_ALARM1 == TIMELR.

The alarm will disarm itself once it fires, and can

be disarmed early using the ARMED status register.

RW 0x00000000

TIMER: ALARM2 Register

Offset: 0x18

Table 534. ALARM2

Register

RP2040 Datasheet

4.6. Timer 544

Bits Description Type Reset

31:0 Arm alarm 2, and configure the time it will fire.

Once armed, the alarm fires when TIMER_ALARM2 == TIMELR.

The alarm will disarm itself once it fires, and can

be disarmed early using the ARMED status register.

RW 0x00000000

TIMER: ALARM3 Register

Offset: 0x1c

Table 535. ALARM3

Register
Bits Description Type Reset

31:0 Arm alarm 3, and configure the time it will fire.

Once armed, the alarm fires when TIMER_ALARM3 == TIMELR.

The alarm will disarm itself once it fires, and can

be disarmed early using the ARMED status register.

RW 0x00000000

TIMER: ARMED Register

Offset: 0x20

Table 536. ARMED

Register
Bits Description Type Reset

31:4 Reserved. - -

3:0 Indicates the armed/disarmed status of each alarm.

A write to the corresponding ALARMx register arms the alarm.

Alarms automatically disarm upon firing, but writing ones here

will disarm immediately without waiting to fire.

WC 0x0

TIMER: TIMERAWH Register

Offset: 0x24

Table 537. TIMERAWH

Register
Bits Description Type Reset

31:0 Raw read from bits 63:32 of time (no side effects) RO 0x00000000

TIMER: TIMERAWL Register

Offset: 0x28

Table 538. TIMERAWL

Register
Bits Description Type Reset

31:0 Raw read from bits 31:0 of time (no side effects) RO 0x00000000

TIMER: DBGPAUSE Register

Offset: 0x2c

Description

Set bits high to enable pause when the corresponding debug ports are active

Table 539. DBGPAUSE

Register
Bits Name Description Type Reset

31:3 Reserved. - - -

2 DBG1 Pause when processor 1 is in debug mode RW 0x1

1 DBG0 Pause when processor 0 is in debug mode RW 0x1

RP2040 Datasheet

4.6. Timer 545

Bits Name Description Type Reset

0 Reserved. - - -

TIMER: PAUSE Register

Offset: 0x30

Table 540. PAUSE

Register
Bits Description Type Reset

31:1 Reserved. - -

0 Set high to pause the timer RW 0x0

TIMER: INTR Register

Offset: 0x34

Description

Raw Interrupts

Table 541. INTR

Register
Bits Name Description Type Reset

31:4 Reserved. - - -

3 ALARM_3 WC 0x0

2 ALARM_2 WC 0x0

1 ALARM_1 WC 0x0

0 ALARM_0 WC 0x0

TIMER: INTE Register

Offset: 0x38

Description

Interrupt Enable

Table 542. INTE

Register
Bits Name Description Type Reset

31:4 Reserved. - - -

3 ALARM_3 RW 0x0

2 ALARM_2 RW 0x0

1 ALARM_1 RW 0x0

0 ALARM_0 RW 0x0

TIMER: INTF Register

Offset: 0x3c

Description

Interrupt Force

Table 543. INTF

Register
Bits Name Description Type Reset

31:4 Reserved. - - -

3 ALARM_3 RW 0x0

RP2040 Datasheet

4.6. Timer 546

Bits Name Description Type Reset

2 ALARM_2 RW 0x0

1 ALARM_1 RW 0x0

0 ALARM_0 RW 0x0

TIMER: INTS Register

Offset: 0x40

Description

Interrupt status after masking & forcing

Table 544. INTS

Register
Bits Name Description Type Reset

31:4 Reserved. - - -

3 ALARM_3 RO 0x0

2 ALARM_2 RO 0x0

1 ALARM_1 RO 0x0

0 ALARM_0 RO 0x0

4.7. Watchdog

4.7.1. Overview

The watchdog is a countdown timer that can restart parts of the chip if it reaches zero. This can be used to restart the

processor if software gets stuck in an infinite loop. The programmer must periodically write a value to the watchdog to

stop it from reaching zero.

The watchdog is reset by rst_n_run, which is deasserted as soon as the digital core supply (DVDD) is powered and

stable, and the RUN pin is high. This allows the watchdog reset to feed into the power-on state machine (see Section

2.13) and reset controller (see Section 2.14), resetting their dependants if they are selected in the WDSEL register. The

WDSEL register exists in both the power-on state machine and reset controller.

4.7.2. Tick generation

The watchdog reference clock, clk_tick, is driven from clk_ref. Ideally clk_ref will be configured to use the Crystal

Oscillator (Section 2.16) so that it provides an accurate reference clock. The reference clock is divided internally to

generate a tick (nominally 1μs) to use as the watchdog tick. The tick is configured using the TICK register.

 NOTE

To avoid duplicating logic, this tick is also distributed to the timer (see Section 4.6) and used as the timer reference.

The SDK starts the watchdog tick in clocks_init:

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_watchdog/watchdog.c Lines 14 - 17

14 void watchdog_start_tick(uint cycles) {
15 // Important: This function also provides a tick reference to the timer
16 watchdog_hw->tick = cycles | WATCHDOG_TICK_ENABLE_BITS;

RP2040 Datasheet

4.7. Watchdog 547

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_watchdog/watchdog.c#L14-L17

17 }

4.7.3. Watchdog Counter

The watchdog counter is loaded by the LOAD register. The current value can be seen in CTRL.TIME.

 WARNING

Due to a logic error, the watchdog counter is decremented twice per tick. Which means the programmer needs to

program double the intended count down value. The SDK examples take this issue into account. See RP2040-E1 for

more information.

4.7.4. Scratch Registers

The watchdog contains eight 32-bit scratch registers that can be used to store information between soft resets of the

chip. A rst_n_run event triggered by toggling the RUN pin or cycling the digital core supply (DVDD) will reset the scratch

registers.

The bootrom checks the watchdog scratch registers for a magic number on boot. This can be used to soft reset the

chip into some user specified code. See Section 2.8.1.1 for more information.

4.7.5. Programmer’s Model

The SDK provides a hardware_watchdog driver to control the watchdog.

4.7.5.1. Enabling the watchdog

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_watchdog/watchdog.c Lines 35 - 65

35 // Helper function used by both watchdog_enable and watchdog_reboot
36 void _watchdog_enable(uint32_t delay_ms, bool pause_on_debug) {
37 hw_clear_bits(&watchdog_hw->ctrl, WATCHDOG_CTRL_ENABLE_BITS);
38
39 // Reset everything apart from ROSC and XOSC
40 hw_set_bits(&psm_hw->wdsel, PSM_WDSEL_BITS & ~(PSM_WDSEL_ROSC_BITS |
 PSM_WDSEL_XOSC_BITS));
41
42 uint32_t dbg_bits = WATCHDOG_CTRL_PAUSE_DBG0_BITS |
43 WATCHDOG_CTRL_PAUSE_DBG1_BITS |
44 WATCHDOG_CTRL_PAUSE_JTAG_BITS;
45
46 if (pause_on_debug) {
47 hw_set_bits(&watchdog_hw->ctrl, dbg_bits);
48 } else {
49 hw_clear_bits(&watchdog_hw->ctrl, dbg_bits);
50 }
51
52 if (!delay_ms) {
53 hw_set_bits(&watchdog_hw->ctrl, WATCHDOG_CTRL_TRIGGER_BITS);
54 } else {
55 // Note, we have x2 here as the watchdog HW currently decrements twice per tick
56 load_value = delay_ms * 1000 * 2;
57
58 if (load_value > 0xffffffu)

RP2040 Datasheet

4.7. Watchdog 548

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_watchdog/watchdog.c#L35-L65

59 load_value = 0xffffffu;
60
61 watchdog_update();
62
63 hw_set_bits(&watchdog_hw->ctrl, WATCHDOG_CTRL_ENABLE_BITS);
64 }
65 }

4.7.5.2. Updating the watchdog counter

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_watchdog/watchdog.c Lines 23 - 27

23 static uint32_t load_value;
24
25 void watchdog_update(void) {
26 watchdog_hw->load = load_value;
27 }

4.7.5.3. Usage

The Pico Examples repository provides a hello_watchdog example that uses the hardware_watchdog to demonstrate

use of the watchdog.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/watchdog/hello_watchdog/hello_watchdog.c Lines 11 - 33

11 int main() {
12 stdio_init_all();
13
14 if (watchdog_caused_reboot()) {
15 printf("Rebooted by Watchdog!\n");
16 return 0;
17 } else {
18 printf("Clean boot\n");
19 }
20
21 // Enable the watchdog, requiring the watchdog to be updated every 100ms or the chip will
 reboot
22 // second arg is pause on debug which means the watchdog will pause when stepping through
 code
23 watchdog_enable(100, 1);
24
25 for (uint i = 0; i < 5; i++) {
26 printf("Updating watchdog %d\n", i);
27 watchdog_update();
28 }
29
30 // Wait in an infinite loop and don't update the watchdog so it reboots us
31 printf("Waiting to be rebooted by watchdog\n");
32 while(1);
33 }

RP2040 Datasheet

4.7. Watchdog 549

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_watchdog/watchdog.c#L23-L27
https://github.com/raspberrypi/pico-examples/blob/master/watchdog/hello_watchdog/hello_watchdog.c#L11-L33

4.7.6. List of Registers

The watchdog registers start at a base address of 0x40058000 (defined as WATCHDOG_BASE in SDK).

Table 545. List of

WATCHDOG registers
Offset Name Info

0x00 CTRL Watchdog control

0x04 LOAD Load the watchdog timer.

0x08 REASON Logs the reason for the last reset.

0x0c SCRATCH0 Scratch register

0x10 SCRATCH1 Scratch register

0x14 SCRATCH2 Scratch register

0x18 SCRATCH3 Scratch register

0x1c SCRATCH4 Scratch register

0x20 SCRATCH5 Scratch register

0x24 SCRATCH6 Scratch register

0x28 SCRATCH7 Scratch register

0x2c TICK Controls the tick generator

WATCHDOG: CTRL Register

Offset: 0x00

Description

Watchdog control

The rst_wdsel register determines which subsystems are reset when the watchdog is triggered.

The watchdog can be triggered in software.

Table 546. CTRL

Register
Bits Name Description Type Reset

31 TRIGGER Trigger a watchdog reset SC 0x0

30 ENABLE When not enabled the watchdog timer is paused RW 0x0

29:27 Reserved. - - -

26 PAUSE_DBG1 Pause the watchdog timer when processor 1 is in debug

mode

RW 0x1

25 PAUSE_DBG0 Pause the watchdog timer when processor 0 is in debug

mode

RW 0x1

24 PAUSE_JTAG Pause the watchdog timer when JTAG is accessing the

bus fabric

RW 0x1

23:0 TIME Indicates the number of ticks / 2 (see errata RP2040-E1)

before a watchdog reset will be triggered

RO 0x000000

WATCHDOG: LOAD Register

Offset: 0x04

Table 547. LOAD

Register
Bits Description Type Reset

31:24 Reserved. - -

RP2040 Datasheet

4.7. Watchdog 550

Bits Description Type Reset

23:0 Load the watchdog timer. The maximum setting is 0xffffff which corresponds

to 0xffffff / 2 ticks before triggering a watchdog reset (see errata RP2040-E1).

WF 0x000000

WATCHDOG: REASON Register

Offset: 0x08

Description

Logs the reason for the last reset. Both bits are zero for the case of a hardware reset.

Table 548. REASON

Register
Bits Name Description Type Reset

31:2 Reserved. - - -

1 FORCE RO 0x0

0 TIMER RO 0x0

WATCHDOG: SCRATCH0, SCRATCH1, …, SCRATCH6, SCRATCH7 Registers

Offsets: 0x0c, 0x10, …, 0x24, 0x28

Table 549. SCRATCH0,

SCRATCH1, …,

SCRATCH6,

SCRATCH7 Registers

Bits Description Type Reset

31:0 Scratch register. Information persists through soft reset of the chip. RW 0x00000000

WATCHDOG: TICK Register

Offset: 0x2c

Description

Controls the tick generator

Table 550. TICK

Register
Bits Name Description Type Reset

31:20 Reserved. - - -

19:11 COUNT Count down timer: the remaining number clk_tick cycles

before the next tick is generated.

RO -

10 RUNNING Is the tick generator running? RO -

9 ENABLE start / stop tick generation RW 0x1

8:0 CYCLES Total number of clk_tick cycles before the next tick. RW 0x000

4.8. RTC

﻿The Real-time Clock (RTC) provides time in human-readable format and can be used to generate interrupts at specific

times.

4.8.1. Storage Format

Time is stored in binary, separated in seven fields:

RP2040 Datasheet

4.8. RTC 551

Table 551. RTC

storage format
Date/Time Field Size Legal values

Year 12 bits 0..4095

Month 4 bits 1..12

Day 5 bits 1..[28,29,30,31], depending on the

month

Day of Week 3 bits 0..6. Sunday = 0

Hour 5 bits 0..23

Minute 6 bits 0..59

Seconds 6 bits 0..59

The RTC does not check that the programmed values are in range. Illegal values may cause unexpected behaviour.

4.8.1.1. Day of the week

Day of the week is encoded as Sun 0, Mon 1, …, Sat 6 (i.e. ISO8601 mod 7).

There is no built-in calendar function. The RTC will not compute the correct day of the week; it will only increment the

existing value.

4.8.2. Leap year

If the current value of YEAR in SETUP_0 is evenly divisible by 4, a leap year is detected, and Feb 28th is followed by Feb

29th instead of March 1st. Since this is not always true (century years for example), the leap year checking can be

forced off by setting CTRL.FORCE_NOTLEAPYEAR.

 NOTE

The leap year check is done only when needed (the second following Feb 28, 23:59:59). The software can set

FORCE_NOTLEAPYEAR anytime after 2096 Mar 1 00:00:00 as long as it arrives before 2100 Feb 28 23:59:59 (i.e. taking into

account the clock domain crossing latency)

4.8.3. Interrupts

The RTC can generate an interrupt at a configured time. There is a global bit, MATCH_ENA in IRQ_SETUP_0 to enable this

feature, and individual enables for each time field (year, month, day, day-of-the-week, hour, minute, second). The

individual enables can be used to implement repeating interrupts at specified times.

The alarm interrupt is sent to the processors and also to the ROSC and XOSC to wake them from dormant mode. See

Section 4.8.5.5 for more information on dormant mode.

4.8.4. Reference clock

The RTC uses a reference clock clk_rtc, which should be any integer frequency in the range 1…65536Hz.

The internal 1Hz reference is created by an internal clock divider which divides clk_rtc by an integer value. The divide

value minus 1 is set in CLKDIV_M1.

RP2040 Datasheet

4.8. RTC 552

 WARNING

While it is possible to change CLKDIV_M1 while the RTC is enabled, it is not recommended.

clk_rtc can be driven either from an internal or external clock source. Those sources can be prescaled, using a

fractional divider (see Section 2.15).

Examples of possible clock sources include:

• XOSC @ 12MHz / 256 = 46875Hz. To get a 1Hz reference CLKDIV_M1 should be set to 46874.

• An external reference from a GPS, which generates one pulse per second. Configure clk_rtc to run from the GPIN0

clock source from GPIO pin 20. In this case, the clk_rtc divider is 1 and the internal RTC clock divider is also 1 (i.e.

CLKDIV_M1 = 0).

 NOTE

All RTC register reads and writes are done from the processor clock domain clk_sys. All data are synchronised back

and forth between the domains. Writing to the RTC will take 2 clk_rtc clock periods to arrive, additional to the clk_sys

domain. This should be taken into account especially when the reference is slow (e.g. 1Hz).

4.8.5. Programmer’s Model

There are three setup tasks:

• Set the 1 sec reference

• Set the clock

• Set an alarm

4.8.5.1. Configuring the 1 second reference clock:

Select the source for clk_rtc. This is done outside the RTC registers (see Section 4.8.4).

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_rtc/rtc.c Lines 22 - 40

22 void rtc_init(void) {
23 // Get clk_rtc freq and make sure it is running
24 uint rtc_freq = clock_get_hz(clk_rtc);
25 assert(rtc_freq != 0);
26
27 // Take rtc out of reset now that we know clk_rtc is running
28 reset_block(RESETS_RESET_RTC_BITS);
29 unreset_block_wait(RESETS_RESET_RTC_BITS);
30
31 // Set up the 1 second divider.
32 // If rtc_freq is 400 then clkdiv_m1 should be 399
33 rtc_freq -= 1;
34
35 // Check the freq is not too big to divide
36 assert(rtc_freq <= RTC_CLKDIV_M1_BITS);
37
38 // Write divide value
39 rtc_hw->clkdiv_m1 = rtc_freq;
40 }

RP2040 Datasheet

4.8. RTC 553

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_rtc/rtc.c#L22-L40

4.8.5.2. Setting up the clock

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_rtc/rtc.c Lines 55 - 86

55 bool rtc_set_datetime(datetime_t *t) {
56 if (!valid_datetime(t)) {
57 return false;
58 }
59
60 // Disable RTC
61 rtc_hw->ctrl = 0;
62 // Wait while it is still active
63 while (rtc_running()) {
64 tight_loop_contents();
65 }
66
67 // Write to setup registers
68 rtc_hw->setup_0 = (((uint32_t)t->year) << RTC_SETUP_0_YEAR_LSB) |
69 (((uint32_t)t->month) << RTC_SETUP_0_MONTH_LSB) |
70 (((uint32_t)t->day) << RTC_SETUP_0_DAY_LSB);
71 rtc_hw->setup_1 = (((uint32_t)t->dotw) << RTC_SETUP_1_DOTW_LSB) |
72 (((uint32_t)t->hour) << RTC_SETUP_1_HOUR_LSB) |
73 (((uint32_t)t->min) << RTC_SETUP_1_MIN_LSB) |
74 (((uint32_t)t->sec) << RTC_SETUP_1_SEC_LSB);
75
76 // Load setup values into rtc clock domain
77 rtc_hw->ctrl = RTC_CTRL_LOAD_BITS;
78
79 // Enable RTC and wait for it to be running
80 rtc_hw->ctrl = RTC_CTRL_RTC_ENABLE_BITS;
81 while (!rtc_running()) {
82 tight_loop_contents();
83 }
84
85 return true;
86 }

 NOTE

It is possible to change the current time while the RTC is running. Write the desired values, then set the LOAD bit in

the CTRL register.

4.8.5.3. Reading the current time

The RTC time is stored across two 32-bit registers. To ensure a consistent value, RTC_0 should be read before RTC_1.

Reading RTC_0 latches the value of RTC_1.

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_rtc/rtc.c Lines 88 - 107

 88 bool rtc_get_datetime(datetime_t *t) {
 89 // Make sure RTC is running
 90 if (!rtc_running()) {
 91 return false;
 92 }
 93
 94 // Note: RTC_0 should be read before RTC_1
 95 uint32_t rtc_0 = rtc_hw->rtc_0;
 96 uint32_t rtc_1 = rtc_hw->rtc_1;

RP2040 Datasheet

4.8. RTC 554

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_rtc/rtc.c#L55-L86
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_rtc/rtc.c#L88-L107

 97
 98 t->dotw = (int8_t) ((rtc_0 & RTC_RTC_0_DOTW_BITS) >> RTC_RTC_0_DOTW_LSB);
 99 t->hour = (int8_t) ((rtc_0 & RTC_RTC_0_HOUR_BITS) >> RTC_RTC_0_HOUR_LSB);
100 t->min = (int8_t) ((rtc_0 & RTC_RTC_0_MIN_BITS) >> RTC_RTC_0_MIN_LSB);
101 t->sec = (int8_t) ((rtc_0 & RTC_RTC_0_SEC_BITS) >> RTC_RTC_0_SEC_LSB);
102 t->year = (int16_t) ((rtc_1 & RTC_RTC_1_YEAR_BITS) >> RTC_RTC_1_YEAR_LSB);
103 t->month = (int8_t) ((rtc_1 & RTC_RTC_1_MONTH_BITS) >> RTC_RTC_1_MONTH_LSB);
104 t->day = (int8_t) ((rtc_1 & RTC_RTC_1_DAY_BITS) >> RTC_RTC_1_DAY_LSB);
105
106 return true;
107 }

4.8.5.4. Configuring an Alarm

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_rtc/rtc.c Lines 147 - 183

147 void rtc_set_alarm(datetime_t *t, rtc_callback_t user_callback) {
148 rtc_disable_alarm();
149
150 // Only add to setup if it isn't -1
151 rtc_hw->irq_setup_0 = ((t->year < 0) ? 0 : (((uint32_t)t->year) <<
 RTC_IRQ_SETUP_0_YEAR_LSB)) |
152 ((t->month < 0) ? 0 : (((uint32_t)t->month) <<
 RTC_IRQ_SETUP_0_MONTH_LSB)) |
153 ((t->day < 0) ? 0 : (((uint32_t)t->day) <<
 RTC_IRQ_SETUP_0_DAY_LSB));
154 rtc_hw->irq_setup_1 = ((t->dotw < 0) ? 0 : (((uint32_t)t->dotw) <<
 RTC_IRQ_SETUP_1_DOTW_LSB)) |
155 ((t->hour < 0) ? 0 : (((uint32_t)t->hour) <<
 RTC_IRQ_SETUP_1_HOUR_LSB)) |
156 ((t->min < 0) ? 0 : (((uint32_t)t->min) <<
 RTC_IRQ_SETUP_1_MIN_LSB)) |
157 ((t->sec < 0) ? 0 : (((uint32_t)t->sec) <<
 RTC_IRQ_SETUP_1_SEC_LSB));
158
159 // Set the match enable bits for things we care about
160 if (t->year >= 0) hw_set_bits(&rtc_hw->irq_setup_0, RTC_IRQ_SETUP_0_YEAR_ENA_BITS);
161 if (t->month >= 0) hw_set_bits(&rtc_hw->irq_setup_0, RTC_IRQ_SETUP_0_MONTH_ENA_BITS);
162 if (t->day >= 0) hw_set_bits(&rtc_hw->irq_setup_0, RTC_IRQ_SETUP_0_DAY_ENA_BITS);
163 if (t->dotw >= 0) hw_set_bits(&rtc_hw->irq_setup_1, RTC_IRQ_SETUP_1_DOTW_ENA_BITS);
164 if (t->hour >= 0) hw_set_bits(&rtc_hw->irq_setup_1, RTC_IRQ_SETUP_1_HOUR_ENA_BITS);
165 if (t->min >= 0) hw_set_bits(&rtc_hw->irq_setup_1, RTC_IRQ_SETUP_1_MIN_ENA_BITS);
166 if (t->sec >= 0) hw_set_bits(&rtc_hw->irq_setup_1, RTC_IRQ_SETUP_1_SEC_ENA_BITS);
167
168 // Does it repeat? I.e. do we not match on any of the bits
169 _alarm_repeats = rtc_alarm_repeats(t);
170
171 // Store function pointer we can call later
172 _callback = user_callback;
173
174 irq_set_exclusive_handler(RTC_IRQ, rtc_irq_handler);
175
176 // Enable the IRQ at the peri
177 rtc_hw->inte = RTC_INTE_RTC_BITS;
178
179 // Enable the IRQ at the proc
180 irq_set_enabled(RTC_IRQ, true);
181
182 rtc_enable_alarm();

RP2040 Datasheet

4.8. RTC 555

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_rtc/rtc.c#L147-L183

183 }

 NOTE

Recurring alarms can be created by using fewer enable bits when setting up the alarm interrupt. For example, if you

only matched on seconds and the second was configured as 54 then the alarm interrupt would fire once a minute

when the second was 54.

4.8.5.5. Interaction with Dormant / Sleep mode

RP2040 supports two power saving levels:

• Sleep mode, where the processors are asleep and the unused clocks in the chip are stopped (see Section 2.15.3.5)

• Dormant mode, where all clocks in the chip are stopped

The RTC can wake the chip up from both of these modes. In sleep mode, RP2040 can be configured such that only

clk_rtc (a slow RTC reference clock) is running, as well as a small amount of logic that allows the processor to wake

back up. The processor is woken from sleep mode when the RTC alarm interrupt fires. See Section 2.11.5.1 for more

information.

To wake the chip from dormant mode:

• the RTC must be configured to use an external reference clock (supplied by a GPIO pin)

• Set up the RTC to run on an external reference

• If the processor is running off the PLL, change it to run from XOSC/ROSC

• Turn off the PLLs

• Set up the RTC with the desired wake up time (one off, or recurring)

• (optionally) power down most memories

• Invoke DORMANT mode (see Section 2.16, Section 2.17, and Section 2.11.5.2 for more information)

4.8.6. List of Registers

The RTC registers start at a base address of 0x4005c000 (defined as RTC_BASE in SDK).

Table 552. List of RTC

registers
Offset Name Info

0x00 CLKDIV_M1 Divider minus 1 for the 1 second counter. Safe to change the

value when RTC is not enabled.

0x04 SETUP_0 RTC setup register 0

0x08 SETUP_1 RTC setup register 1

0x0c CTRL RTC Control and status

0x10 IRQ_SETUP_0 Interrupt setup register 0

0x14 IRQ_SETUP_1 Interrupt setup register 1

0x18 RTC_1 RTC register 1.

0x1c RTC_0 RTC register 0

Read this before RTC 1!

0x20 INTR Raw Interrupts

0x24 INTE Interrupt Enable

RP2040 Datasheet

4.8. RTC 556

Offset Name Info

0x28 INTF Interrupt Force

0x2c INTS Interrupt status after masking & forcing

RTC: CLKDIV_M1 Register

Offset: 0x00

Table 553. CLKDIV_M1

Register
Bits Description Type Reset

31:16 Reserved. - -

15:0 Divider minus 1 for the 1 second counter. Safe to change the value when RTC

is not enabled.

RW 0x0000

RTC: SETUP_0 Register

Offset: 0x04

Description

RTC setup register 0

Table 554. SETUP_0

Register
Bits Name Description Type Reset

31:24 Reserved. - - -

23:12 YEAR Year RW 0x000

11:8 MONTH Month (1..12) RW 0x0

7:5 Reserved. - - -

4:0 DAY Day of the month (1..31) RW 0x00

RTC: SETUP_1 Register

Offset: 0x08

Description

RTC setup register 1

Table 555. SETUP_1

Register
Bits Name Description Type Reset

31:27 Reserved. - - -

26:24 DOTW Day of the week: 1-Monday…0-Sunday ISO 8601 mod 7 RW 0x0

23:21 Reserved. - - -

20:16 HOUR Hours RW 0x00

15:14 Reserved. - - -

13:8 MIN Minutes RW 0x00

7:6 Reserved. - - -

5:0 SEC Seconds RW 0x00

RTC: CTRL Register

Offset: 0x0c

RP2040 Datasheet

4.8. RTC 557

Description

RTC Control and status

Table 556. CTRL

Register
Bits Name Description Type Reset

31:9 Reserved. - - -

8 FORCE_NOTLEAP

YEAR

If set, leapyear is forced off.

Useful for years divisible by 100 but not by 400

RW 0x0

7:5 Reserved. - - -

4 LOAD Load RTC SC 0x0

3:2 Reserved. - - -

1 RTC_ACTIVE RTC enabled (running) RO -

0 RTC_ENABLE Enable RTC RW 0x0

RTC: IRQ_SETUP_0 Register

Offset: 0x10

Description

Interrupt setup register 0

Table 557.

IRQ_SETUP_0 Register
Bits Name Description Type Reset

31:30 Reserved. - - -

29 MATCH_ACTIVE RO -

28 MATCH_ENA Global match enable. Don’t change any other value while

this one is enabled

RW 0x0

27 Reserved. - - -

26 YEAR_ENA Enable year matching RW 0x0

25 MONTH_ENA Enable month matching RW 0x0

24 DAY_ENA Enable day matching RW 0x0

23:12 YEAR Year RW 0x000

11:8 MONTH Month (1..12) RW 0x0

7:5 Reserved. - - -

4:0 DAY Day of the month (1..31) RW 0x00

RTC: IRQ_SETUP_1 Register

Offset: 0x14

Description

Interrupt setup register 1

Table 558.

IRQ_SETUP_1 Register
Bits Name Description Type Reset

31 DOTW_ENA Enable day of the week matching RW 0x0

30 HOUR_ENA Enable hour matching RW 0x0

29 MIN_ENA Enable minute matching RW 0x0

28 SEC_ENA Enable second matching RW 0x0

RP2040 Datasheet

4.8. RTC 558

Bits Name Description Type Reset

27 Reserved. - - -

26:24 DOTW Day of the week RW 0x0

23:21 Reserved. - - -

20:16 HOUR Hours RW 0x00

15:14 Reserved. - - -

13:8 MIN Minutes RW 0x00

7:6 Reserved. - - -

5:0 SEC Seconds RW 0x00

RTC: RTC_1 Register

Offset: 0x18

Description

RTC register 1.

Table 559. RTC_1

Register
Bits Name Description Type Reset

31:24 Reserved. - - -

23:12 YEAR Year RO -

11:8 MONTH Month (1..12) RO -

7:5 Reserved. - - -

4:0 DAY Day of the month (1..31) RO -

RTC: RTC_0 Register

Offset: 0x1c

Description

RTC register 0

Read this before RTC 1!

Table 560. RTC_0

Register
Bits Name Description Type Reset

31:27 Reserved. - - -

26:24 DOTW Day of the week RF -

23:21 Reserved. - - -

20:16 HOUR Hours RF -

15:14 Reserved. - - -

13:8 MIN Minutes RF -

7:6 Reserved. - - -

5:0 SEC Seconds RF -

RTC: INTR Register

Offset: 0x20

RP2040 Datasheet

4.8. RTC 559

Description

Raw Interrupts

Table 561. INTR

Register
Bits Name Description Type Reset

31:1 Reserved. - - -

0 RTC RO 0x0

RTC: INTE Register

Offset: 0x24

Description

Interrupt Enable

Table 562. INTE

Register
Bits Name Description Type Reset

31:1 Reserved. - - -

0 RTC RW 0x0

RTC: INTF Register

Offset: 0x28

Description

Interrupt Force

Table 563. INTF

Register
Bits Name Description Type Reset

31:1 Reserved. - - -

0 RTC RW 0x0

RTC: INTS Register

Offset: 0x2c

Description

Interrupt status after masking & forcing

Table 564. INTS

Register
Bits Name Description Type Reset

31:1 Reserved. - - -

0 RTC RO 0x0

4.9. ADC and Temperature Sensor

RP2040 has an internal analogue-digital converter (ADC) with the following features:

• SAR ADC (see Section 4.9.2)

• 500ksps (using an independent 48MHz clock)

• 12-bit with 8.7 ENOB (see Section 4.9.3)

• Five input mux:

◦ Four inputs that are available on package pins shared with GPIO[29:26]

RP2040 Datasheet

4.9. ADC and Temperature Sensor 560

◦ One input is dedicated to the internal temperature sensor (see Section 4.9.5)

• Eight element receive sample FIFO

• Interrupt generation

• DMA interface (see Section 4.9.2.5)

Figure 114. ADC

Connection Diagram

 NOTE

When using an ADC input shared with a GPIO pin, the pin’s digital functions must be disabled by setting IE low and OD

high in the pin’s pad control register. See Section 2.19.6.3, “Pad Control - User Bank” for details. The maximum ADC

input voltage is determined by the digital IO supply voltage (IOVDD), not the ADC supply voltage (ADC_AVDD). For

example, if IOVDD is powered at 1.8V, the voltage on the ADC inputs should not exceed 1.8V even if ADC_AVDD is

powered at 3.3V. Voltages greater than IOVDD will result in leakage currents through the ESD protection diodes. See

Section 5.5.3, “Pin Specifications” for details.

4.9.1. ADC controller

A digital controller manages the details of operating the RP2040 ADC, and provides additional functionality:

• One-shot or free-running capture mode

• Sample FIFO with DMA interface

• Pacing timer (16 integer bits, 8 fractional bits) for setting free-running sample rate

• Round-robin sampling of multiple channels in free-running capture mode

• Optional right-shift to 8 bits in free-running capture mode, so samples can be DMA’d to a byte buffer in system

memory

RP2040 Datasheet

4.9. ADC and Temperature Sensor 561

4.9.2. SAR ADC

The SAR ADC (Successive Approximation Register Analogue to Digital Converter) is a combination of digital controller,

and analogue circuit as shown in Figure 115.

Figure 115. SAR ADC

Block diagram

The ADC requires a 48MHz clock (clk_adc), which could come from the USB PLL. Capturing a sample takes 96 clock

cycles (96 × 1/48MHz) = 2μs per sample (500ksps). The clock must be set up correctly before enabling the ADC.

Once the ADC block is provided with a clock, and its reset has been removed, writing a 1 to CS.EN will start a short

internal power-up sequence for the ADC’s analogue hardware. After a few clock cycles, CS.READY will go high,

indicating the ADC is ready to start its first conversion.

The ADC can be disabled again at any time by clearing CS.EN, to save power. CS.EN does not enable the temperature

sensor bias source (see Section 4.9.5). This is controlled separately.

The ADC input is capacitive, and when sampling, it places about 1pF across the input (there will be additional

capacitance from outside the ADC, such as packaging and PCB routing, to add to this). The effective impedance, even

when sampling at 500ksps, is over 100kΩ, and for DC measurements there should be no need to buffer.

4.9.2.1. One-shot Sample

Writing a 1 to CS.START_ONCE will immediately start a new conversion. CS.READY will go low, to show that a

conversion is currently in progress. After 96 cycles of clk_adc, CS.READY will go high. The 12-bit conversion result is

available in RESULT.

The ADC input to be sampled is selected by writing to CS.AINSEL, any time before the conversion starts. An AINSEL

value of 0…3 selects the ADC input on GPIO 26…29. AINSEL of 4 selects the internal temperature sensor.

 NOTE

No settling time is required when switching AINSEL.

4.9.2.2. Free-running Sampling

When CS.START_MANY is set,the ADC will automatically start new conversions at regular intervals. The most recent

conversion result is always available in RESULT, but for IRQ or DMA driven streaming of samples, the ADC FIFO must be

enabled (Section 4.9.2.4).

By default (DIV = 0), new conversions start immediately upon the previous conversion finishing, so a new sample is

produced every 96 cycles. At a clock frequency of 48MHz, this produces 500ksps.

Setting DIV.INT to some positive value n will trigger the ADC once per n + 1 cycles, though the ADC ignores this if a

conversion is currently in progress, so generally n will be >= 96. For example, setting DIV.INT to 47999 will run the ADC

at 1ksps, if running from a 48MHz clock.

The pacing timer supports fractional-rate division (first order delta sigma). When setting DIV.FRAC to a nonzero value,

RP2040 Datasheet

4.9. ADC and Temperature Sensor 562

the ADC will start a new conversion once per cycles on average, by changing the sample interval

between and .

4.9.2.3. Sampling Multiple Inputs

CS.RROBIN allows the ADC to sample multiple inputs, in an interleaved fashion, while performing free-running sampling.

Each bit in RROBIN corresponds to one of the five possible values of CS.AINSEL. When the ADC completes a

conversion, CS.AINSEL will automatically cycle to the next input whose corresponding bit is set in RROBIN.

The round-robin sampling feature is disabled by writing all-zeroes to CS.RROBIN.

For example, if AINSEL is initially 0, and RROBIN is set to 0x06 (bits 1 and 2 are set), the ADC will sample channels in the

following order:

1. Channel 0

2. Channel 1

3. Channel 2

4. Channel 1

5. Channel 2

6. Channel 1…

 NOTE

The initial value of AINSEL does not need to correspond with a set bit in RROBIN.

4.9.2.4. Sample FIFO

The ADC samples can be read directly from the RESULT register, or stored in a local 8-entry FIFO and read out from

FIFO. FIFO operation is controlled by the FCS register.

If FCS.EN is set, the result of each ADC conversion is written to the FIFO. A software interrupt handler or the RP2040

DMA can read this sample from the FIFO when notified by the ADC’s IRQ or DREQ signals. Alternatively, software can

poll the status bits in FCS to wait for each sample to become available.

If the FIFO is full when a conversion completes, the sticky error flag FCS.OVER is set. The current FIFO contents are not

changed by this event, but any conversion that completes whilst the FIFO is full will be lost.

There are two flags that control the data written to the FIFO by the ADC:

• FCS.SHIFT will right-shift the FIFO data to eight bits in size (i.e. FIFO bits 7:0 are conversion result bits 11:4). This

is suitable for 8-bit DMA transfer to a byte buffer in memory, allowing deeper capture buffers, at the cost of some

precision.

• FCS.ERR will set the FIFO.ERR flag of each FIFO value, showing that a conversion error took place, i.e. the SAR

failed to converge (see below)

RP2040 Datasheet

4.9. ADC and Temperature Sensor 563

 CAUTION

Conversion errors produce undefined results, and the corresponding sample should be discarded. They indicate that

the comparison of one or more bits failed to complete in the time allowed. Normally this is caused by comparator

metastability, i.e. the closer to the comparator threshold the input signal is, the longer it will take to make a decision.

The high gain of the comparator reduces the probability that no decision is made.

4.9.2.5. DMA

The RP2040 DMA (Section 2.5) can fetch ADC samples from the sample FIFO, by performing a normal memory-mapped

read on the FIFO register, paced by the ADC_DREQ system data request signal. The following must be considered:

• The sample FIFO must be enabled (FCS.EN) so that samples are written to it; the FIFO is disabled by default so

that it does not inadvertently fill when the ADC is used for one-shot conversions.

• The ADC’s data request handshake (DREQ) must be enabled, via FCS.DREQ_EN.

• The DMA channel used for the transfer must select the DREQ_ADC data request signal (Section 2.5.3.1).

• The threshold for DREQ assertion (FCS.THRESH) should be set to 1, so that the DMA transfers as soon as a single

sample is present in the FIFO. Note this is also the threshold used for IRQ assertion, so non-DMA use cases might

prefer a higher value for less frequent interrupts.

• If the DMA transfer size is set to 8 bits, so that the DMA transfers to a byte array in memory, FCS.SHIFT must also

be set, to pre-shift the FIFO samples to 8 bits of significance.

• If multiple input channels are to be sampled, CS.RROBIN contains a 5-bit mask of those channels (4 external inputs

plus temperature sensor). Additionally CS.AINSEL must select the channel for the first sample.

• The ADC sample rate (Section 4.9.2.2) should be configured before starting the ADC.

Once the ADC is suitably configured, the DMA channel should be started first, and the ADC conversion should be started

second, via CS.START_MANY. Once the DMA completes, the ADC can be halted, or a new DMA transfer promptly

started. After clearing CS.START_MANY to halt the ADC, software should also poll CS.READY to make sure the last

conversion has finished, and then drain any stray samples from the FIFO.

4.9.2.6. Interrupts

An interrupt can be generated when the FIFO level reaches a configurable threshold FCS.THRESH. The interrupt output

must be enabled via INTE.

Status can be read from INTS. The interrupt is cleared by draining the FIFO to a level lower than FCS.THRESH.

4.9.2.7. Supply

The ADC supply is separated out on its own pin to allow noise filtering.

4.9.3. ADC ENOB

The ADC was characterised and the ENOB of the ADC was measured. Testing was carried out at room temperature

across silicon lots, with tests being done on 3 typical (tt) as well as 3 fast (ff) and 3 slow (ss) corner RP2040 devices.

The typical, minimum, and maximum values in Table 566 reflect the silicon used in the testing.

Table 565. Parameters

used during the

testing.

Parameter Value

Sample rate 250ksps

RP2040 Datasheet

4.9. ADC and Temperature Sensor 564

Parameter Value

FFT window 5 term Blackman-Harris

FFT bins 4,096

FFT averaging none

Input level min 1

Input level max 4,094

Input frequency 997Hz

It should be noted that THD is normally calculated using the first 5 or 6 harmonics. However as INL/DNL errors (see

Section 4.9.4) create more than this, the first 30 peaks are used. This makes the THD value slightly worse, but more

representative of reality.

Table 566. Results for

various parts tested

(fast, slow, and

typical).

Min Typical Max

THD1 -55.6dB 55dB -54.4dB

SNR 60.9dB 61.5dB 62.0dB

SFDR 59.2dB 59.9dB 60.5dB

SINAD 53.6dB 54.0dB 54.6dB

ENOB 8.6 8.7 8.8

1 As the INL creates a large number of harmonics, the highest 30 peaks were used. This is different from conventional

calculations of THD.

 IMPORTANT

Testing was carried out using a board with a low-noise on-board voltage reference as, when characterising the ADC,

it is important that there are no other noise sources affecting the measurements.

4.9.4. INL and DNL

Integral Non-Linearity (INL) and Differential Non-Linearity (DNL) are used to measure the error of the quantisation of the

incoming signal that the ADC generates. In an ideal ADC the input-to-output transfer function should have a linear

quantised transfer between the analogue input signal and the digitised output signal. The RP2040 ADC INL values for

each binary result are shown in Figure 116, illustrating that the error is a sawtooth rather than the expected curve.

RP2040 Datasheet

4.9. ADC and Temperature Sensor 565

Figure 116. ATE

machine results for

INL (RP2040).

Nominally an ADC moves from one digital value to the next digital value, colloquially expressed as “no missing codes”.

However, if the ADC skips a value bin this would cause a spike in the Differential Non-Linearity (DNL) error. These types

of error often only occur at specific codes due to the design of the ADC.

The RP2040 ADC has a DNL which is mostly flat, and below 1 LSB. However at four values — 512, 1,536, 2,560, and

3,584 — the ADC’s DNL error peaks, see Figure 117

Figure 117. ATE

machine results for

DNL (RP2040).

The INL and DNL errors come from an error in the scaling of some internal capacitors of the ADC. These capacitors are

small in value (only tens of femto Farads) and at these very small values, chip simulation of these capacitors can

deviate slightly from reality. If these capacitors had matched correctly, the ADCs performance could have been better.

These INL and DNL errors will somewhat limit the performance of the ADC dependent on use case (See Errata RP2040-

E11).

4.9.5. Temperature Sensor

The temperature sensor measures the Vbe voltage of a biased bipolar diode, connected to the fifth ADC channel

(AINSEL=4). Typically, Vbe = 0.706V at 27 degrees C, with a slope of -1.721mV per degree. Therefore the temperature

can be approximated as follows:

T = 27 - (ADC_voltage - 0.706)/0.001721

As the Vbe and the Vbe slope can vary over the temperature range, and from device to device, some user calibration

may be required if accurate measurements are required.

RP2040 Datasheet

4.9. ADC and Temperature Sensor 566

The temperature sensor’s bias source must be enabled before use, via CS.TS_EN. This increases current consumption

on ADC_AVDD by approximately 40μA.

 NOTE

The on board temperature sensor is very sensitive to errors in the reference voltage. If the ADC returns a value of

891 this would correspond to a temperature of 20.1°C. However if the reference voltage is 1% lower than 3.3V then

the same reading of 891 would correspond to 24.3°C. You would see a change in temperature of over 4°C for a small

1% change in reference voltage. Therefore if you want to improve the accuracy of the internal temperature sensor it

is worth considering adding an external reference voltage.

 NOTE

The INL errors, see Section 4.9.4, aren’t in the usable temperature range of the ADC.

4.9.6. List of Registers

The ADC registers start at a base address of 0x4004c000 (defined as ADC_BASE in SDK).

Table 567. List of ADC

registers
Offset Name Info

0x00 CS ADC Control and Status

0x04 RESULT Result of most recent ADC conversion

0x08 FCS FIFO control and status

0x0c FIFO Conversion result FIFO

0x10 DIV Clock divider. If non-zero, CS_START_MANY will start

conversions

at regular intervals rather than back-to-back.

The divider is reset when either of these fields are written.

Total period is 1 + INT + FRAC / 256

0x14 INTR Raw Interrupts

0x18 INTE Interrupt Enable

0x1c INTF Interrupt Force

0x20 INTS Interrupt status after masking & forcing

ADC: CS Register

Offset: 0x00

Description

ADC Control and Status

Table 568. CS Register
Bits Name Description Type Reset

31:21 Reserved. - - -

RP2040 Datasheet

4.9. ADC and Temperature Sensor 567

Bits Name Description Type Reset

20:16 RROBIN Round-robin sampling. 1 bit per channel. Set all bits to 0 to

disable.

Otherwise, the ADC will cycle through each enabled

channel in a round-robin fashion.

The first channel to be sampled will be the one currently

indicated by AINSEL.

AINSEL will be updated after each conversion with the

newly-selected channel.

RW 0x00

15 Reserved. - - -

14:12 AINSEL Select analog mux input. Updated automatically in round-

robin mode.

RW 0x0

11 Reserved. - - -

10 ERR_STICKY Some past ADC conversion encountered an error. Write 1

to clear.

WC 0x0

9 ERR The most recent ADC conversion encountered an error;

result is undefined or noisy.

RO 0x0

8 READY 1 if the ADC is ready to start a new conversion. Implies

any previous conversion has completed.

0 whilst conversion in progress.

RO 0x0

7:4 Reserved. - - -

3 START_MANY Continuously perform conversions whilst this bit is 1. A

new conversion will start immediately after the previous

finishes.

RW 0x0

2 START_ONCE Start a single conversion. Self-clearing. Ignored if

start_many is asserted.

SC 0x0

1 TS_EN Power on temperature sensor. 1 - enabled. 0 - disabled. RW 0x0

0 EN Power on ADC and enable its clock.

1 - enabled. 0 - disabled.

RW 0x0

ADC: RESULT Register

Offset: 0x04

Table 569. RESULT

Register
Bits Description Type Reset

31:12 Reserved. - -

11:0 Result of most recent ADC conversion RO 0x000

ADC: FCS Register

Offset: 0x08

Description

FIFO control and status

Table 570. FCS

Register
Bits Name Description Type Reset

31:28 Reserved. - - -

27:24 THRESH DREQ/IRQ asserted when level >= threshold RW 0x0

RP2040 Datasheet

4.9. ADC and Temperature Sensor 568

Bits Name Description Type Reset

23:20 Reserved. - - -

19:16 LEVEL The number of conversion results currently waiting in the

FIFO

RO 0x0

15:12 Reserved. - - -

11 OVER 1 if the FIFO has been overflowed. Write 1 to clear. WC 0x0

10 UNDER 1 if the FIFO has been underflowed. Write 1 to clear. WC 0x0

9 FULL RO 0x0

8 EMPTY RO 0x0

7:4 Reserved. - - -

3 DREQ_EN If 1: assert DMA requests when FIFO contains data RW 0x0

2 ERR If 1: conversion error bit appears in the FIFO alongside the

result

RW 0x0

1 SHIFT If 1: FIFO results are right-shifted to be one byte in size.

Enables DMA to byte buffers.

RW 0x0

0 EN If 1: write result to the FIFO after each conversion. RW 0x0

ADC: FIFO Register

Offset: 0x0c

Description

Conversion result FIFO

Table 571. FIFO

Register
Bits Name Description Type Reset

31:16 Reserved. - - -

15 ERR 1 if this particular sample experienced a conversion error.

Remains in the same location if the sample is shifted.

RF -

14:12 Reserved. - - -

11:0 VAL RF -

ADC: DIV Register

Offset: 0x10

Description

Clock divider. If non-zero, CS_START_MANY will start conversions

at regular intervals rather than back-to-back.

The divider is reset when either of these fields are written.

Total period is 1 + INT + FRAC / 256

Table 572. DIV

Register
Bits Name Description Type Reset

31:24 Reserved. - - -

23:8 INT Integer part of clock divisor. RW 0x0000

7:0 FRAC Fractional part of clock divisor. First-order delta-sigma. RW 0x00

ADC: INTR Register

RP2040 Datasheet

4.9. ADC and Temperature Sensor 569

Offset: 0x14

Description

Raw Interrupts

Table 573. INTR

Register
Bits Name Description Type Reset

31:1 Reserved. - - -

0 FIFO Triggered when the sample FIFO reaches a certain level.

This level can be programmed via the FCS_THRESH field.

RO 0x0

ADC: INTE Register

Offset: 0x18

Description

Interrupt Enable

Table 574. INTE

Register
Bits Name Description Type Reset

31:1 Reserved. - - -

0 FIFO Triggered when the sample FIFO reaches a certain level.

This level can be programmed via the FCS_THRESH field.

RW 0x0

ADC: INTF Register

Offset: 0x1c

Description

Interrupt Force

Table 575. INTF

Register
Bits Name Description Type Reset

31:1 Reserved. - - -

0 FIFO Triggered when the sample FIFO reaches a certain level.

This level can be programmed via the FCS_THRESH field.

RW 0x0

ADC: INTS Register

Offset: 0x20

Description

Interrupt status after masking & forcing

Table 576. INTS

Register
Bits Name Description Type Reset

31:1 Reserved. - - -

0 FIFO Triggered when the sample FIFO reaches a certain level.

This level can be programmed via the FCS_THRESH field.

RO 0x0

4.10. SSI

Synopsys Documentation

Synopsys Proprietary. Used with permission.

RP2040 Datasheet

4.10. SSI 570

RP2040 has a Synchronous Serial Interface (SSI) controller which appears on the QSPI pins and is used to

communicate with external Flash devices. The SSI forms part of the XIP block.

The SSI controller is based on a configuration of the Synopsys DW_apb_ssi IP (v4.01a).

4.10.1. Overview

In order for the DW_apb_ssi to connect to a serial-master or serial-slave peripheral device, the peripheral must have a

least one of the following interfaces:

Motorola Serial Peripheral Interface (SPI)

A four-wire, full-duplex serial protocol from Motorola. There are four possible combinations for the serial clock

phase and polarity. The clock phase (SCPH) determines whether the serial transfer begins with the falling edge of

the slave select signal or the first edge of the serial clock. The slave select line is held high when the DW_apb_ssi is

idle or disabled.

Texas Instruments Serial Protocol (SSP)

A four-wire, full-duplex serial protocol. The slave select line used for SPI and Microwire protocols doubles as the

frame indicator for the SSP protocol.

National Semiconductor Microwire

A half-duplex serial protocol, which uses a control word transmitted from the serial master to the target serial slave.

You can program the FRF (frame format) bit field in the Control Register 0 (CTRLR0) to select which protocol is used.

The serial protocols supported by the DW_apb_ssi allow for serial slaves to be selected or addressed using either

hardware or software. When implemented in hardware, serial slaves are selected under the control of dedicated

hardware select lines. The number of select lines generated from the serial master is equal to the number of serial

slaves present on the bus. The serial-master device asserts the select line of the target serial slave before data transfer

begins. This architecture is illustrated in Figure 118.

When implemented in software, the input select line for all serial slave devices should originate from a single slave

select output on the serial master. In this mode it is assumed that the serial master has only a single slave select

output. If there are multiple serial masters in the system, the slave select output from all masters can be logically

ANDed to generate a single slave select input for all serial slave devices. The main program in the software domain

controls selection of the target slave device; this architecture is illustrated in Figure 118. Software would use the

SSIENR register in all slaves in order to control which slave is to respond to the serial transfer request from the master

device.

The DW_apb_ssi does not enforce hardware or software control for serial-slave device selection. You can configure the

DW_apb_ssi for either implementation, illustrated in Figure 118.

Master

ss_0

ss_x

Slave

ss

Data Bus

ss = slave select line

Slave

ss

A

Master

ss

Slave

ss

Data Bus

Slave

ss

B

Figure 118.

Hardware/Software

Slave Selection.

RP2040 Datasheet

4.10. SSI 571

4.10.2. Features

The DW_apb_ssi is a configurable and programmable component that is a full-duplex master serial interface. The host

processor accesses data, control, and status information on the DW_apb_ssi through the APB interface. The

DW_apb_ssi also interfaces with the DMA Controller for bulk data transfer.

The DW_apb_ssi is configured as a serial master. The DW_apb_ssi can connect to any serial-slave peripheral device

using one of the following interfaces:

• Motorola Serial Peripheral Interface (SPI)

• Texas Instruments Serial Protocol (SSP)

• National Semiconductor Microwire

On RP2040, the DW_apb_ssi is a component of the flash execute-in-place subsystem (see Section 2.6.3), and provides

communication with an external SPI, dual-SPI or quad-SPI flash device.

4.10.2.1. IO connections

The SSI controller connects to the following pins:

• QSPI_SCLK Connected to output clock sclk_out

• QSPI_SS_N Connected to chip select ss_o_n

• QSPI_SD[3:0] Connected to data bus txd and rxd

Some pins on the IP are tied off as not used:

• ss_in_n is tied high

Clock connections are as follows:

• pclk and sclk are driven from clk_sys

4.10.3. IP Modifications

The following modifications were made to the Synopsys DW_apb_ssi hardware:

1. XIP accesses are byte-swapped, such that the least-addressed byte is in the least-significant position

2. When SPI_CTRLR0_INST_L is 0, the XIP instruction field is appended to the end of the address for XIP accesses,

rather than prepended to the beginning

3. The reset value of DMARDLR is increased from 0 to 4. The SSI to DMA handshaking on RP2040 requests only single

transfers or bursts of four, depending on whether the RX FIFO level has reached DMARDLR, so DMARDLR should not be

changed from this value.

The first of these changes allows mixed-size accesses by a little-endian busmaster, such as the RP2040 DMA, or the

Cortex-M0+ configuration used on RP2040. Note that this only applies to XIP accesses (RP2040 system addresses in

the range 0x10000000 to 0x13ffffff), not to direct access to the DW_apb_ssi FIFOs. When accessing the SSI directly, it

may be necessary for software to swap bytes manually, or to use the RP2040 DMA’s byte swap feature.

The second supports issuing of continuation bits following the XIP address, so that command-prefix-free XIP modes

can be supported (e.g. EBh Quad I/O Fast Read on Winbond devices), for greater performance. For example, the

following configuration would be used to issue a standard 03h serial read command for each access to the XIP address

window:

• SPI_CTRLR0_INST_L = 8 bits

• SPI_CTRLR0_ADDR_L = 24 bits

• SPI_CTRLR0_XIP_CMD = 0x03

RP2040 Datasheet

4.10. SSI 572

This will first issue eight command bits (0x03), then issue 24 address bits, then clock in the data bits. The configuration

used for EBh quad read, after the flash has entered the XIP state, would be:

• SPI_CTRLR0_INST_L = 0

• SPI_CTRLR0_ADDR_L = 32 bits

• SPI_CTRLR0_XIP_CMD = 0xa0 (continuation code on W25Qx devices)

For each XIP access, the DW_apb_ssi will issue 32 "address" bits, consisting of the 24 LSBs of the RP2040 system bus

address, followed by the 8-bit continuation code 0xa0. No command prefix is issued.

4.10.3.1. Example of Target Slave Selection Using Software

The following example is pseudo code that illustrates how to use software to select the target slave.

1 int main() {
2 disable_all_serial_devices(); ①
3 initialize_mst(ssi_mst_1); ②
4 initialize_slv(ssi_slv_1); ③
5 start_serial_xfer(ssi_mst_1); ④
6 }

① This function sets the

SSI_EN bit to logic ‘0’ in the

SSIENR register of each

device on the serial bus.

② This function initializes the

master device for the

serial transfer;

1. Write CTRLR0 to

match the required

transfer

2. If transfer is receive

only write number of

frames into CTRLR1

3. Write BAUDR to set

the transfer baud rate.

4. Write TXFTLR and

RXFTLR to set FIFO

threshold levels

5. Write IMR register to

set interrupt masks

6. Write SER register

bit[0] to logic '1'

7. Write SSIENR register

bit[0] to logic '1' to

enable the master.

③ This function initializes the

target slave device (slave 1

in this example) for the

serial transfer;

1. Write CTRLR0 to

match the required

transfer

2. Write TXFTLR and

RXFTLR to set FIFO

threshold levels

3. Write IMR register to

set interrupt masks

4. Write SSIENR register

bit[0] to logic '1' to

enable the slave.

5. If the slave is to

transmit data, write

data into TX FIFO Now

the slave is enabled

and awaiting an active

level on its ss_in_n

input port. Note all

other serial slaves are

disabled (SSI_EN=0)

and therefore will not

respond to an active

level on their ss_in_n

port.

④ This function begins the

serial transfer by writing

transmit data into the

master’s TX FIFO. User

can poll the busy status

with a function or use an

ISR to determine when the

serial transfer has

completed.

RP2040 Datasheet

4.10. SSI 573

4.10.4. Clock Ratios

The maximum frequency of the bit-rate clock (sclk_out) is one-half the frequency of ssi_clk. This allows the shift control

logic to capture data on one clock edge of sclk_out and propagate data on the opposite edge.

Figure 119 illustrates the maximum ratio between sclk_out and ssi_clk.

sclk_out

ssi_clk

txd/rxd MSB

capture2 capture3capture drive1 capture1 drive2 drive3
Figure 119. Maximum

sclk_out/ssi_clk Ratio.

The sclk_out line toggles only when an active transfer is in progress. At all other times it is held in an inactive state, as

defined by the serial protocol under which it operates.

The frequency of sclk_out can be derived from the following equation:

SCKDV is a bit field in the programmable register BAUDR, holding any even value in the range 0 to 65,534. If SCKDV is 0,

then sclk_out is disabled.

4.10.4.1. Frequency Ratio Summary

A summary of the frequency ratio restrictions between the bit-rate clock (sclk_out) and the DW_apb_ssi peripheral clock

(ssi_clk) are as follows:

•

4.10.5. Transmit and Receive FIFO Buffers

The FIFO buffers used by the DW_apb_ssi are internal D-type flip-flops that are 16 entries deep. The width of both

transmit and receive FIFO buffers is fixed at 32 bits, due to the serial specifications, which state that a serial transfer

(data frame) can be 4 to 16/32 bits in length. Data frames that are less than 32 bits must be right-justified when written

into the transmit FIFO buffer. The shift control logic automatically right-justifies receive data in the receive FIFO buffer.

Each data entry in the FIFO buffers contains a single data frame. It is impossible to store multiple data frames in a

single FIFO location; for example, you may not store two 8-bit data frames in a single FIFO location. If an 8-bit data

frame is required, the upper bits of the FIFO entry are ignored or unused when the serial shifter transmits the data.

 NOTE

The transmit and receive FIFO buffers are cleared when the DW_apb_ssi is disabled (SSI_EN = 0) or when it is reset

(presetn).

The transmit FIFO is loaded by APB write commands to the DW_apb_ssi data register (DR). Data are popped (removed)

from the transmit FIFO by the shift control logic into the transmit shift register. The transmit FIFO generates a FIFO

empty interrupt request (ssi_txe_intr) when the number of entries in the FIFO is less than or equal to the FIFO threshold

value. The threshold value, set through the programmable register TXFTLR, determines the level of FIFO entries at which

an interrupt is generated. The threshold value allows you to provide early indication to the processor that the transmit

FIFO is nearly empty. A transmit FIFO overflow interrupt (ssi_txo_intr) is generated if you attempt to write data into an

already full transmit FIFO.

Data are popped from the receive FIFO by APB read commands to the DW_apb_ssi data register (DR). The receive FIFO

is loaded from the receive shift register by the shift control logic. The receive FIFO generates a FIFO-full interrupt

request (ssi_rxf_intr) when the number of entries in the FIFO is greater than or equal to the FIFO threshold value plus

RP2040 Datasheet

4.10. SSI 574

one. The threshold value, set through programmable register RXFTLR, determines the level of FIFO entries at which an

interrupt is generated.

The threshold value allows you to provide early indication to the processor that the receive FIFO is nearly full. A receive

FIFO overrun interrupt (ssi_rxo_intr) is generated when the receive shift logic attempts to load data into a completely full

receive FIFO. However, this newly received data are lost. A receive FIFO underflow interrupt (ssi_rxu_intr) is generated if

you attempt to read from an empty receive FIFO. This alerts the processor that the read data are invalid.

Table 577 provides description for different Transmit FIFO Threshold values.

Table 577. Transmit

FIFO Threshold (TFT)

Decode Values

TFT Value Description

0000_0000 ssi_txe_intr is asserted when zero data entries are present in transmit FIFO

0000_0001 ssi_txe_intr is asserted when one or less data entry is present in transmit FIFO

0000_0010 ssi_txe_intr is asserted when two or less data entries are present in transmit FIFO

… …

0000_1101 ssi_txe_intr is asserted when 13 or less data entries are present in transmit FIFO

0000_1110 ssi_txe_intr is asserted when 14 or less data entries are present in transmit FIFO

0000_1111 ssi_txe_intr is asserted when 15 or less data entries are present in transmit FIFO

Table 578 provides description for different Receive FIFO Threshold values.

Table 578. Receive

FIFO Threshold (TFT)

Decode Values

RFT Value Description

0000_0000 ssi_rxf_intr is asserted when one or more data entry is present in receive FIFO

0000_0001 ssi_rxf_intr is asserted when two or more data entries are present in receive FIFO

0000_0010 ssi_rxf_intr is asserted when three or more data entries are present in receive FIFO

… …

0000_1101 ssi_rxf_intr is asserted when 14 or more data entries are present in receive FIFO

0000_1110 ssi_rxf_intr is asserted when 15 or more data entries are present in receive FIFO

0000_1111 ssi_rxf_intr is asserted when 16 data entries are present in receive FIFO

4.10.6. 32-Bit Frame Size Support

The IP is configured to set the maximum programmable value in of data frame size to 32 bits. As a result the following

features exist:

• dfs_32 (CTRLR0[20:16]) are valid, which contains the value of data frame size. The new register field holds the

values 0 to 31. The dfs (CTRLR0[3:0]) is invalid and writing to this register has no effect.

• The receive and transmit FIFO widths are 32 bits.

• All 32 bits of the data register are valid.

4.10.7. SSI Interrupts

The DW_apb_ssi supports combined and individual interrupt requests, each of which can be masked. The combined

interrupt request is the ORed result of all other DW_apb_ssi interrupts after masking. Only the combined interrupt

request is routed to the Interrupt Controller. All DW_apb_ssi interrupts are level interrupts and are active high.

The DW_apb_ssi interrupts are described as follows:

RP2040 Datasheet

4.10. SSI 575

Transmit FIFO Empty Interrupt (ssi_txe_intr)

Set when the transmit FIFO is equal to or below its threshold value and requires service to prevent an under-run. The

threshold value, set through a software-programmable register, determines the level of transmit FIFO entries at

which an interrupt is generated. This interrupt is cleared by hardware when data are written into the transmit FIFO

buffer, bringing it over the threshold level.

Transmit FIFO Overflow Interrupt (ssi_txo_intr)

Set when an APB access attempts to write into the transmit FIFO after it has been completely filled. When set, data

written from the APB is discarded. This interrupt remains set until you read the transmit FIFO overflow interrupt

clear register (TXOICR).

Receive FIFO Full Interrupt (ssi_rxf_intr)

Set when the receive FIFO is equal to or above its threshold value plus 1 and requires service to prevent an

overflow. The threshold value, set through a software-programmable register, determines the level of receive FIFO

entries at which an interrupt is generated. This interrupt is cleared by hardware when data are read from the receive

FIFO buffer, bringing it below the threshold level.

Receive FIFO Overflow Interrupt (ssi_rxo_intr)

Set when the receive logic attempts to place data into the receive FIFO after it has been completely filled. When set,

newly received data are discarded. This interrupt remains set until you read the receive FIFO overflow interrupt clear

register (RXOICR).

Receive FIFO Underflow Interrupt (ssi_rxu_intr)

Set when an APB access attempts to read from the receive FIFO when it is empty. When set, 0s are read back from

the receive FIFO. This interrupt remains set until you read the receive FIFO underflow interrupt clear register

(RXUICR).

Multi-Master Contention Interrupt (ssi_mst_intr)

Present only when the DW_apb_ssi component is configured as a serial-master device. The interrupt is set when

another serial master on the serial bus selects the DW_apb_ssi master as a serial-slave device and is actively

transferring data. This informs the processor of possible contention on the serial bus. This interrupt remains set

until you read the multi-master interrupt clear register (MSTICR).

Combined Interrupt Request (ssi_intr)

OR’ed result of all the above interrupt requests after masking. To mask this interrupt signal, you must mask all other

DW_apb_ssi interrupt requests.

4.10.8. Transfer Modes

When transferring data on the serial bus, the DW_apb_ssi operates in the modes discussed in this section. The transfer

mode (TMOD) is set by writing to control register 0 (CTRLR0).

 NOTE

The transfer mode setting does not affect the duplex of the serial transfer. TMOD is ignored for Microwire transfers,

which are controlled by the MWCR register.

4.10.8.1. Transmit and Receive

When TMOD = 00b, both transmit and receive logic are valid. The data transfer occurs as normal according to the

selected frame format (serial protocol). Transmit data are popped from the transmit FIFO and sent through the txd line

to the target device, which replies with data on the rxd line. The receive data from the target device is moved from the

receive shift register into the receive FIFO at the end of each data frame.

RP2040 Datasheet

4.10. SSI 576

4.10.8.2. Transmit Only

When TMOD = 01b, the receive data are invalid and should not be stored in the receive FIFO. The data transfer occurs as

normal, according to the selected frame format (serial protocol). Transmit data are popped from the transmit FIFO and

sent through the txd line to the target device, which replies with data on the rxd line. At the end of the data frame, the

receive shift register does not load its newly received data into the receive FIFO. The data in the receive shift register is

overwritten by the next transfer. You should mask interrupts originating from the receive logic when this mode is

entered.

4.10.8.3. Receive Only

When TMOD = 10b, the transmit data are invalid. When configured as a slave, the transmit FIFO is never popped in

Receive Only mode. The txd output remains at a constant logic level during the transmission. The data transfer occurs

as normal according to the selected frame format (serial protocol). The receive data from the target device is moved

from the receive shift register into the receive FIFO at the end of each data frame. You should mask interrupts

originating from the transmit logic when this mode is entered.

4.10.8.4. EEPROM Read

 NOTE

This transfer mode is only valid for master configurations.

When TMOD = 11b, the transmit data is used to transmit an opcode and/or an address to the EEPROM device. Typically

this takes three data frames (8-bit opcode followed by 8-bit upper address and 8-bit lower address). During the

transmission of the opcode and address, no data is captured by the receive logic (as long as the DW_apb_ssi master is

transmitting data on its txd line, data on the rxd line is ignored). The DW_apb_ssi master continues to transmit data until

the transmit FIFO is empty. Therefore, you should ONLY have enough data frames in the transmit FIFO to supply the

opcode and address to the EEPROM. If more data frames are in the transmit FIFO than are needed, then read data is

lost.

When the transmit FIFO becomes empty (all control information has been sent), data on the receive line (rxd) is valid

and is stored in the receive FIFO; the txd output is held at a constant logic level. The serial transfer continues until the

number of data frames received by the DW_apb_ssi master matches the value of the NDF field in the CTRLR1 register +

1.

 NOTE

EEPROM read mode is not supported when the DW_apb_ssi is configured to be in the SSP mode.

4.10.9. Operation Modes

The DW_apb_ssi can be configured in the fundamental modes of operation discussed in this section.

4.10.9.1. Serial Master Mode

This mode enables serial communication with serial-slave peripheral devices. When configured as a serial-master

device, the DW_apb_ssi initiates and controls all serial transfers. Figure 120 shows an example of the DW_apb_ssi

configured as a serial master with all other devices on the serial bus configured as serial slaves.

RP2040 Datasheet

4.10. SSI 577

DW_apb_ssi

Master 1

txd

ssi_oe_n

rxd

sclk_out

ss_n[0]

ss_n[1]

ss_in_n

Slave

Peripheral 1

DI

DO

SCLK

SS

Slave

Peripheral n

Should be driven to inactive level

(protocol-dependent) in single master

systems; may not need glue logic

DI

DO

SCLK
Glue Logic

SS

Figure 120.

DW_apb_ssi

Configured as Master

Device

The serial bit-rate clock, generated and controlled by the DW_apb_ssi, is driven out on the sclk_out line. When the

DW_apb_ssi is disabled (SSI_EN = 0), no serial transfers can occur and sclk_out is held in “inactive” state, as defined by

the serial protocol under which it operates.

Multiple master configuration is not supported.

4.10.9.1.1. RXD Sample Delay

When the DW_apb_ssi is configured as a master, additional logic can be included in the design in order to delay the

default sample time of the rxd signal. This additional logic can help to increase the maximum achievable frequency on

the serial bus.

Round trip routing delays on the sclk_out signal from the master and the rxd signal from the slave can mean that the

timing of the rxd signal—as seen by the master—has moved away from the normal sampling time. Figure 121 illustrates

this situation.

ssi_clk

sclk_out

txd_mst

rxd_mst

sclk_in

rxd_slv

txd_slv

dly=0 dly=5

dly=6

dly=7 baud-rate=4

MSB

MSB LSB

LSB

LSB

LSB

MSB

MSB

Figure 121. Effects of

Round-Trip Routing

Delays on sclk_out

Signal

The Slave uses the sclk_out signal from the master as a strobe in order to drive rxd signal data onto the serial bus.

Routing and sampling delays on the sclk_out signal by the slave device can mean that the rxd bit has not stabilized to

the correct value before the master samples the rxd signal. Figure 121 shows an example of how a routing delay on the

rxd signal can result in an incorrect rxd value at the default time when the master samples the port.

RP2040 Datasheet

4.10. SSI 578

Without the RXD Sample Delay logic, the user would have to increase the baud-rate for the transfer in order to ensure

that the setup times on the rxd signal are within range; this results in reducing the frequency of the serial interface.

When the RXD Sample Delay logic is included, the user can dynamically program a delay value in order to move the

sampling time of the rxd signal equal to a number of ssi_clk cycles from the default.

The sample delay logic has a resolution of one ssi_clk cycle. Software can “train” the serial bus by coding a loop that

continually reads from the slave and increments the master’s RXD Sample Delay value until the correct data is received

by the master.

4.10.9.1.2. Data Transfers

Data transfers are started by the serial-master device. When the DW_apb_ssi is enabled (SSI_EN=1), at least one valid

data entry is present in the transmit FIFO and a serial-slave device is selected. When actively transferring data, the busy

flag (BUSY) in the status register (SR) is set. You must wait until the busy flag is cleared before attempting a new serial

transfer.

 NOTE

The BUSY status is not set when the data are written into the transmit FIFO. This bit gets set only when the target

slave has been selected and the transfer is underway. After writing data into the transmit FIFO, the shift logic does

not begin the serial transfer until a positive edge of the sclk_out signal is present. The delay in waiting for this

positive edge depends on the baud rate of the serial transfer. Before polling the BUSY status, you should first poll the

TFE status (waiting for 1) or wait for BAUDR * ssi_clk clock cycles.

4.10.9.1.3. Master SPI and SSP Serial Transfers

When the transfer mode is “transmit and receive” or “transmit only” (TMOD = 00b or TMOD = 01b, respectively), transfers

are terminated by the shift control logic when the transmit FIFO is empty. For continuous data transfers, you must

ensure that the transmit FIFO buffer does not become empty before all the data have been transmitted. The transmit

FIFO threshold level (TXFTLR) can be used to early interrupt (ssi_txe_intr) the processor indicating that the transmit

FIFO buffer is nearly empty. When a DMA is used for APB accesses, the transmit data level (DMATDLR) can be used to

early request (dma_tx_req) the DMA Controller, indicating that the transmit FIFO is nearly empty. The FIFO can then be

refilled with data to continue the serial transfer. The user may also write a block of data (at least two FIFO entries) into

the transmit FIFO before enabling a serial slave. This ensures that serial transmission does not begin until the number

of data-frames that make up the continuous transfer are present in the transmit FIFO.

When the transfer mode is “receive only” (TMOD = 10b), a serial transfer is started by writing one “dummy” data word

into the transmit FIFO when a serial slave is selected. The txd output from the DW_apb_ssi is held at a constant logic

level for the duration of the serial transfer. The transmit FIFO is popped only once at the beginning and may remain

empty for the duration of the serial transfer. The end of the serial transfer is controlled by the “number of data frames”

(NDF) field in control register 1 (CTRLR1).

If, for example, you want to receive 24 data frames from a serial-slave peripheral, you should program the NDF field with

the value 23; the receive logic terminates the serial transfer when the number of frames received is equal to the NDF

value + 1. This transfer mode increases the bandwidth of the APB bus as the transmit FIFO never needs to be serviced

during the transfer. The receive FIFO buffer should be read each time the receive FIFO generates a FIFO full interrupt

request to prevent an overflow.

When the transfer mode is “eeprom_read” (TMOD = 11b), a serial transfer is started by writing the opcode and/or

address into the transmit FIFO when a serial slave (EEPROM) is selected. The opcode and address are transmitted to

the EEPROM device, after which read data is received from the EEPROM device and stored in the receive FIFO. The end

of the serial transfer is controlled by the NDF field in the control register 1 (CTRLR1).

RP2040 Datasheet

4.10. SSI 579

 NOTE

EEPROM read mode is not supported when the DW_apb_ssi is configured to be in the SSP mode.

The receive FIFO threshold level (RXFTLR) can be used to give early indication that the receive FIFO is nearly full. When

a DMA is used for APB accesses, the receive data level (DMARDLR) can be used to early request (dma_rx_req) the DMA

Controller, indicating that the receive FIFO is nearly full.

A typical software flow for completing an SPI or SSP serial transfer from the DW_apb_ssi serial master is outlined as

follows:

1. If the DW_apb_ssi is enabled, disable it by writing 0 to the SSI Enable register (SSIENR).

2. Set up the DW_apb_ssi control registers for the transfer; these registers can be set in any order.

◦ Write Control Register 0 (CTRLR0). For SPI transfers, the serial clock polarity and serial clock phase

parameters must be set identical to target slave device.

◦ If the transfer mode is receive only, write CTRLR1 (Control Register 1) with the number of frames in the

transfer minus 1; for example, if you want to receive four data frames, if you want to receive four data frames,

write '3' into CTRLR1.

◦ Write the Baud Rate Select Register (BAUDR) to set the baud rate for the transfer.

◦ Write the Transmit and Receive FIFO Threshold Level registers (TXFTLR and RXFTLR, respectively) to set FIFO

threshold levels.

◦ Write the IMR register to set up interrupt masks.

◦ The Slave Enable Register (SER) register can be written here to enable the target slave for selection. If a slave

is enabled here, the transfer begins as soon as one valid data entry is present in the transmit FIFO. If no

slaves are enabled prior to writing to the Data Register (DR), the transfer does not begin until a slave is

enabled.

3. Enable the DW_apb_ssi by writing 1 to the SSIENR register.

4. Write data for transmission to the target slave into the transmit FIFO (write DR). If no slaves were enabled in the

SER register at this point, enable it now to begin the transfer.

5. Poll the BUSY status to wait for completion of the transfer. The BUSY status cannot be polled immediately.

6. If a transmit FIFO empty interrupt request is made, write the transmit FIFO (write DR). If a receive FIFO full interrupt

request is made, read the receive FIFO (read DR).

7. The transfer is stopped by the shift control logic when the transmit FIFO is empty. If the transfer mode is receive

only (TMOD = 10b), the transfer is stopped by the shift control logic when the specified number of frames have

been received. When the transfer is done, the BUSY status is reset to 0.

8. If the transfer mode is not transmit only (TMOD != 01b), read the receive FIFO until it is empty.

9. Disable the DW_apb_ssi by writing 0 to SSIENR.

Figure 122 shows a typical software flow for starting a DW_apb_ssi master SPI/SSP serial transfer. The diagram also

shows the hardware flow inside the serial-master component.

RP2040 Datasheet

4.10. SSI 580

Software Flow

DW_apb_ssi

IDLE

IDLE

END

Disable
DW_apb_ssi

Pop data from
Tx FIFO into shifter

Enable
DW_apb_ssi Transfer Bit

Load Rx FIFO

Write data to
Tx FIFO

You may fill FIFO here:
Transfer begins when

first data word is
present in the transmit

FIFO and slave is
enabled.

If the transmit FIFO
is requesting and all
data have not been

sent, then write data
into transmit FIFO.

If the receive FIFO is
requesting, then
read data from
receive FIFO.

Transfer in
progress

Interrupt Service
Routine

Read Rx
FIFO

Configure Master by
writing CTRLR0. CTRLR1,
BAUDR, TXFTLR, RXFTLR,

IMR, SER, SPI_CTRLR0
(if Dual /Quad SPI)

Interrupt?
Yes

No

Yes
TMOD=01

TMOD=10
TMOD=00
TMOD=01

Yes

No No

Yes

Yes

TMOD=01
No

All bits in frame
transferred?

All frames
transferred

Transmit
FIFO empty?

BUSY?

No

Figure 122.

DW_apb_ssi Master

SPI/SSP Transfer Flow

4.10.9.1.4. Master Microwire Serial Transfers

Microwire serial transfers from the DW_apb_ssi serial master are controlled by the Microwire Control Register (MWCR).

The MWHS bit field enables and disables the Microwire handshaking interface. The MDD bit field controls the direction

of the data frame (the control frame is always transmitted by the master and received by the slave). The MWMOD bit

field defines whether the transfer is sequential or nonsequential.

All Microwire transfers are started by the DW_apb_ssi serial master when there is at least one control word in the

transmit FIFO and a slave is enabled. When the DW_apb_ssi master transmits the data frame (MDD = 1), the transfer is

terminated by the shift logic when the transmit FIFO is empty. When the DW_apb_ssi master receives the data frame

(MDD = 1), the termination of the transfer depends on the setting of the MWMOD bit field. If the transfer is

nonsequential (MWMOD = 0), it is terminated when the transmit FIFO is empty after shifting in the data frame from the

slave. When the transfer is sequential (MWMOD = 1), it is terminated by the shift logic when the number of data frames

received is equal to the value in the CTRLR1 register + 1.

When the handshaking interface on the DW_apb_ssi master is enabled (MWHS =1), the status of the target slave is

polled after transmission. Only when the slave reports a ready status does the DW_apb_ssi master complete the

transfer and clear its BUSY status. If the transfer is continuous, the next control/data frame is not sent until the slave

device returns a ready status.

A typical software flow for completing a Microwire serial transfer from the DW_apb_ssi serial master is outlined as

follows:

1. If the DW_apb_ssi is enabled, disable it by writing 0 to SSIENR.

2. Set up the DW_apb_ssi control registers for the transfer. These registers can be set in any order. Write CTRLR0 to

set transfer parameters.

◦ If the transfer is sequential and the DW_apb_ssi master receives data, write CTRLR1 with the number of

frames in the transfer minus 1; for instance, if you want to receive four data frames, write '3' into CTRLR1.

◦ Write BAUDR to set the baud rate for the transfer.

◦ Write TXFTLR and RXFTLR to set FIFO threshold levels.

◦ Write the IMR register to set up interrupt masks.

RP2040 Datasheet

4.10. SSI 581

You can write the SER register to enable the target slave for selection. If a slave is enabled here, the transfer

begins as soon as one valid data entry is present in the transmit FIFO. If no slaves are enabled prior to writing

to the DR register, the transfer does not begin until a slave is enabled.

3. Enable the DW_apb_ssi by writing 1 to the SSIENR register.

4. If the DW_apb_ssi master transmits data, write the control and data words into the transmit FIFO (write DR). If the

DW_apb_ssi master receives data, write the control word(s) into the transmit FIFO.

If no slaves were enabled in the SER register at this point, enable now to begin the transfer.

5. Poll the BUSY status to wait for completion of the transfer. The BUSY status cannot be polled immediately.

6. The transfer is stopped by the shift control logic when the transmit FIFO is empty. If the transfer mode is

sequential and the DW_apb_ssi master receives data, the transfer is stopped by the shift control logic when the

specified number of data frames is received. When the transfer is done, the BUSY status is reset to 0.

7. If the DW_apb_ssi master receives data, read the receive FIFO until it is empty.

8. Disable the DW_apb_ssi by writing 0 to SSIENR.

Figure 123 shows a typical software flow for starting a DW_apb_ssi master Microwire serial transfer. The diagram also

shows the hardware flow inside the serial-master component.

All bits in
data frame

transmitted?

Transmit
FIFO empty?

All frames
transferred?

Software Flow

DW_apb_ssi

IDLE
IDLE

END

Disable
DW_apb_ssi Pop control frame

from Tx FIFO into
shifter

Enable
DW_apb_ssi

Transfer Bit

Transfer Bit

Pop data frame from
Tx FIFO into shifter

Receive Bit

Load Rx FIFO

Write control &
data to Tx FIFO

If master receives
data, user need only
write control frames

into the Tx FIFO.
Transfer begins

when first control
word is present in
the Transmit FIFO

and a slave is
enabled.

If the transmit FIFO
is requesting and all
data have not been

sent, then write data
into transmit FIFO.

If the receive FIFO is
requesting, then
read data from
receive FIFO.

Transfer in
progress

Interrupt Service
Routine

Read Rx
FIFO

Configure Master
by writing CTRLR0.
CTRLR1, BAUDR,
TXFTLR, RXFTLR,
MWCR, IMR, SER

Interrupt?
Yes

No

Yes

YesMWCR[1]=1 MWCR[1]=0

MWCR[0]=0

MWCR[0]=1

Yes

Yes

NoNo

No

Yes

Yes

MWCR[1]=1
No

All bits in
control frame
transmitted?

All bits in
data frame
received?

BUSY?

No

Figure 123.

DW_apb_ssi Master

Microwire Transfer

Flow

4.10.10. Partner Connection Interfaces

The DW_apb_ssi can connect to any serial-slave peripheral device using one of the interfaces discussed in the following

sections.

RP2040 Datasheet

4.10. SSI 582

4.10.10.1. Motorola Serial Peripheral Interface (SPI)

With the SPI, the clock polarity (SCPOL) configuration parameter determines whether the inactive state of the serial

clock is high or low. To transmit data, both SPI peripherals must have identical serial clock phase (SCPH) and clock

polarity (SCPOL) values. The data frame can be 4 to 16/32 bits (depending upon SSI_MAX_XFER_SIZE) in length.

When the configuration parameter SCPH = 0, data transmission begins on the falling edge of the slave select signal.

The first data bit is captured by the master and slave peripherals on the first edge of the serial clock; therefore, valid

data must be present on the txd and rxd lines prior to the first serial clock edge.

Figure 124 shows a timing diagram for a single SPI data transfer with SCPH = 0. The serial clock is shown for

configuration parameters SCPOL = 0 and SCPOL = 1.

sclk_out/in 0

sclk_out/in 1

txd

rxd

ss_0_n/ss_in_n

ssi_oe_n

MSB

4 -32 bits

LSB

MSB LSB

Figure 124. SPI Serial

Format (SCPH = 0)

The following signals are illustrated in the timing diagrams in this section:

sclk_out

serial clock from DW_apb_ssi master

ss_0_n

slave select signal from DW_apb_ssi master

ss_in_n

slave select input to the DW_apb_ssi slave

ss_oe_n

output enable for the DW_apb_ssi master

txd

transmit data line for the DW_apb_ssi master

rxd

receive data line for the DW_apb_ssi master

Continuous data transfers are supported when SCPH = 0:

• When CTRLR0. SSTE is set to 1, the DW_apb_ssi toggles the slave select signal between frames and the serial

clock is held to its default value while the slave select signal is active; this operating mode is illustrated in Figure

125.

sclk_out/in 0

sclk_out/in 1

txd/rxd

ss_0_n/ss_in_n

ssi_oe_n

MSBLSB LSB MSB

Figure 125. Serial

Format Continuous

Transfers (SCPH = 0)

When the configuration parameter SCPH = 1, master peripherals begin transmitting data on the first serial clock edge

RP2040 Datasheet

4.10. SSI 583

after the slave select line is activated. The first data bit is captured on the second (trailing) serial clock edge. Data are

propagated by the master peripherals on the leading edge of the serial clock. During continuous data frame transfers,

the slave select line may be held active-low until the last bit of the last frame has been captured.

Figure 126 shows the timing diagram for the SPI format when the configuration parameter SCPH = 1.

sclk_out/in 0

sclk_out/in 1

txd

rxd

ss_0_n/ss_in_n

ssi_oe_n

MSB

4 -32 bits

LSB

MSB LSB

Figure 126. SPI Serial

Format (SCPH = 1)

Continuous data frames are transferred in the same way as single frames, with the MSB of the next frame following

directly after the LSB of the current frame. The slave select signal is held active for the duration of the transfer.

Figure 127 shows the timing diagram for continuous SPI transfers when the configuration parameter SCPH = 1.

sclk_out/in 0

sclk_out/in 1

txd

rxd

ss_0_n/ss_in_n

ssi_oe_n

MSB LSB LSBMSB

MSB LSB LSBMSB

Figure 127. SPI Serial

Format Continuous

Transfer (SCPH = 1)

There are four possible transfer modes on the DW_apb_ssi for performing SPI serial transactions. For transmit and

receive transfers (transfer mode field (9:8) of the Control Register 0 = 00b), data transmitted from the DW_apb_ssi to the

external serial device is written into the transmit FIFO. Data received from the external serial device into the DW_apb_ssi

is pushed into the receive FIFO.

Figure 128 shows the FIFO levels prior to the beginning of a serial transfer and the FIFO levels on completion of the

transfer. In this example, two data words are transmitted from the DW_apb_ssi to the external serial device in a

continuous transfer. The external serial device also responds with two data words for the DW_apb_ssi.

Tx FIFO Buffer

FIFO Status Prior to

Transfer

FIFO Status on

Completion of Transfer

Rx FIFO Buffer

Location n

Location 2

Location 1

Location 0

Location n

Location 2

Location 1

Location 0

Write DR

NULL

NULL SHIFT LOGIC

Tx Data(1)

Tx Data(0)

Rx FIFO Empty

rxd

txd

NULL

Rx_Data(1)

Rx_Data(0)

NULL

Tx FIFO Empty

Read DR

Figure 128. FIFO

Status for Transmit &

Receive SPI and SSP

Transfers

For transmit only transfers (transfer mode field (9:8) of the Control Register 0 = 01b), data transmitted from the

DW_apb_ssi to the external serial device is written into the transmit FIFO. As the data received from the external serial

device is deemed invalid, it is not stored in the DW_apb_ssi receive FIFO.

RP2040 Datasheet

4.10. SSI 584

Figure 129 shows the FIFO levels prior to the beginning of a serial transfer and the FIFO levels on completion of the

transfer. In this example, two data words are transmitted from the DW_apb_ssi to the external serial device in a

continuous transfer.

Tx FIFO Buffer

FIFO Status Prior to

Transfer

FIFO Status on

Completion of Transfer

Rx FIFO Buffer

Location n

Location 2

Location 1

Location 0

Location n

Location 2

Location 1

Location 0

Write DR

NULL

NULL SHIFT LOGIC

Tx Data(1)

Tx Data(0)

Rx FIFO Empty

rxd

txd

NULL

NULL

NULL

NULL

Tx FIFO Empty

Read DR

Figure 129. FIFO

Status for Transmit

Only SPI and SSP

Transfers

For receive only transfers (transfer mode field (9:8) of the Control Register 0 = 10b), data transmitted from the

DW_apb_ssi to the external serial device is invalid, so a single dummy word is written into the transmit FIFO to begin the

serial transfer. The txd output from the DW_apb_ssi is held at a constant logic level for the duration of the serial

transfer. Data received from the external serial device into the DW_apb_ssi is pushed into the receive FIFO.

Figure 130 shows the FIFO levels prior to the beginning of a serial transfer and the FIFO levels on completion of the

transfer. In this example, two data words are received by the DW_apb_ssi from the external serial device in a continuous

transfer.

Tx FIFO Buffer

FIFO Status Prior to

Transfer

FIFO Status on

Completion of Transfer

Rx FIFO Buffer

Location n

Location 2

Location 1

Location 0

Location n

Location 2

Location 1

Location 0

Write DR

NULL

NULL SHIFT LOGIC

NULL

Dummy Word

Rx FIFO Empty

rxd

txd

NULL

Rx_Data(1)

Rx_Data(0)

NULL

Tx FIFO Empty

Read DR

Figure 130. FIFO

Status for Receive

Only SPI and SSP

Transfers

For eeprom_read transfers (transfer mode field [9:8] of the Control Register 0 = 11b), opcode and/or EEPROM address

are written into the transmit FIFO. During transmission of these control frames, received data is not captured by the

DW_apb_ssi master. After the control frames have been transmitted, receive data from the EEPROM is stored in the

receive FIFO.

Figure 131 shows the FIFO levels prior to the beginning of a serial transfer and the FIFO levels on completion of the

transfer. In this example, one opcode and an upper and lower address are transmitted to the EEPROM, and eight data

frames are read from the EEPROM and stored in the receive FIFO of the DW_apb_ssi master.

RP2040 Datasheet

4.10. SSI 585

Tx FIFO Buffer

FIFO Status Prior to

Transfer
FIFO Status on

Completion of Transfer

Rx FIFO Buffer

Location n

Location 3

Location 2

Location 1

Location 0

Location n

Location 7

Location 6

Location 1

Location 0

Write DR

NULL

NULL SHIFT LOGIC

Address[7:0]

Address[15:8]

Opcode

Rx FIFO Empty

rxd

txd

Rx_Data(7)

Rx_Data(6)

Rx_Data(1)

Rx_Data(0)

NULL

Tx FIFO Empty

Read DR

Figure 131. FIFO

Status for EEPROM

Read Transfer Mode

4.10.10.2. Texas Instruments Synchronous Serial Protocol (SSP)

Data transfers begin by asserting the frame indicator line (ss_0_n/ss_in_n) for one serial clock period. Data to be

transmitted are driven onto the txd line one serial clock cycle later; similarly data from the slave are driven onto the rxd

line. Data are propagated on the rising edge of the serial clock (sclk_out/sclk_in) and captured on the falling edge. The

length of the data frame ranges from four to 32 bits.

Figure 132 shows the timing diagram for a single SSP serial transfer.

sclk_out/in

txd/rxd

ss_0_n/ss_in_n

ssi_oe_n

MSB LSB

Figure 132. SSP Serial

Format

Continuous data frames are transferred in the same way as single data frames. The frame indicator is asserted for one

clock period during the same cycle as the LSB from the current transfer, indicating that another data frame follows.

Figure 133 shows the timing for a continuous SSP transfer.

sclk_out/in

txd/rxd

ss_0_n/ss_in_n

ssi_oe_n

MSB LSB MSB

Figure 133. SSP Serial

Format Continuous

Transfer

4.10.10.3. National Semiconductor Microwire

Data transmission begins with the falling edge of the slave-select signal (ss_0_n). One-half serial clock (sclk_out) period

later, the first bit of the control is sent out on the txd line. The length of the control word can be in the range 1 to 16 bits

and is set by writing bit field CFS (bits 15:12) in CTRLR0. The remainder of the control word is transmitted (propagated

on the falling edge of sclk_out) by the DW_apb_ssi serial master. During this transmission, no data are present (high

impedance) on the serial master’s rxd line.

RP2040 Datasheet

4.10. SSI 586

The direction of the data word is controlled by the MDD bit field (bit 1) in the Microwire Control Register (MWCR). When

MDD=0, this indicates that the DW_apb_ssi serial master receives data from the external serial slave. One clock cycle

after the LSB of the control word is transmitted, the slave peripheral responds with a dummy 0 bit, followed by the data

frame, which can be four to 32 bits in length. Data are propagated on the falling edge of the serial clock and captured on

the rising edge.

The slave-select signal is held active-low during the transfer and is de-asserted one-half clock cycle later, after the data

are transferred. Figure 134 shows the timing diagram for a single DW_apb_ssi serial master read from an external serial

slave.

sclk_out

txd

rxd

ss_0_n

ssi_oe_n

MSB LSB

Control word

LSB0 MSB

4 -32 bits

Figure 134. Single

DW_apb_ssi Master

Microwire Serial

Transfer (MDD=0)

Figure 135 shows how the data and control frames are structured in the transmit FIFO prior to the transfer; the value

programmed into the MWCR register is also shown.

Tx FIFO Buffer

FIFO Status Prior to

Transfer

FIFO Status on

Completion of Transfer

Rx FIFO Buffer

Location n

Location 3

Location 2

Location 1

Location 0

Location n

Location 3

Location 2

Location 1

Location 0

Write DR

NULL

NULL SHIFT LOGIC

NULL

NULL

Ctrl Word(0)

Rx FIFO Empty

rxd

txd

NULL

NULL

NULL

Rx_Data(0)

NULL

Tx FIFO Empty

Read DR

0

MWHS

MWCR 0

MDD

0

MWMOD

Figure 135. FIFO

Status for Single

Microwire Transfer

(receiving data frame)

Continuous transfers for the Microwire protocol can be sequential or nonsequential, and are controlled by the MWMOD

bit field (bit 0) in the MWCR register.

Nonsequential continuous transfers occur as illustrated in Figure 136, with the control word for the next transfer

following immediately after the LSB of the current data word.

sclk_out

txd

rxd

ss_0_n

ssi_oe_n

MSB LSB

Control word 0

MSB LSB

LSB0 MSB

Control word 1

Data Word 0 Data Word 1

LSB0 MSB

Figure 136.

Continuous

Nonsequential

Microwire Transfer

(receiving data frame)

The only modification needed to perform a continuous nonsequential transfer is to write more control words into the

transmit FIFO buffer; this is illustrated in Figure 137. In this example, two data words are read from the external serial-

slave device.

RP2040 Datasheet

4.10. SSI 587

Tx FIFO Buffer

FIFO Status Prior to

Transfer

FIFO Status on

Completion of Transfer

Rx FIFO Buffer

Location n

Location 3

Location 2

Location 1

Location 0

Location n

Location 3

Location 2

Location 1

Location 0

Write DR

NULL

NULL SHIFT LOGIC

NULL

Ctrl Word(1)

Ctrl Word(0)

Rx FIFO Empty

rxd

txd

NULL

NULL

Rx_Data(1)

Rx_Data(0)

NULL

Tx FIFO Empty

Read DR

0

MWHS

MWCR 0

MDD

0

MWMOD

Figure 137. FIFO

Status for

Nonsequential

Microwire Transfer

(receiving data frame)

During sequential continuous transfers, only one control word is transmitted from the DW_apb_ssi master. The transfer

is started in the same manner as with nonsequential read operations, but the cycle is continued to read further data.

The slave device automatically increments its address pointer to the next location and continues to provide data from

that location. Any number of locations can be read in this manner; the DW_apb_ssi master terminates the transfer when

the number of words received is equal to the value in the CTRLR1 register plus one.

The timing diagram in Figure 138 and example in Figure 139 show a continuous sequential read of two data frames

from the external slave device.

sclk_out

txd

rxd

ss_0_n

ssi_oe_n

MSB LSB

Control word

MSBLSB0 MSB LSB

Data Word 0 Data Word 1

Figure 138.

Continuous Sequential

Microwire Transfer

(receiving data frame)

Tx FIFO Buffer

FIFO Status Prior to

Transfer

FIFO Status on

Completion of Transfer

Rx FIFO Buffer

Location n

Location 3

Location 2

Location 1

Location 0

Location n

Location 3

Location 2

Location 1

Location 0

Write DR

NULL

NULL SHIFT LOGIC

NULL

NULL

Ctrl Word(0)

Rx FIFO Empty

rxd

txd

NULL

NULL

Rx_Data(1)

Rx_Data(0)

NULL

Tx FIFO Empty

Read DR

0

MWHS

MWCR 0

MDD

1

MWMOD

Figure 139. FIFO

Status for Sequential

Microwire Transfer

(receiving data frame)

When MDD = 1, this indicates that the DW_apb_ssi serial master transmits data to the external serial slave. Immediately

after the LSB of the control word is transmitted, the DW_apb_ssi master begins transmitting the data frame to the slave

peripheral.

Figure 140 shows the timing diagram for a single DW_apb_ssi serial master write to an external serial slave.

RP2040 Datasheet

4.10. SSI 588

sclk_out

txd

rxd

ss_0_n

ssi_oe_n

MSB LSB

Control word

MSB LSB

Data word 0

Figure 140. Single

Microwire Transfer

(transmitting data

frame)

 NOTE

The DW_apb_ssi does not support continuous sequential Microwire writes, where MDD = 1 and MWMOD = 1.

Figure 141 shows how the data and control frames are structured in the transmit FIFO prior to the transfer, also shown

is the value programmed into the MWCR register.

0

Tx FIFO Buffer

FIFO Status Prior to

Transfer

FIFO Status on

Completion of Transfer

Rx FIFO Buffer

MWHS

MWCR

Location n

Location 3

Location 2

Location 1

Location 0

Location n

Location 3

Location 2

Location 1

Location 0

Write DR

NULL

NULL SHIFT LOGIC

NULL

Tx Data(0)

Ctrl Word(0)

Rx FIFO Empty

1

MDD

0

MWMOD

rxd

txd

NULL

NULL

NULL

NULL

NULL

Tx FIFO Empty

Figure 141. FIFO

Status for Single

Microwire Transfer

(transmitting data

frame)

Continuous transfers occur as shown in Figure 142, with the control word for the next transfer following immediately

after the LSB of the current data word.

sclk_out

txd

rxd

ss_0_n

ssi_oe_n

MSB LSB MSB LSB MSB LSB LSBMSB

Control word 0 Data word 1Data word 0 Control word 1

Figure 142.

Continuous Microwire

Transfer (transmitting

data frame)

The only modification you need to make to perform a continuous transfer is to write more control and data words into

the transmit FIFO buffer, shown in Figure 143. This example shows two data words are written to the external serial

slave device.

RP2040 Datasheet

4.10. SSI 589

0

Tx FIFO Buffer

FIFO Status Prior to

Transfer

FIFO Status on

Completion of Transfer

Rx FIFO Buffer

MWHS

MWCR

Location n

Location 3

Location 2

Location 1

Location 0

Location n

Location 3

Location 2

Location 1

Location 0

Write DR

NULL

Data Word(1) SHIFT LOGIC

Ctrl Word(1)

Tx Data(0)

Ctrl Word(0)

Rx FIFO Empty

1

MDD

0

MWMOD

rxd

txd

NULL

NULL

NULL

NULL

NULL

Tx FIFO Empty

Figure 143. FIFO

Status for Continuous

Microwire Transfer

(transmitting data

frame)

The Microwire handshaking interface can also be enabled for DW_apb_ssi master write operations to external serial-

slave devices. To enable the handshaking interface, you must write 1 into the MHS bit field (bit 2) on the MWCR register.

When MHS is set to 1, the DW_apb_ssi serial master checks for a ready status from the slave device before completing

the transfer, or transmitting the next control word for continuous transfers.

Figure 144 shows an example of a continuous Microwire transfer with the handshaking interface enabled.

sclk_out

txd

rxd

ss_0_n

ssi_oe_n

MSB LSB MSB LSB MSB LSB LSB Start
Bit

ReadyBusy ReadyBusy

MSB

Control word 0 Control word 1Data word 0 Data word 1

Figure 144.

Continuous Microwire

Transfer with

Handshaking

(transmitting data

frame)

After the first data word has been transmitted to the serial-slave device, the DW_apb_ssi master polls the rxd input

waiting for a ready status from the slave device. Upon reception of the ready status, the DW_apb_ssi master begins

transmission of the next control word. After transmission of the last data frame has completed, the DW_apb_ssi master

transmits a start bit to clear the ready status of the slave device before completing the transfer. The FIFO status for this

transfer is the same as in Figure 143, except that the MWHS bit field is set (1).

To transmit a control word (not followed by data) to a serial-slave device from the DW_apb_ssi master, there must be

only one entry in the transmit FIFO buffer. It is impossible to transmit two control words in a continuous transfer, as the

shift logic in the DW_apb_ssi treats the second control word as a data word. When the DW_apb_ssi master transmits

only a control word, the MDD bit field (bit 1 of MWCR register) must be set (1).

In the example shown in Figure 145 and in the timing diagram in Figure 146, the handshaking interface is enabled. If the

handshaking interface is disabled (MHS=0), the transfer is terminated by the DW_apb_ssi master one sclk_out cycle

after the LSB of the control word is captured by the slave device.

1

Tx FIFO Buffer

FIFO Status Prior to

Transfer

FIFO Status on

Completion of Transfer

Rx FIFO Buffer

MWHS

MWCR

Location n

Location 3

Location 2

Location 1

Location 0

Location n

Location 3

Location 2

Location 1

Location 0

Write DR

NULL

NULL SHIFT LOGIC

NULL

NULL

Ctrl Word(0)

Rx FIFO Empty

1

MDD

0

MWMOD

rxd

txd

NULL

NULL

NULL

NULL

NULL

Tx FIFO Empty

Figure 145. FIFO

Status for Microwire

Control Word Transfer

RP2040 Datasheet

4.10. SSI 590

sclk_out

txd

rxd

ss_0_n

ssi_oe_n

MSB LSB Start Bit

Busy Ready

Control Word 0

Figure 146. Microwire

Control Word

4.10.10.4. Enhanced SPI Modes

DW_apb_ssi supports the dual and quad modes of SPI in RP2040; octal mode is not supported. txd, rxd and ssi_oe_n

signals are four bits wide.

Data is shifted out/in on more than one line, increasing the overall throughput. All four combinations of the serial clock’s

polarity and phase are valid in this mode and work the same as in normal SPI mode. Dual SPI, or Quad SPI modes

function similarly except for the width of txd, rxd and ssi_oe_n signals. The mode of operation (write/read) can be

selected using the CTRLR0.TMOD field.

4.10.10.4.1. Write Operation in Enhanced SPI Modes

Dual, or Quad, SPI write operations can be divided into three parts:

• Instruction phase

• Address phase

• Data phase

The following register fields are used for a write operation:

• CTRLR0.SPI_FRF - Specifies the format in which the transmission happens for the frame.

• SPI_CTRLR0 (Control Register 0 register) – Specifies length of instruction, address, and data.

• SPI_CTRLR0.INST_L – Specifies length of an instruction (possible values for an instruction are 0, 4, 8, or 16 bits.)

• SPI_CTRLR0.ADDR_L – Specifies address length (See Table 579 for decode values)

• CTRLR0.DFS or CTRLR0.DFS_32 – Specifies data length.

An instruction takes one FIFO location. An address can take more than one FIFO locations.

Both the instruction and address must be programmed in the data register (DR). DW_apb_ssi will wait until both have

been programmed to start the write operation.

The instruction, address and data can be programmed to send in dual/quad mode, which can be selected from the

SPI_CTRLR0.TRANS_TYPE and CTRLR0.SPI_FRF fields.

RP2040 Datasheet

4.10. SSI 591

 NOTE

• If CTRLR0.SPI_FRF is selected to be "Standard SPI Format", everything is sent in Standard SPI mode and

SPI_CTRLR0.TRANS_TYPE field is ignored.

• CTRLR0.SPI_FRF is only applicable if CTRLR0.FRF is programmed to 00b.

Figure 147 shows a typical write operation in Dual, or Quad, SPI Mode. The value of N will be: 7 if SSI_SPI_MODE is set

to 3, 3 if SSI_SPI_MODE is set to 2, and 1 if SSI_SPI_MODE is set to 1. For 1-write operation, the instruction and address

are sent only once followed by data frames programmed in DR until the transmit FIFO becomes empty.

sclk_out

txd[N:0]

ss_oe_n

ssi_oe_n[N:0]

INSTRUCTION ADDRESS DATA

Figure 147. Typical

Write Operation

Dual/Quad SPI Mode

To initiate a Dual/Quad write operation, CTRLR0.SPI_FRF must be set to 01/10/11, respectively. This will set the transfer

type, and for each write command, data will be transferred in the format specified in CTLR0.SPI_FRF field.

Case A: Instruction and address both transmitted in standard SPI format

For this, SPI_CTRLR0.TRANS_TYPE field must be set to 00b. Figure 148 show the timing diagram when both

instruction and address are transmitted in standard SPI format. The value of N will be: 7 if CTRLR0.SPI_FRF is set to

11b, 3 if CTRLR0.SPI_FRF is set to 10b, and 1 if CTRLR0.SPI_FRF is set to 01b.

sclk_out

txd[0]

ss_oe_n[0]

ss_oe_n[N-1:0]

ss_oe_n

txd[N-1:0]

INSTRUCTION ADDRESS DATA

DATA

Figure 148. Instruction

and Address

Transmitted in

Standard SPI Format

Case B: Instruction transmitted in standard and address transmitted in Enhanced SPI format

For this, SPI_CTRLR0.TRANS_TYPE field must be set to one. Figure 149 shows the timing diagram when an

instruction is transmitted in standard format and address is transmitted in dual SPI format specified in the

CTRLR0.SPI_FRF field. The value of N will be: 7 if CTRLR0.SPI_FRF is set to 11b, 3 if CTRLR0.SPI_FRF is set to 10b,

and 1 if CTRLR0.SPI_FRF is set to 01b.

sclk_out

txd[0]

ss_oe_n[0]

ss_oe_n[N-1:0]

ss_oe_n

txd[N-1:0]

INSTRUCTION ADDRESS DATA

ADDRESS DATA

Figure 149. Instruction

Transmitted in

Standard and Address

Transmitted in

Enhanced SPI Format

Case C: Instruction and Address both transmitted in Enhanced SPI format

For this, SPI_CTRLR0.TRANS_TYPE field must be set to 10b. Figure 150 shows the timing diagram in which

instruction and address are transmitted in SPI format specified in the CTRLR0.SPI_FRF field. The value of N will be:

7 if CTRLR0.SPI_FRF is set to 11b, 3 if CTRLR0.SPI_FRF is set to 10b, and 1 if CTRLR0.SPI_FRF is set to 01b.

sclk_out

txd[N:0]

ss_0_n

ssi_oe_n[N:0]

INSTRUCTION ADDRESS DATA

Figure 150. Instruction

and Address Both

Transmitted in

Enhanced SPI Format

Case D: Instruction only transfer in enhanced SPI format

For this, SPI_CTRLR0.TRANS_TYPE field must be set to 10b. Figure 151 shows the timing diagram for such a

transfer. The value of N will be: 7 if CTRLR0.SPI_FRF is set to 11b, 3 if CTRLR0.SPI_FRF is set to 10b, and 1 if

RP2040 Datasheet

4.10. SSI 592

CTRLR0.SPI_FRF is set to 01b.

sclk_out

txd[N:0]

ss_0_n

ssi_oe_n[N:0]

INSTRUCTION

Figure 151. Instruction

only transfer in

enhanced SPI Format

4.10.10.4.2. Read Operation in Enhanced SPI Modes

A Dual, or Quad, SPI read operation can be divided into four phases:

• Instruction phase

• Address phase

• Wait cycles

• Data phase

Wait Cycles can be programmed using SPI_CTRLR0.WAIT_CYCLES field. The value programmed into

SPI_CTRLR0.WAIT_CYCLES is mapped directly to sclk_out times. For example, WAIT_CYCLES=0 indicates no Wait,

WAIT_CYCLES=1, indicates one wait cycle and so on. The wait cycles are introduced for target slave to change their

mode from input to output and the wait cycles can vary for different devices.

For a READ operation, DW_apb_ssi sends instruction and control data once and waits until it receives NDF (CTRLR1

register) number of data frames and then de-asserts slave select signal.

Figure 152 shows a typical read operation in dual quad SPI mode. The value of N will be: 3 if SSI_SPI_MODE is set to

Quad mode, and 1 if SSI_SPI_MODE is set to Dual mode.

sclk_out

txd[N:0]

ss_oe_n[N:0]

ss_oe_n

rxd[N:0]

INSTRUCTION ADDRESS WAIT CYCLES

DATA

Figure 152. Typical

Read Operation in

Enhanced SPI Mode

To initiate a dual/quad read operation, CTRLR0.SPI_FRF must be set to 01/10/11 respectively. This will set the transfer

type, now for each read command data will be transferred in the format specified in CTLR0.SPI_FRF field.

Following are the possible cases of write operation in enhanced SPI modes:

Case A: Instruction and address both transmitted in standard SPI format

For this, SPI_CTRLR0.TRANS_TYPE field should be set to 00b. Figure 153 shows the timing diagram when both

instruction and address are transferred in standard SPI format. The figure also shows WAIT cycles after address,

which can be programmed in the SPI_CTRLR0.WAIT_CYCLES field. The value of N will be 7 if CTRLR0.SPI_FRF is set

to 11b, 3 if CTRLR0.SPI_FRF is set to 10b, and 1 if CTRLR0.SPI_FRF is set to 01b.

sclk_out

txd[0]

txd[N-1:0]

rxd[N:0]

ssi_oe_n[0]

ssi_oe_n[N-1:0]

ss_0_n

INSTRUCTION ADDRESS WAIT CYCLES

DATA

Figure 153. Instruction

and Address

Transmitted in

Standard SPI Format

Case B: Instruction transmitted in standard and address transmitted in dual SPI format

For this, SPI_CTRLR0.TRANS_TYPE field should be set to 01b. Figure 154 shows the timing diagram in which

instruction is transmitted in standard format and address is transmitted in dual SPI format. The value of N will be 7

if CTRLR0.SPI_FRF is set to 11b, 3 if CTRLR0.SPI_FRF is set to 10b, and 1 if CTRLR0.SPI_FRF is set to 01b.

RP2040 Datasheet

4.10. SSI 593

sclk_out

txd[0]

rxd[N:0]

txd[N-1:0]

ssi_oe_n[0]

ssi_oe_n[N-1:0]

ss_0_n

INSTRUCTION ADDRESS

ADDRESS

DATA

Figure 154. Instruction

Transmitted in

Standard and Address

Transmitted in

Enhanced SPI Format

Case C: Instruction and Address both transmitted in Dual SPI format

For this, SPI_CTRLR0.TRANS_TYPE field must be set to 10b. Figure 155 shows the timing diagram in which both

instruction and address are transmitted in dual SPI format. The value of N will be: 7 if CTRLR0.SPI_FRF is set to 11b,

3 if CTRLR0.SPI_FRF is set to 10b, and 1 if CTRLR0.SPI_FRF is set to 01b.

sclk_out

txd[N:0]

rxd[N:0]

ssi_oe_n[N:0]

ss_0_n

INSTRUCTION ADDRESS

DATA

Figure 155. Instruction

and Address

Transmitted in

Enhanced SPI Format

Case D: No Instruction, No Address READ transfer

For this, SPI_CTRLR0.ADDR_L and SPI_CTRLR0.INST_L must be set to 0 and SPI_CTRLR0.WAIT_CYCLES must be

set to a non-zero value. Table 579 lists the ADDR_L decode value and the respective description for enhanced

(Dual/Quad) SPI modes.

Table 579. ADDR_L

Decode in Enhanced

SPI Mode

ADDR_L Decode Value Description

0000 0-bit Address Width

0001 4-bit Address Width

0010 8-bit Address Width

0011 12-bit Address Width

0100 16-bit Address Width

0101 20-bit Address Width

0110 24-bit Address Width

0111 28-bit Address Width

1000 32-bit Address Width

1001 36-bit Address Width

1010 40-bit Address Width

1011 44-bit Address Width

1100 48-bit Address Width

1101 52-bit Address Width

1110 56-bit Address Width

1111 60-bit Address Width

Figure 156 shows the timing diagram for such type of transfer. The value of N will be: 7 if CTRLR0.SPI_FRF is set to 11b,

3 if CTRLR0.SPI_FRF is set to 10b, and 1 if CTRLR0.SPI_FRF is set to 01b. To initiate this transfer, the software has to

perform a dummy write in the data register (DR), DW_apb_ssi will wait for programmed wait cycles and then fetch the

amount of data specified in NDF field.

RP2040 Datasheet

4.10. SSI 594

sclk_out

txd[N:0]

rxd[N:0]

ssi_oe_n[N:0]

ss_0_n

WAIT CYCLES

DATA

Figure 156. No

Instruction and No

Address READ

Transfer

4.10.10.4.3. Advanced I/O Mapping for Enhanced SPI Modes

The Input/Output mapping for enhanced SPI modes (dual, and quad) is hardcoded inside the DW_apb_ssi. The rxd[1]

signal will be used to sample incoming data in standard SPI mode of operation.

For other protocols (such as SSP and Microwire), the I/O mapping remains the same. Therefore, it is easy for other

protocols to connect with any device that supports Dual/Quad SPI operation because other protocols do not require a

MUX logic to exist outside the design.

Figure 157 shows the I/O mapping of DW_apb_ssi in Quad mode with another SPI device that supports the Quad mode.

As illustrated in Figure 157, the IO[1] pin is used as DO in standard SPI mode of operation and it is connected to rxd[1]

pin, which will be sampling the input in the standard mode of operation.

DW_apb_ssi SPI slave Device

IO[3]
txd[3]

rxd[3]

txd[2]

rxd[2]

txd[1]

rxd[1]

txd[0]

rxd[0]

IO[2]

IO[1]/DO

IO[0]/DIIO Buffer

IO Buffer

IO Buffer

IO Buffer

Figure 157. Advanced

I/O Mapping in Quad

SPI Modes

4.10.10.5. Dual Data-Rate (DDR) Support in SPI Operation

In standard operations, data transfer in SPI modes occur on either the positive or negative edge of the clock. For

improved throughput, the dual data-rate transfer can be used for reading or writing to the memories.

The DDR mode supports the following modes of SPI protocol:

• SCPH=0 & SCPOL=0 (Mode 0)

• SCPH=1 & SCPOL=1 (Mode 3)

DDR commands enable data to be transferred on both edges of clock. Following are the different types of DDR

commands:

• Address and data are transmitted (or received in case of data) in DDR format, while instruction is transmitted in

standard format.

• Instruction, address, and data are all transmitted or received in DDR format.

The DDR_EN (SPI_CTRLR0[16]) bit is used to determine if the Address and data have to be transferred in DDR mode and

INST_DDR_EN (SPI_CTRLR0[17]) bit is used to determine if Instruction must be transferred in DDR format. These bits

RP2040 Datasheet

4.10. SSI 595

are only valid when the CTRLR0.SPI_FRF bit is set to be in Dual, or Quad mode.

Figure 158 describes a DDR write transfer where instructions are continued to be transmitted in standard format. In

Figure 158, the value of N will be 7 if CTRLR0.SPI_FRF is set to 11b, 3 if CTRLR0.SPI_FRF is set to 10b , and 1 if

CTRLR0.SPI_FRF is set to 01b.

sclk_out

ss_oe_n

rxd[N:0]

ss_oe_n[N:0]

txd[N:0] D0

INST = Instruction Phase

A3, A2, A1, A0 = Address Bytes

D3, D2, D1, D0 = Data Bytes

A3 A2 A1 A0 D3 D2 D1INST

Figure 158. DDR

Transfer with SCPH=0

and SCPOL=0

Figure 159 describes a DDR write transfer where instruction, address and data all are transferred in DDR format.

sclk_out

ss_0_n

rxd[N:0]

ssi_oe_n[N:0]

txd[N:0] D0

INST-1, INST-2 = Instruction Bytes

A3, A2, A1, A0 = Address Bytes

D3, D2, D1, D0 = Data Bytes

A3 A2 A1 A0 D3 D2 D1INST-1 INST-2

Figure 159. DDR

Transfer with

Instruction, Address

and Data Transmitted

in DDR Format

 NOTE

In the DDR transfer, address and instruction cannot be programmed to a value of 0.

4.10.10.5.1. Transmitting Data in DDR Mode

In DDR mode, data is transmitted on both edges so that it is difficult to sample data correctly. DW_apb_ssi uses an

internal register to determine the edge on which the data should be transmitted. This will ensure that the receiver is able

to get a stable data while sampling. The internal register (DDR_DRIVE_EDGE) determines the edge on which the data is

transmitted. DW_apb_ssi sends data with respect to baud clock, which is an integral multiple of the internal clock

(ssi_clk * BAUDR). The data needs to be transmitted within half clock cycle (BAUDR/2), therefore the maximum value

for DDR_DRIVE_EDGE is equal to [(BAUDR/2)-1]. If the programmed value of DDR_DRIVE_EDGE is 0 then data is

transmitted edge-aligned with respect to sclk_out (baud clock). If the programmed value of DDR_DRIVE_EDGE is one

then the data is transmitted one ssi_clk before the edge of sclk_out.

 NOTE

If the baud rate is programmed to be two, then the data will always be edge aligned.

Figure 160, Figure 161, and Figure 162 show examples of how data is transmitted using different values of the

DDR_DRIVE_EDGE register. The green arrows in these examples represent the points where data is driven. Baud rate

used in all these examples is 12. In Figure 160, transmit edge and driving edge of the data are the same. This is default

behavior in DDR mode.

sclk_out

ss_0_n

rxd[N:0]

ssi_oe_n[N:0]

ssi_clk

txd[N:0] D0

INST = Instruction Phase

A3, A2, A1, A0 = Address Bytes

D3, D2, D1, D0 = Data Bytes

A3INST A2 A1 A0 D3 D2 D1

Figure 160. Transmit

Data With

DDR_DRIVE_EDGE = 0

RP2040 Datasheet

4.10. SSI 596

Figure 160 shows the default behavior in which the transmit and driving edge of the data is the same.

sclk_out

ss_0_n

rxd[N:0]

ssi_oe_n[N:0]

ssi_clk

txd[N:0] D0

INST = Instruction Phase

A3, A2, A1, A0 = Address Bytes

D3, D2, D1, D0 = Data Bytes

A3INST A2 A1 A0 D3 D2 D1

Figure 161. Transmit

Data With

DDR_DRIVE_EDGE = 1

sclk_out

ss_0_n

rxd[N:0]

ssi_oe_n[N:0]

ssi_clk

txd[N:0] D0

INST = Instruction Phase

A3, A2, A1, A0 = Address Bytes

D3, D2, D1, D0 = Data Bytes

A3INST A2 A1 A0 D3 D2 D1

Figure 162. Transmit

Data With

DDR_DRIVE_EDGE = 2

4.10.10.6. XIP Mode Support in SPI Mode

The eXecute In Place (XIP) mode enables transfer of SPI data directly through the APB interface without writing the data

register of DW_apb_ssi. XIP mode is enabled in DW_apb_ssi when the XIP cache is enabled. This control signal

indicates whether APB transfers are register read-write or XIP reads. When in XIP mode, DW_apb_ssi expects only read

request on the APB interface. This request is translated to SPI read on the serial interface and soon after the data is

received, the data is returned to the APB interface in the same transaction.

 NOTE

• Only APB reads are supported during an XIP operation

The address length is derived from the SPI_CTRLR0.ADDR_L field, and relevant bits from paddr ([SPI_CTRLR0.ADDR_L-

1:0]) are transferred as address to the SPI interface. XIP address is managed by the XIP cache controller.

4.10.10.6.1. Read Operation in XIP Mode

The XIP operation is supported only in enhanced SPI modes (Dual, Quad) of operation. Therefore, the CTRLR0.SPI_FRF

bit should not be programmed to 0. An XIP read operation is divided into two phases:

• Address phase

• Data phase

For an XIP read operation

1. Set the SPI frame format and data frame size value in CTRLR0 register. Note that the value of the maximum data

frame size is 32.

2. Set the Address length, Wait cycles, and transaction type in the SPI_CTRLR0 register. Note that the maximum

address length is 32.

After these settings, a user can initiate a read transaction through the APB interface which will transferred to SPI

peripheral using programmed values. Figure 163 shows the typical XIP transfer. The Value of N = 1, 3 and 7 for SPI

mode Dual, and Quad modes, respectively.

RP2040 Datasheet

4.10. SSI 597

Figure 163. Typical

Read Operation in XIP

Mode

4.10.11. DMA Controller Interface

The DW_apb_ssi has built-in DMA capability; it has a handshaking interface to a DMA Controller to request and control

transfers. The APB bus is used to perform the data transfer to or from the DMA.

 NOTE

When the DW_apb_ssi interfaces to the DMA controller, the DMA controller is always a flow controller; that is, it

controls the block size. This must be programmed by software in the DMA controller.

The DW_apb_ssi uses two DMA channels, one for the transmit data and one for the receive data. The DW_apb_ssi has

these DMA registers:

DMACR

Control register to enable DMA operation.

DMATDLR

Register to set the transmit the FIFO level at which a DMA request is made.

DMARDLR

Register to set the receive FIFO level at which a DMA request is made.

The DW_apb_ssi uses the following handshaking signals to interface with the DMA controller.

• dma_tx_req

• dma_tx_single

• dma_tx_ack

• dma_rx_req

• dma_tx_req

• dma_tx_single

• dma_tx_ack

• dma_rx_req

To enable the DMA Controller interface on the DW_apb_ssi, you must write the DMA Control Register (DMACR). Writing

a 1 into the TDMAE bit field of DMACR register enables the DW_apb_ssi transmit handshaking interface. Writing a 1 into

the RDMAE bit field of the DMACR register enables the DW_apb_ssi receive handshaking interface.

Table 580 provides description for different DMA transmit data level values.

Table 580. DMA

Transmit Data Level

(DMATDL) Decode

Value

DMATDL Value Description

0000_0000 dma_tx_req is asserted when zero data entries are present in the transmit FIFO

0000_0001 dma_tx_req is asserted when one or less data entry is present in the transmit FIFO

RP2040 Datasheet

4.10. SSI 598

0000_0010 dma_tx_req is asserted when two or less data entries are present in the transmit FIFO

… …

0000_1101 dma_tx_req is asserted when 13 or less data entries are present in the transmit FIFO

0000_1110 dma_tx_req is asserted when 14 or less data entries are present in the transmit FIFO

0000_1111 dma_tx_req is asserted when 15 or less data entries are present in the transmit FIFO

Table 581 provides description for different DMA Receive Data Level values.

Table 581. DMA

Receive Data Level

(DMARDL) Decode

Value

DMARDL Value Description

0000_0000 dma_rx_req is asserted when one or more data entries are present in the receive FIFO

0000_0001 dma_rx_req is asserted when two or more data entries are present in the receive FIFO

0000_0010 dma_rx_req is asserted when three or more data entries are present in the receive FIFO

… …

0000_1101 dma_rx_req is asserted when 14 or more data entries are present in the receive FIFO

0000_1110 dma_rx_req is asserted when 15 or more data entries are present in the receive FIFO

0000_1111 dma_rx_req is asserted when 16 data entries are present in the receive FIFO

4.10.11.1. Overview of Operation

As a block flow control device, the DMA Controller is programmed by the processor with the number of data items

(block size) that are to be transmitted or received by the DW_apb_ssi.

The block is broken into a number of transactions, each initiated by a request from the DW_apb_ssi. The DMA Controller

must also be programmed with the number of data items (in this case, DW_apb_ssi FIFO entries) to be transferred for

each DMA request. This is also known as the burst transaction length.

Figure 164 shows a single block transfer, where the block size programmed into the DMA Controller is 12 and the burst

transaction length is set to four. In this case, the block size is a multiple of the burst transaction length; therefore, the

DMA block transfer consists of a series of burst transactions.

 CAUTION

On RP2040, the burst transaction length of the SSI’s DMA interface is fixed at four transfers. SSI.DMARDLR must always

be equal to 4, which is the value it takes at reset. The SSI will then request a single transfer when it has between one

and three items in its FIFO, and a 4-burst when it has four or more.

RP2040 Datasheet

4.10. SSI 599

12 Data Items

12 Data Items

4 Data Items4 Data Items 4 Data Items

DMA

Multi-block Transfer

Level

DMA

Block

Level

DMA Burst

Transaction 2

DMA Burst

Transaction 1

DMA Burst

Transaction 3

Figure 164.

Breakdown of DMA

Transfer into Burst

Transactions. Block

size,

DMA.CTLx.BLOCKS_TS =

12. Number of data

items per source burst

transaction,

DMA.CTLx.SRC_MSIZE =

4. SSI receive FIFO

watermark level,

SSI.DMARDLR + 1 =

DMA.CTLx.SRC_MSIZE =

4

If the DW_apb_ssi makes a transmit request to this channel, four data items are written to the DW_apb_ssi transmit

FIFO. Similarly, if the DW_apb_ssi makes a receive request to this channel, four data items are read from the

DW_apb_ssi receive FIFO. Three separate requests must be made to this DMA channel before all 12 data items are

written or read.

When the block size programmed into the DMA Controller is not a multiple of the burst transaction length, as shown in

Figure 165, a series of burst transactions followed by single transactions are needed to complete the block transfer.

15 Data Items

15 Data Items

4 Data Items

DMA

Multi-block Transfer

Level

DMA

Block

Level

DMA Burst

Transaction 1

4 Data Items

DMA Burst

Transaction 2

4 Data Items

DMA Burst

Transaction 3

1 Data Items

DMA Single

Transaction 1

1 Data Items

DMA Single

Transaction 2

1 Data Items

DMA Single

Transaction 3

Figure 165.

Breakdown of DMA

Transfer into Single

and Burst

Transactions. Block

size,

DMA.CTLx.BLOCK_TS =

15. Number of data

items per burst

transaction,

DMA.CTLx.DEST_MSIZE

= 4. SSI transmit FIFO

watermark level,

SSI.DMATDLR =

DMA.CTLx.DEST_MSIZE

= 4

4.10.12. APB Interface

The host processor accesses data, control, and status information on the DW_apb_ssi through the APB interface. APB

accesses to the DW_apb_ssi peripheral are described in the following subsections.

4.10.12.1. Control and Status Register APB Access

Control and status registers within the DW_apb_ssi are byte-addressable. The maximum width of the control or status

register in the DW_apb_ssi is 16 bits. Therefore all read and write operations to the DW_apb_ssi control and status

registers require only one APB access.

RP2040 Datasheet

4.10. SSI 600

4.10.12.2. Data Register APB Access

The data register (DR) within the DW_apb_ssi is 32 bits wide in order to remain consistent with the maximum serial

transfer size (data frame). An APB write operation to DR moves data from pwdata into the transmit FIFO buffer. An APB

read operation from DR moves data from the receive FIFO buffer onto prdata.

The DW_apb_ssi DR can be written/read in one APB access.

 NOTE

The DR register in the DW_apb_ssi occupies sixty-four 32-bit locations of the memory map to facilitate AHB burst

transfers. There are no burst transactions on the APB bus itself, but DW_apb_ssi supports the AHB bursts that

happen on the AHB side of the AHB/APB bridge. Writing to any of these address locations has the same effect as

pushing the data from the pwdata bus into the transmit FIFO. Reading from any of these locations has the same

effect as popping data from the receive FIFO onto the prdata bus. The FIFO buffers on the DW_apb_ssi are not

addressable.

4.10.13. List of Registers

The SSI registers start at a base address of 0x18000000 (defined as XIP_SSI_BASE in SDK).

Table 582. List of SSI

registers
Offset Name Info

0x00 CTRLR0 Control register 0

0x04 CTRLR1 Master Control register 1

0x08 SSIENR SSI Enable

0x0c MWCR Microwire Control

0x10 SER Slave enable

0x14 BAUDR Baud rate

0x18 TXFTLR TX FIFO threshold level

0x1c RXFTLR RX FIFO threshold level

0x20 TXFLR TX FIFO level

0x24 RXFLR RX FIFO level

0x28 SR Status register

0x2c IMR Interrupt mask

0x30 ISR Interrupt status

0x34 RISR Raw interrupt status

0x38 TXOICR TX FIFO overflow interrupt clear

0x3c RXOICR RX FIFO overflow interrupt clear

0x40 RXUICR RX FIFO underflow interrupt clear

0x44 MSTICR Multi-master interrupt clear

0x48 ICR Interrupt clear

0x4c DMACR DMA control

0x50 DMATDLR DMA TX data level

0x54 DMARDLR DMA RX data level

RP2040 Datasheet

4.10. SSI 601

Offset Name Info

0x58 IDR Identification register

0x5c SSI_VERSION_ID Version ID

0x60 DR0 Data Register 0 (of 36)

0xf0 RX_SAMPLE_DLY RX sample delay

0xf4 SPI_CTRLR0 SPI control

0xf8 TXD_DRIVE_EDGE TX drive edge

SSI: CTRLR0 Register

Offset: 0x00

Description

Control register 0

Table 583. CTRLR0

Register
Bits Name Description Type Reset

31:25 Reserved. - - -

24 SSTE Slave select toggle enable RW 0x0

23 Reserved. - - -

22:21 SPI_FRF SPI frame format

0x0 → Standard 1-bit SPI frame format; 1 bit per SCK, full-

duplex

0x1 → Dual-SPI frame format; two bits per SCK, half-

duplex

0x2 → Quad-SPI frame format; four bits per SCK, half-

duplex

RW 0x0

20:16 DFS_32 Data frame size in 32b transfer mode

Value of n → n+1 clocks per frame.

RW 0x00

15:12 CFS Control frame size

Value of n → n+1 clocks per frame.

RW 0x0

11 SRL Shift register loop (test mode) RW 0x0

10 SLV_OE Slave output enable RW 0x0

9:8 TMOD Transfer mode

0x0 → Both transmit and receive

0x1 → Transmit only (not for FRF == 0, standard SPI

mode)

0x2 → Receive only (not for FRF == 0, standard SPI mode)

0x3 → EEPROM read mode (TX then RX; RX starts after

control data TX’d)

RW 0x0

7 SCPOL Serial clock polarity RW 0x0

6 SCPH Serial clock phase RW 0x0

5:4 FRF Frame format RW 0x0

3:0 DFS Data frame size RW 0x0

SSI: CTRLR1 Register

Offset: 0x04

RP2040 Datasheet

4.10. SSI 602

Description

Master Control register 1

Table 584. CTRLR1

Register
Bits Name Description Type Reset

31:16 Reserved. - - -

15:0 NDF Number of data frames RW 0x0000

SSI: SSIENR Register

Offset: 0x08

Description

SSI Enable

Table 585. SSIENR

Register
Bits Name Description Type Reset

31:1 Reserved. - - -

0 SSI_EN SSI enable RW 0x0

SSI: MWCR Register

Offset: 0x0c

Description

Microwire Control

Table 586. MWCR

Register
Bits Name Description Type Reset

31:3 Reserved. - - -

2 MHS Microwire handshaking RW 0x0

1 MDD Microwire control RW 0x0

0 MWMOD Microwire transfer mode RW 0x0

SSI: SER Register

Offset: 0x10

Description

Slave enable

Table 587. SER

Register
Bits Description Type Reset

31:1 Reserved. - -

0 For each bit:

0 → slave not selected

1 → slave selected

RW 0x0

SSI: BAUDR Register

Offset: 0x14

Description

Baud rate

Table 588. BAUDR

Register
Bits Name Description Type Reset

31:16 Reserved. - - -

RP2040 Datasheet

4.10. SSI 603

Bits Name Description Type Reset

15:0 SCKDV SSI clock divider RW 0x0000

SSI: TXFTLR Register

Offset: 0x18

Description

TX FIFO threshold level

Table 589. TXFTLR

Register
Bits Name Description Type Reset

31:8 Reserved. - - -

7:0 TFT Transmit FIFO threshold RW 0x00

SSI: RXFTLR Register

Offset: 0x1c

Description

RX FIFO threshold level

Table 590. RXFTLR

Register
Bits Name Description Type Reset

31:8 Reserved. - - -

7:0 RFT Receive FIFO threshold RW 0x00

SSI: TXFLR Register

Offset: 0x20

Description

TX FIFO level

Table 591. TXFLR

Register
Bits Name Description Type Reset

31:8 Reserved. - - -

7:0 TFTFL Transmit FIFO level RO 0x00

SSI: RXFLR Register

Offset: 0x24

Description

RX FIFO level

Table 592. RXFLR

Register
Bits Name Description Type Reset

31:8 Reserved. - - -

7:0 RXTFL Receive FIFO level RO 0x00

SSI: SR Register

Offset: 0x28

Description

Status register

RP2040 Datasheet

4.10. SSI 604

Table 593. SR Register
Bits Name Description Type Reset

31:7 Reserved. - - -

6 DCOL Data collision error RO 0x0

5 TXE Transmission error RO 0x0

4 RFF Receive FIFO full RO 0x0

3 RFNE Receive FIFO not empty RO 0x0

2 TFE Transmit FIFO empty RO 0x0

1 TFNF Transmit FIFO not full RO 0x0

0 BUSY SSI busy flag RO 0x0

SSI: IMR Register

Offset: 0x2c

Description

Interrupt mask

Table 594. IMR

Register
Bits Name Description Type Reset

31:6 Reserved. - - -

5 MSTIM Multi-master contention interrupt mask RW 0x0

4 RXFIM Receive FIFO full interrupt mask RW 0x0

3 RXOIM Receive FIFO overflow interrupt mask RW 0x0

2 RXUIM Receive FIFO underflow interrupt mask RW 0x0

1 TXOIM Transmit FIFO overflow interrupt mask RW 0x0

0 TXEIM Transmit FIFO empty interrupt mask RW 0x0

SSI: ISR Register

Offset: 0x30

Description

Interrupt status

Table 595. ISR

Register
Bits Name Description Type Reset

31:6 Reserved. - - -

5 MSTIS Multi-master contention interrupt status RO 0x0

4 RXFIS Receive FIFO full interrupt status RO 0x0

3 RXOIS Receive FIFO overflow interrupt status RO 0x0

2 RXUIS Receive FIFO underflow interrupt status RO 0x0

1 TXOIS Transmit FIFO overflow interrupt status RO 0x0

0 TXEIS Transmit FIFO empty interrupt status RO 0x0

SSI: RISR Register

Offset: 0x34

RP2040 Datasheet

4.10. SSI 605

Description

Raw interrupt status

Table 596. RISR

Register
Bits Name Description Type Reset

31:6 Reserved. - - -

5 MSTIR Multi-master contention raw interrupt status RO 0x0

4 RXFIR Receive FIFO full raw interrupt status RO 0x0

3 RXOIR Receive FIFO overflow raw interrupt status RO 0x0

2 RXUIR Receive FIFO underflow raw interrupt status RO 0x0

1 TXOIR Transmit FIFO overflow raw interrupt status RO 0x0

0 TXEIR Transmit FIFO empty raw interrupt status RO 0x0

SSI: TXOICR Register

Offset: 0x38

Description

TX FIFO overflow interrupt clear

Table 597. TXOICR

Register
Bits Description Type Reset

31:1 Reserved. - -

0 Clear-on-read transmit FIFO overflow interrupt RO 0x0

SSI: RXOICR Register

Offset: 0x3c

Description

RX FIFO overflow interrupt clear

Table 598. RXOICR

Register
Bits Description Type Reset

31:1 Reserved. - -

0 Clear-on-read receive FIFO overflow interrupt RO 0x0

SSI: RXUICR Register

Offset: 0x40

Description

RX FIFO underflow interrupt clear

Table 599. RXUICR

Register
Bits Description Type Reset

31:1 Reserved. - -

0 Clear-on-read receive FIFO underflow interrupt RO 0x0

SSI: MSTICR Register

Offset: 0x44

Description

Multi-master interrupt clear

RP2040 Datasheet

4.10. SSI 606

Table 600. MSTICR

Register
Bits Description Type Reset

31:1 Reserved. - -

0 Clear-on-read multi-master contention interrupt RO 0x0

SSI: ICR Register

Offset: 0x48

Description

Interrupt clear

Table 601. ICR

Register
Bits Description Type Reset

31:1 Reserved. - -

0 Clear-on-read all active interrupts RO 0x0

SSI: DMACR Register

Offset: 0x4c

Description

DMA control

Table 602. DMACR

Register
Bits Name Description Type Reset

31:2 Reserved. - - -

1 TDMAE Transmit DMA enable RW 0x0

0 RDMAE Receive DMA enable RW 0x0

SSI: DMATDLR Register

Offset: 0x50

Description

DMA TX data level

Table 603. DMATDLR

Register
Bits Name Description Type Reset

31:8 Reserved. - - -

7:0 DMATDL Transmit data watermark level RW 0x00

SSI: DMARDLR Register

Offset: 0x54

Description

DMA RX data level

Table 604. DMARDLR

Register
Bits Name Description Type Reset

31:8 Reserved. - - -

7:0 DMARDL Receive data watermark level (DMARDLR+1) RW 0x00

SSI: IDR Register

Offset: 0x58

RP2040 Datasheet

4.10. SSI 607

Description

Identification register

Table 605. IDR

Register
Bits Name Description Type Reset

31:0 IDCODE Peripheral dentification code RO 0x51535049

SSI: SSI_VERSION_ID Register

Offset: 0x5c

Description

Version ID

Table 606.

SSI_VERSION_ID

Register

Bits Name Description Type Reset

31:0 SSI_COMP_VERSI

ON

SNPS component version (format X.YY) RO 0x3430312a

SSI: DR0 Register

Offset: 0x60

Description

Data Register 0 (of 36)

Table 607. DR0

Register
Bits Name Description Type Reset

31:0 DR First data register of 36 RW 0x00000000

SSI: RX_SAMPLE_DLY Register

Offset: 0xf0

Description

RX sample delay

Table 608.

RX_SAMPLE_DLY

Register

Bits Name Description Type Reset

31:8 Reserved. - - -

7:0 RSD RXD sample delay (in SCLK cycles) RW 0x00

SSI: SPI_CTRLR0 Register

Offset: 0xf4

Description

SPI control

Table 609.

SPI_CTRLR0 Register
Bits Name Description Type Reset

31:24 XIP_CMD SPI Command to send in XIP mode (INST_L = 8-bit) or to

append to Address (INST_L = 0-bit)

RW 0x03

23:19 Reserved. - - -

18 SPI_RXDS_EN Read data strobe enable RW 0x0

17 INST_DDR_EN Instruction DDR transfer enable RW 0x0

16 SPI_DDR_EN SPI DDR transfer enable RW 0x0

RP2040 Datasheet

4.10. SSI 608

Bits Name Description Type Reset

15:11 WAIT_CYCLES Wait cycles between control frame transmit and data

reception (in SCLK cycles)

RW 0x00

10 Reserved. - - -

9:8 INST_L Instruction length (0/4/8/16b)

0x0 → No instruction

0x1 → 4-bit instruction

0x2 → 8-bit instruction

0x3 → 16-bit instruction

RW 0x0

7:6 Reserved. - - -

5:2 ADDR_L Address length (0b-60b in 4b increments) RW 0x0

1:0 TRANS_TYPE Address and instruction transfer format

0x0 → Command and address both in standard SPI frame

format

0x1 → Command in standard SPI format, address in

format specified by FRF

0x2 → Command and address both in format specified by

FRF (e.g. Dual-SPI)

RW 0x0

SSI: TXD_DRIVE_EDGE Register

Offset: 0xf8

Description

TX drive edge

Table 610.

TXD_DRIVE_EDGE

Register

Bits Name Description Type Reset

31:8 Reserved. - - -

7:0 TDE TXD drive edge RW 0x00

RP2040 Datasheet

4.10. SSI 609

Chapter 5. Electrical and Mechanical
Physical and electrical details of the RP2040 chip.

5.1. Package

PIN 1

Figure 166. Top down

view (left, top) and

side view (right, top),

along with bottom

view (left, bottom) of

the RP2040 QFN-56

package

 NOTE

There is no standard size for the central GND pad (or ePad) with QFNs. However, the one on RP2040 is smaller than

most. This means that standard 0.4mm QFN-56 footprints provided with CAD tools may need adjusting. This gives

the opportunity to route between the central pad and the ones on the periphery, which can help with maintaining

power and ground integrity on cheaper PCBs. See Minimal Design Example for an example.

RP2040 Datasheet

5.1. Package 610

https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040.pdf#minimal-design-example

 NOTE

Leads have a matte Tin (Sn) finish. Annealing is done post-plating, baking at 150°C for 1 hour. Minimum thickness

for lead plating is 8 micromns, and the intermediate layer material is CuFe2P (roughened Copper (Cu)).

5.1.1. Thermal characteristics

The thermal characteristics of the package are shown in Table 611.

Table 611. Thermal

data for the RP2040

QFN 56 package.

θJA (°C/W) ψJT (°C/W) ψJB (°C/W) TJ (°C) TT (°C) θJC (°C/W) θJB (°C/W)

48.00 0.80 29.20 42.00 41.8 19.01 29.03

5.1.2. Recommended PCB Footprint

Dimensions in mm

3.20

1.175

5.40

3.20

6.00

7.75

6.00

0.20

0.875

0.40

5.40

7.75

0.20

Figure 167.

Recommended PCB

Footprint for the

RP2040 QFN-56

package

5.1.3. Package markings

The RP2040 7×7 mm QFN-56 package is marked as seen in Figure 168, with specifications as shown in Table 612.

Coordinate origin is bottom-left of the package.

RP2040 Datasheet

5.1. Package 611

Figure 168. Package

marking format

Table 612. Marking

requirements and

dimensions

Line Step Item Coord. X Coord. Y Char. Height Char. Width Char. Space

1 1 Pin 1 Dot 0.5 6 0.5 0.5

2 1 Logo 3.5 2.395 3.83 3.05

3 1 RP2-B2 0.555 1.585 0.61 0.37 0.09

3 2 YY/WW 4.235 1.585 0.61 0.37 0.09

4 1 XXXXXX.00 0.555 0.775 0.61 0.37 0.09

4 2 TTT

(optional)

5.155 0.775 0.61 0.37 0.09

 NOTE

At Line 3, Step 1, the "RP2-B2" marking denotes device name "RP2" and silicon revision "B2."

5.2. Storage conditions

In order to preserve the shelf and floor life of bare RP2040 devices, the recommended storage conditions in line with J-

STD (020E & 033D) for RP2040 (classified MSL1) should be kept under 30°C and 85% relative humidity.

5.3. Solder profile

RP2040 is a Pb-free part, with a Tp value of 260°C.

All temperatures refer to the center of the package, measured on the package body surface that is facing up during

assembly reflow (live-bug orientation). If parts are reflowed in other than the normal live-bug assembly reflow

orientation (i.e., dead-bug), Tp shall be within ±2°C of the live-bug Tp and still meet the Tc requirements; otherwise, the

profile shall be adjusted to achieve the latter.

RP2040 Datasheet

5.2. Storage conditions 612

Time

T
e

m
p

e
ra

tu
re

T
p

T
L

T
c
 -5°C

T
smax

Preheat Area

25

Time 25°C to Peak

T
smin

t
s

t
p

t

Max. Ramp Up Rate = 3°C/s
Max. Ramp Down Rate = 6°C/s

User t
p

User T
p
 ≤ T

c

Supplier t
p

Supplier T
p
 ≥ T

c

T
c
 -5°C

T
c

Figure 169.

Classification profile

(not to scale)

 NOTE

Reflow profiles in this document are for classification/preconditioning, and are not meant to specify board assembly

profiles. Actual board assembly profiles should be developed based on specific process needs and board designs,

and should not exceed the parameters in Table 613.

Table 613. Solder

profile values
Profile feature Value

Temperature min (Tsmin) 150°C

Temperature max (Tsmax) 200°C

Time (ts) from (Tsmin to Tsmax) 60 — 120 seconds

Ramp-up rate (TL to Tp) 3°C/second max.

Liquidous temperature (TL) 217°C

Time (tL) maintained above TL 60 to 150 seconds

Peak package body temperature (Tp) 260°C

Classification temperature (Tc) 260°C

Time (tp) within 5°C of the specified classification temperature (Tc) 30 seconds

Ramp-down rate (Tp to TL) 6°C/second max.

Time 25°C to peak temperature 8 minutes max.

RP2040 Datasheet

5.3. Solder profile 613

5.4. Compliance

RP2040 is compliant to Moisture Sensitivity Level 1.

RP2040 is compliant to the requirement of REACH Substances of Very High Concern (SVHC) that ECHA announced on

25 June 2020.

RP2040 is compliant to the requirement and standard of Controlled Environment-related Substance of RoHS directive

(EU) 2011/65/EU and directive (EU) 2015/863.

Package Level reliability qualifications carried out on RP2040:

• Temperature Cycling per JESD22-A104

• HAST per JESD22-A110

• HTSL per JESD22-A103

 NOTE

A tin whiskers test is not performed as RP2040 is a bottom only termination device (QFN package) which not

applicable to JEDEC standard (JESD201A).

5.5. Pinout

5.5.1. Pin Locations

Figure 170. RP2040

QFN-56 package

pinout

RP2040 Datasheet

5.4. Compliance 614

5.5.2. Pin Definitions

5.5.2.1. Pin Types

In the following GPIO Pin table (Table 615), the pin types are defined as shown below.

Table 614. Pin Types
Pin Type Direction Description

Digital In Input only Standard Digital. Programmable Pull-Up, Pull-Down, Slew Rate,

Schmitt Trigger and Drive Strength. Default Drive Strength is 4mA.
Digital IO Bi-directional

Digital In (FT) Input only Fault Tolerant Digital. These pins are described as Fault Tolerant,

which in this case means that very little current flows into the pin

whilst it is below 3.63V and IOVDD is 0V. There is also enhanced ESD

protection on these pins. Programmable Pull-Up, Pull-Down, Slew Rate,

Schmitt Trigger and Drive Strength. Default Drive Strength is 4mA.

Digital IO (FT) Bi-directional

Digital IO / Analogue Bi-directional (digital),

Input (Analogue)

Standard Digital and ADC input. Programmable Pull-Up, Pull-Down,

Slew Rate, Schmitt Trigger and Drive Strength. Default Drive Strength

is 4mA.

USB IO Bi-directional These pins are for USB use, and contain internal pull-up and pull-down

resistors, as per the USB specification. Note that external 27Ω series

resistors are required for USB operation.

Analogue (XOSC) Oscillator input pins for attaching a 12MHz crystal. Alternatively, XIN

may be driven by a square wave.

5.5.2.2. Pin List

Table 615. GPIO pins
Name Number Type Power Domain Reset State Description

GPIO0 2 Digital IO (FT) IOVDD Pull-Down User IO

GPIO1 3 Digital IO (FT) IOVDD Pull-Down User IO

GPIO2 4 Digital IO (FT) IOVDD Pull-Down User IO

GPIO3 5 Digital IO (FT) IOVDD Pull-Down User IO

GPIO4 6 Digital IO (FT) IOVDD Pull-Down User IO

GPIO5 7 Digital IO (FT) IOVDD Pull-Down User IO

GPIO6 8 Digital IO (FT) IOVDD Pull-Down User IO

GPIO7 9 Digital IO (FT) IOVDD Pull-Down User IO

GPIO8 11 Digital IO (FT) IOVDD Pull-Down User IO

GPIO9 12 Digital IO (FT) IOVDD Pull-Down User IO

GPIO10 13 Digital IO (FT) IOVDD Pull-Down User IO

GPIO11 14 Digital IO (FT) IOVDD Pull-Down User IO

GPIO12 15 Digital IO (FT) IOVDD Pull-Down User IO

GPIO13 16 Digital IO (FT) IOVDD Pull-Down User IO

GPIO14 17 Digital IO (FT) IOVDD Pull-Down User IO

GPIO15 18 Digital IO (FT) IOVDD Pull-Down User IO

RP2040 Datasheet

5.5. Pinout 615

Name Number Type Power Domain Reset State Description

GPIO16 27 Digital IO (FT) IOVDD Pull-Down User IO

GPIO17 28 Digital IO (FT) IOVDD Pull-Down User IO

GPIO18 29 Digital IO (FT) IOVDD Pull-Down User IO

GPIO19 30 Digital IO (FT) IOVDD Pull-Down User IO

GPIO20 31 Digital IO (FT) IOVDD Pull-Down User IO

GPIO21 32 Digital IO (FT) IOVDD Pull-Down User IO

GPIO22 34 Digital IO (FT) IOVDD Pull-Down User IO

GPIO23 35 Digital IO (FT) IOVDD Pull-Down User IO

GPIO24 36 Digital IO (FT) IOVDD Pull-Down User IO

GPIO25 37 Digital IO (FT) IOVDD Pull-Down User IO

GPIO26 / ADC0 38 Digital IO /

Analogue

IOVDD /

ADC_AVDD

Pull-Down User IO or ADC

input

GPIO27 / ADC1 39 Digital IO /

Analogue

IOVDD /

ADC_AVDD

Pull-Down User IO or ADC

input

GPIO28 / ADC2 40 Digital IO /

Analogue

IOVDD /

ADC_AVDD

Pull-Down User IO or ADC

input

GPIO29 / ADC3 41 Digital IO /

Analogue

IOVDD /

ADC_AVDD

Pull-Down User IO or ADC

input

Table 616. QSPI pins
Name Number Type Power Domain Reset State Description

QSPI_SD3 51 Digital IO IOVDD QSPI data

QSPI_SCLK 52 Digital IO IOVDD Pull-Down QSPI clock

QSPI_SD0 53 Digital IO IOVDD QSPI data

QSPI_SD2 54 Digital IO IOVDD QSPI data

QSPI_SD1 55 Digital IO IOVDD QSPI data

QSPI_CSn 56 Digital IO IOVDD Pull-Up QSPI chip select

Table 617. Crystal

oscillator pins
Name Number Type Power Domain Description

XIN 20 Analogue (XOSC) IOVDD Crystal oscillator. XIN

may also be driven by

a square wave.

XOUT 21 Analogue (XOSC) IOVDD Crystal oscillator.

Table 618. Serial wire

debug pins
Name Number Type Power Domain Reset State Description

SWCLK 24 Digital In (FT) IOVDD Pull-Up Debug clock

SWD 25 Digital IO (FT) IOVDD Pull-Up Debug data

Table 619.

Miscellaneous pins
Name Number Type Power Domain Reset State Description

RUN 26 Digital In (FT) IOVDD Pull-Up Chip enable /

reset

RP2040 Datasheet

5.5. Pinout 616

Name Number Type Power Domain Reset State Description

TESTEN 19 Digital In IOVDD Pull-Down Test enable

(connect to Gnd)

Table 620. USB pins
Name Number Type Power Domain Description

USB_DP 47 USB IO USB_VDD USB Data +ve. 27Ω

series resistor

required for USB

operation

USB_DM 46 USB IO USB_VDD USB Data -ve. 27Ω

series resistor

required for USB

operation

Table 621. Power

supply pins
Name Number(s) Description

IOVDD 1, 10, 22, 33, 42, 49 IO supply

DVDD 23, 50 Core supply

VREG_VIN 44 Voltage regulator input supply

VREG_VOUT 45 Voltage regulator output

USB_VDD 48 USB supply

ADC_AVDD 43 ADC supply

GND 57 Common ground connection via

central pad

5.5.3. Pin Specifications

The following electrical specifications are obtained from characterisation over the specified temperature and voltage

ranges, as well as process variation, unless the specification is marked as 'Simulated'. In this case, the data is for

information purposes only, and is not guaranteed.

5.5.3.1. Absolute Maximum Ratings

Table 622. Absolute

maximum ratings for

digital IO (Standard

and Fault Tolerant)

Parameter Symbol Minimum Maximum Units Comment

I/O Supply Voltage IOVDD -0.5 3.63 V

Voltage at IO VPIN -0.5 IOVDD + 0.5 V

5.5.3.2. ESD Performance

Table 623. ESD

performance for all

pins, unless otherwise

stated

Parameter Symbol Maximum Units Comment

Human Body Model HBM 2 kV Compliant with JEDEC

specification JS-001-

2012 (April 2012)

RP2040 Datasheet

5.5. Pinout 617

Parameter Symbol Maximum Units Comment

Human Body Model

Digital (FT) pins only

HBM 4 kV Compliant with JEDEC

specification JS-001-

2012 (April 2012)

Charged Device Model CDM 500 V Compliant with

JESD22-C101E

(December 2009)

5.5.3.3. Thermal Performance

Table 624. Thermal

Performance
Parameter Symbol Minimum Typical Maximum Units Comment

Case

Temperature

TC -40 85 °C

5.5.3.4. IO Electrical Characteristics

Table 625. Digital IO

characteristics -

Standard and FT

unless otherwise

stated

Parameter Symbol Minimum Maximum Units Comment

Pin Input Leakage

Current

IIN 1 μA

Input Voltage High

@ IOVDD=1.8V

VIH 0.65 * IOVDD IOVDD + 0.3 V

Input Voltage High

@ IOVDD=2.5V

VIH 1.7 IOVDD + 0.3 V

Input Voltage High

@ IOVDD=3.3V

VIH 2 IOVDD + 0.3 V

Input Voltage Low

@ IOVDD=1.8V

VIL -0.3 0.35 * IOVDD V

Input Voltage Low

@ IOVDD=2.5V

VIL -0.3 0.7 V

Input Voltage Low

@ IOVDD=3.3V

VIL -0.3 0.8 V

Input Hysteresis

Voltage @

IOVDD=1.8V

VHYS 0.1 * IOVDD V Schmitt Trigger

enabled

Input Hysteresis

Voltage @

IOVDD=2.5V

VHYS 0.2 V Schmitt Trigger

enabled

Input Hysteresis

Voltage @

IOVDD=3.3V

VHYS 0.2 V Schmitt Trigger

enabled

Output Voltage

High @

IOVDD=1.8V

VOH 1.24 IOVDD V IOH = 2, 4, 8 or

12mA depending

on setting

RP2040 Datasheet

5.5. Pinout 618

Parameter Symbol Minimum Maximum Units Comment

Output Voltage

High @

IOVDD=2.5V

VOH 1.78 IOVDD V IOH = 2, 4, 8 or

12mA depending

on setting

Output Voltage

High @

IOVDD=3.3V

VOH 2.62 IOVDD V IOH = 2, 4, 8 or

12mA depending

on setting

Output Voltage

Low @

IOVDD=1.8V

VOL 0 0.3 V IOL = 2, 4, 8 or

12mA depending

on setting

Output Voltage

Low @

IOVDD=2.5V

VOL 0 0.4 V IOL = 2, 4, 8 or

12mA depending

on setting

Output Voltage

Low @

IOVDD=3.3V

VOL 0 0.5 V IOL = 2, 4, 8 or

12mA depending

on setting

Pull-Up Resistance RPU 50 80 kΩ

Pull-Down

Resistance

RPD 50 80 kΩ

Maximum Total

IOVDD current

IIOVDD_MAX 50 mA Sum of all current

being sourced by

GPIO and QSPI

pins

Maximum Total

VSS current due to

IO (IOVSS)

IIOVSS_MAX 50 mA Sum of all current

being sunk into

GPIO and QSPI

pins

Table 626. USB IO

characteristics
Parameter Symbol Minimum Maximum Units Comment

Pin Input Leakage

Current

IIN 1 μA

Single Ended Input

Voltage High

VIHSE 2 V

Single Ended Input

Voltage Low

VILSE 0.8 V

Differential Input

Voltage High

VIHDIFF 0.2 V

Differential Input

Voltage Low

VILDIFF -0.2 V

Output Voltage

High

VOH 2.8 USB_VDD V

Output Voltage

Low

VOL 0 0.3 V

Pull-Up Resistance

- RPU2

RPU2 0.873 1.548 kΩ

RP2040 Datasheet

5.5. Pinout 619

Parameter Symbol Minimum Maximum Units Comment

Pull-Up Resistance

- RPU1&2

RPU1&2 1.398 3.063 kΩ

Pull-Down

Resistance

RPD 14.25 15.75 kΩ

Table 627. ADC

characteristics
Parameter Symbol Minimum Maximum Units Comment

ADC Input Voltage

Range

VPIN_ADC 0 ADC_AVDD V

Effective Number

of Bits

ENOB 8.7 bits See Section 4.9.3

Resolved Bits 12 bits

ADC Input

Impedance

RIN_ADC 100 kΩ

Table 628. Oscillator

pin characteristics

when using a Square

Wave input

Parameter Symbol Minimum Maximum Units Comment

Input Voltage High VIH 0.65*IOVDD IOVDD + 0.3 V XIN only. XOUT

floating

Input Voltage Low VIL 0 0.35*IOVDD V XIN only. XOUT

floating

See Section 2.16 for more details on the Oscillator, and Minimal Design Example for information on crystal usage.

5.5.3.5. Interpreting GPIO output voltage specifications

The GPIOs on RP2040 have four different output drive strengths, which are nominally called 2, 4, 8 and 12mA modes.

These are not hard limits, nor do they mean that they will always be sourcing (or sinking) the selected amount of

milliamps. The amount of current a GPIO sources or sinks is dependent on the load attached to it. It will attempt to drive

the output to the IOVDD level (or 0V in the case of a logic 0), but the amount of current it is able to source is limited,

which will be dependent on the selected drive strength. Therefore the higher the current load is, the lower the voltage

will be at the pin. At some point, the GPIO will be sourcing so much current, that the voltage is so low, it won’t be

recognised as a logic 1 by the input of a connected device. The purpose of the output specifications in Table 625 are to

try and quantify how much lower the voltage can be expected to be, when drawing specified amounts of current from

the pin.

The Output High Voltage (VOH) is defined as the lowest voltage the output pin can be when driven to a logic 1 with a

particular selected drive strength; e.g., 4mA being sourced by the pin whilst in 4mA drive strength mode. The Output

Low Voltage is similar, but with a logic 0 being driven.

In addition to this, the sum of all the IO currents being sourced (i.e. when outputs are being driven high) from the IOVDD

bank (essentially the GPIO and QSPI pins), must not exceed IIOVDD_MAX. Similarly, the sum of all the IO currents being sunk

(i.e. when the outputs are being driven low) must not exceed IIOVSS_MAX.

RP2040 Datasheet

5.5. Pinout 620

https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040.pdf#minimal-design-example

Figure 171. Typical

Current vs Voltage

curves of a GPIO

output.

Figure 171 shows the effect on the output voltage as the current load on the pin increases. You can clearly see the

effect of the different drive strengths; the higher the drive strength, the closer the output voltage is to IOVDD (or 0V) for

a given current. The minimum VOH and maximum VOL limits are shown in red. You can see that at the specified current

for each drive strength, the voltage is well within the allowed limits, meaning that this particular device could drive a lot

more current and still be within VOH/VOL specification. This is a typical part at room temperature, there will be a spread of

other devices which will have voltages much closer to this limit. Of course, if your application doesn’t need such tightly

controlled voltages, then you can source or sink more current from the GPIO than the selected drive strength setting, but

experimentation will be required to determine if it indeed safe to do so in your application, as it will be outside the scope

of this specification.

5.6. Power Supplies

Table 629. Power

Supply Specifications
Power Supply Supplies Min Typ Max Units

IOVDDa Digital IO 1.62 1.8 / 3.3 3.63 V

DVDDb Digital core 1.05 1.1 1.16 V

VREG_VIN Voltage regulator 1.62 1.8 / 3.3 3.63 V

USB_VDD USB PHY 3.135 3.3 3.63 V

ADC_AVDDc ADC 1.62 3.3 3.63 V

a If IOVDD <2.5V, GPIO VOLTAGE_SELECT registers should be adjusted accordingly. See Section 2.9 for details.

b Short term transients should be within +/-100mV.

c ADC performance will be compromised at voltages below 2.97V

RP2040 Datasheet

5.6. Power Supplies 621

5.7. Power Consumption

5.7.1. Peripheral power consumption

Baseline readings are taken with only clock sources and essential peripherals (BUSCTRL, BUSFAB, VREG, Resets, ROM,

SRAMs) active in the WAKE_EN0/WAKE_EN1 registers. Clocks are set to default clock settings. Each peripheral is activated in

turn by enabling all clock sources for the peripheral in the WAKE_EN0/WAKE_EN1 registers. Current consumption is the

increase in current when the peripheral clocks are enabled.

Table 630. Baseline

power consumption
Peripheral Typical DVDD Current Consumption (μA/MHz)

DMA 2.6

I2C0 3.9

I2C1 3.8

IO + Pads 23.6

PIO0 12.3

PIO1 12.5

PWM 5.0

RTC 1.1

SIO 1.9

SPI0 1.7

SPI1 1.8

Timer 1.2

UART0 3.5

UART1 3.7

Watchdog 1.0

XIP 37.6

Because of fixed external reference clocks of 48 MHz, as well as the variable system clock input, ADC and USBCTRL

power consumption does not vary linearly with system clock (as it does for other peripherals which only have system

and/or peripheral clock inputs). Absolute DVDD current consumption of the ADC and USBCTRL blocks at standard

clocks (system clock of 125 MHz) is given below:

Table 631. Baseline

power consumption

for ADC and USBCTRL

Peripheral Typical DVDD Current Consumption (μA/MHz)

ADC 0.1

USBCTRL 1.3

5.7.2. Power consumption for typical user cases

The following data shows the current consumption of various power supplies on 3 each of typical (tt), fast (ff) and slow

(ss) corner RP2040 devices, with four different software use-cases.

RP2040 Datasheet

5.7. Power Consumption 622

 NOTE

For power consumption of the Raspberry Pi Pico, please see the Raspberry Pi Pico Datasheet.

Firstly, 'Popcorn' (Media player demo) using the VGA, SD Card, and Audio board. This demo uses VGA video, I2S audio

and 4-bit SD Card access, with a system clock frequency of 48MHz.

 NOTE

For more details of the VGA board see the Hardware design with RP2040 book.

Secondly, the BOOTSEL mode of RP2040. These measurements are made both with and without USB activity on the

bus, using a Raspberry Pi 4 as a host.

The third use-case uses the hello_dormant binary which puts RP2040 into a low power state, DORMANT mode.

The final use-case uses the hello_sleep binary code which puts RP2040 into a low power state, SLEEP mode.

Table 632 has two columns per power supply, 'Typical Average Current' and 'Maximum Average Current'. The former is

the current averaged over several seconds that you might expect a typical RP2040 to consume at room temperature

and nominal voltage (e.g., DVDD=1.1V, IOVDD=3.3V, etc). The 'Maximum Average Current' is the maximum current

consumption (again averaged over several seconds) you might expect to see on a worst-case RP2040 device, across

the temperature extremes, and maximum voltage (e.g., DVDD=1.21V, etc).

 NOTE

The 'Popcorn' consumption measurements depend on the video being displayed at the time. The 'Typical' values are

obtained over several seconds of video, with varied colour and intensity. The 'Maximum' values are measured during

periods of white video, when the required current is at its highest.

Table 632. Power

Consumption
Software Use-

case

Typical

Average DVDD

Current

Max. Average

DVDD current

Typical

Average

IOVDD Current

Max. Average

IOVDD current

Typical

Average

USB_VDD

Current

Max. Average

USB_VDD

current

Units

Popcorn 10.9 16.6 24.8 35.5 - - mA

BOOTSEL

mode - Active

9.4 14.7 1.2 4.3 1.4 2.0 mA

BOOTSEL

mode - Idle

9.0 14.3 1.2 4.3 0.2 0.6 mA

Dormant 0.18 4.2 - - - - mA

Sleep 0.39 4.5 - - - - mA

5.7.2.1. Power Consumption versus frequency

To give an indication of the relationship between the core frequency that RP2040 is operating at, and the current

consumed by the DVDD supply, Figure 172 shows the measured results of a typical RP2040 device, continuously

running FFT calculations on both cores, at various core clock frequencies. Figure 172 also shows the effects of case

temperature, and DVDD voltage upon the current consumption.

RP2040 Datasheet

5.7. Power Consumption 623

https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf
https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040.pdf

Figure 172. DVDD

Current vs Core

Frequency of a typical

RP2040 device, whilst

running FFT

calculations

RP2040 Datasheet

5.7. Power Consumption 624

Appendix A: Register Field Types

Standard types

RW

The processor can write to this field and read the value back.

RO

The processor can only read this field.

WO

The processor can only write to this field.

Clear types

SC

This is a single bit that is written to by the processor and then cleared on the next clock cycle. An example use of this

would be a start bit that triggers an event, and then clears again so the event doesn’t keep triggering.

WC

This is a single bit that is typically set by a piece of hardware and then written to by the processor to clear the bit. The

bit is cleared by writing a 1, using either a normal write or the clear alias. See Section 2.1.2 for more information about

the clear alias.

FIFO types

These fields are implementation specific.

RF

Implementation defined read from the hardware.

RP2040 Datasheet

Standard types 625

WF

Implementation defined write to the hardware.

RWF

Implementation defined read from, and write to the hardware.

RP2040 Datasheet

FIFO types 626

Appendix B: Errata
Hardware blocks are listed alphabetically. Errata are listed numerically under the relevant block.

Bootrom

RP2040-E9

Reference RP2040-E9

Summary ROM bootloader cannot boot directly into XIP cache-as-SRAM

Description The XIP cache can be used as an additional 16kB SRAM bank when XIP caching is disabled (Section

2.6.3.1). The UF2 bootloader supports RAM-only UF2 binaries, which it loads directly into memory, and

enters via a watchdog reboot. A single UF2 binary can initialise both the XIP cache contents and main

system memory, and the cache is disabled by the bootloader, so that cache contents be written.

However, the watchdog reset re-enables the cache, so booting directly into the cache-as-SRAM alias

causes an immediate bus fault. The cache contents are preserved, but can not be accessed immediately

post-boot.

Workaround Add code in main SRAM to re-disable XIP caching before accessing the cache-as-SRAM alias. When

entering a RAM-only UF2 binary, the bootloader selects the lowest loaded address in either main SRAM or

cache-as-SRAM as the entry point, preferring main SRAM if both are loaded.

Additionally, if the 0x15… segment is written immediately post-boot, a dummy read of the FLUSH register

is required, so that no cache-as-SRAM writes take place during the tag memory flush triggered by the

watchdog (see Section 2.6.3.2).

Affects RP2040B0, RP2040B1, RP2040B2

Fixed by Documentation

RP2040-E14

Reference RP2040-E14

Summary Sparse or mis-aligned flash-binary UF2 may not be written to flash correctly by the UF2 bootloader

RP2040 Datasheet

Bootrom 627

Description A RP2040 UF2 file consists of 256-byte pages of data, each marked to be written at a certain address by

the UF2 bootloader. A flash-binary UF2 is one of these for which every 256-byte page is marked to be

written at a 256-byte-aligned address in flash.

When writing flash, an entire 4kB flash sector must be erased at a time before any pages within that

sector can be (re-)written. The UF2 bootloader does not require the flash-binary UF2 to include data for all

pages within a sector. In that case the whole sector will first be erased, any present pages will be written,

and the rest of the 4kB sector will be left undefined.

This mechanism works as expected when the partially-filled sector is at the end of the binary, which is of

course commonplace, as a binary does not need to be a multiple of 4kB long.

If however, the partially-filled sector occurs at the start of the binary (i.e. the binary is not aligned on a 4kB

page) or if a partially-filled sector appears in the middle of the binary (i.e. the binary is sparse/non-

contiguous), then the UF2 file may be written incorrectly.

Note that the vast majority of UF2s generated by the SDK are indeed aligned on a 4kB boundary and

contiguous, however it is possible for the SDK to produce a misaligned or non-contiguous binary by

modifying the linker scripts, or putting extreme alignment requirements on static data. It is also possible

that other languages or tools might produce binaries that are not 4kB-aligned or contiguous.

Workaround The workaround is to include data for all the pages in any 4kB sector (other than the last) that contains

data for some pages.

This is handled for you automatically by the elf2uf2 tool in the SDK version 1.3.1 onwards, which explicitly

adds zero-filled pages to the appropriate partially-filled sectors.

Affects RP2040B0, RP2040B1, RP2040B2

Fixed by Documentation / Software

Clocks

RP2040-E7

Reference RP2040-E7

Summary ROSC and XOSC COUNT registers are unreliable

Description The ROSC and XOSC COUNT registers are intended to be used in the configuration of components like PHYs

and PLLs where microsecond scale delays are required and NOP loops are inadequate because the

clk_sys frequency is variable. However due to a synchronisation issue the ROSC:COUNT and

XOSC:COUNT registers are unreliable.

Workaround Do not use ROSC:COUNT or XOSC:COUNT

Affects RP2040B0, RP2040B1, RP2040B2

Fixed by Not fixed, do not use. These registers are not used by the C SDK.

RP2040-E10

Reference RP2040-E10

RP2040 Datasheet

Clocks 628

Summary BADWRITE field in ROSC STATUS register is unreliable

Description The BADWRITE field in the ROSC STATUS register was intended to report when invalid values had been written

to other ROSC registers. However due to internal bugs the ROSC:STATUS.BADWRITE field is unreliable.

Workaround Do not use ROSC:STATUS.BADWRITE field

Affects RP2040B0, RP2040B1, RP2040B2

Fixed by Not fixed, do not use. This field is not used by the C SDK.

DMA

RP2040-E12

Reference RP2040-E12

Summary Reading DMA WRITE_ADDR and READ_ADDR registers when an address-wrapping or non-incrementing transfer

sequence is in progress gives wrong values

Description The DMA’s internal WRITE_ADDR and READ_ADDR registers are incremented every time the DMA issues a new

address to its bus pipeline. If the processor reads these registers whilst a sequence of transfers is in

progress, the value reported by the DMA is adjusted downward by the number of in-flight transfers (i.e.

issued to the bus pipeline and not yet completed) times the individual transfer size in bytes.

This logic was added to ensure that reading READ_ADDR and WRITE_ADDR reflects addresses where the

read/write has completed, not merely where the address has been issued. This logic does not take into

account that READ_ADDR and WRITE_ADDR do not increment linearly for some transfer modes, specifically,

when CTRL.INCR_WRITE == 0, CTRL.INCR_READ == 0 or CTRL.RING_SIZE != 0.

Workaround Instead of checking READ_ADDR or WRITE_ADDR to monitor the progress of a transfer sequence, check

TRANS_COUNT.

TRANS_COUNT has similar in-flight adjustment logic, but is not affected by this erratum because it always

decrements linearly. The correct values of READ_ADDR and WRITE_ADDR can be calculated based on their initial

values and TRANS_COUNT.

Affects RP2040B0, RP2040B1, RP2040B2

Fixed by Documentation

RP2040-E13

Reference RP2040-E13

Summary After aborting a channel, the ABORT status clears prematurely, and an interrupt may be asserted

Description The DMA ABORT register is used to cancel an ongoing sequence of transfers, for example when a channel

is stuck on an inactive peripheral DREQ. If, at the point the abort is triggered, the channel currently has any

transfers in flight (i.e. the read cycle of the transfer has taken place, but the write cycle has not), the ABORT

bit does not wait for these in-flight transfers to complete before clearing.

When the in-flight transfers complete, because the ABORT bit was prematurely cleared, the DMA treats this

as a normal completion. This sets the channel’s interrupt status flag, assuming CTRL.IRQ_QUIET has not

been set.

RP2040 Datasheet

DMA 629

Workaround Before aborting a channel, clear its interrupt enable. After aborting a channel, poll the CTRL.BUSY bit to wait

for completion (not the ABORT bit), clear the spurious IRQ, and restore the interrupt enable.

Affects RP2040B0, RP2040B1, RP2040B2

Fixed by Software

GPIO / ADC

RP2040-E6

Reference RP2040-E6

Summary GPIO digital inputs not disabled for ADC pins by default

Description GPIO26-29 are shared with ADC inputs AIN0-3. The GPIO digital input is enabled after RUN is released. If

the pins are connected to an analogue signal to measure, there could be unexpected signal levels on

these pads. This is unlikely to cause a problem as the digital inputs have hysteresis enabled by default.

Workaround If analogue inputs are used, the digital input should be disabled as early as possible after startup. This is

done in the RP2040B2 bootrom and early on in SDK platform setup code on RP2040B0 and RP2040B1. If

user wishes to use digital inputs, they must be enabled.

Affects RP2040B0, RP2040B1

Fixed by RP2040B2 bootrom. Fixed on RP2040B0 and RP2040B1 in SDK. Custom user code should disable these

inputs early on.

RP2040-E11

Reference RP2040-E11

Summary DNL error peaks in ADC

Description The RP2040 ADC has a DNL that is mostly flat, and below 1 LSB. However at four values — 512, 1,536,

2,560, and 3,584 — the ADC’s DNL error peaks above this value. The ENOB for the ADC has been reduced

from 9-bits (simulated) to 8.7-bits (measured), see Section 4.9.3. The DNL errors will somewhat limit the

performance of the ADC dependent on use case.

Workaround None

Affects RP2040B0, RP2040B1, RP2040B2

Fixed by Not fixed.

USB

RP2040-E2

Reference RP2040-E2

Summary USB device endpoint abort is not cleared.

RP2040 Datasheet

GPIO / ADC 630

Description The USB device controller (Section 4.1) has the ability to abort any pending transactions on an endpoint

by setting that endpoint’s bit in the EP_ABORT register. Due to a logic error, the USB device controller will

reply with NAKs forever on all endpoints if a transaction is initiated for any endpoint with the EP_ABORT

bit set.

Workaround Do not use the EP_ABORT bits.

Affects RP2040B0, RP2040B1

Fixed by RP2040B2

RP2040-E3

Reference RP2040-E3

Summary USB host: interrupt endpoint buffer done flag can be set with incorrect buffer select.

Description The USB host has two types of transactions: normal software initiated transfer, and interrupt transfers,

where the host polls an interrupt endpoint after a specific amount of time. For example, polling a mouse

every 1ms to check for movement. Interrupt transfer are single buffered, but the controller doesn’t reset

the buffer selector to zero. This means that if a software initiated transfer happened then the interrupt

transfer can potentially raise the buffer done flag with BUF1 selected instead of BUF0. The fix is to ignore the

BUFF_CPU_SHOULD_HANDLE register for interrupt endpoints.

Workaround

Affects RP2040B0, RP2040B1, RP2040B2

Fixed by Software

RP2040-E4

Reference RP2040-E4

Summary USB host writes to upper half of buffer status in single buffered mode.

Description The USB host maintains a buffer selector which switches between BUF0 and BUF1. This should only be

toggled in double buffered mode but is toggled in single buffered mode too. For a transaction lasting

multiple packets (i.e. length more than 8 bytes in low speed mode, and length more than 64 bytes in full

speed mode), the buffer status can be written back to the BUF1 half of the status register when the buffer

select is incorrectly set to BUF1. Note this does not affect reading new buffer information from the buffer

control register, as the controller ignores the buffer selector in single buffered mode when reading the

buffer control register.

Workaround Shift endpoint control register to the right by 16 bits if the buffer selector is BUF1. You can use

BUFF_CPU_SHOULD_HANDLE find the value of the buffer selector when the buffer was marked as done.

Affects RP2040B0, RP2040B1, RP2040B2

Fixed by Software

RP2040-E5

Reference RP2040-E5

Summary USB device fails to exit RESET state on busy USB bus.

RP2040 Datasheet

USB 631

Description The USB bus RESET state is triggered by the host sending SE0 for 10ms to the device. The USB device

controller requires 800μs of idle (J-state) after a bus reset before moving to the CONNECTED state. Without

this idle time, the USB device does not connect and will not receive any packets from the host, and so

does not enumerate.

A device reset happens just after the device is plugged in. Although a host will wait before talking to a

newly-reset device, other devices attached to the same USB hub may also be communicating with the

host.

USB 2.0 and USB 3.0 hubs have one or more transaction translators, which facilitate low speed and full

speed transactions on a higher speed bus. It depends on the hub design, but a transaction translator is

usually shared between a few ports.

As the RP2040 USB device is full speed, its traffic when connected to a hub will come via a transaction

translator. This means that if you have another device plugged in next to an RP2040, the RP2040 is likely

to see some messages from the host addressed to the other device. If the device is not very active, for

example, a mouse that is polled every 8ms, this is not a problem. However some devices, such as a USB

serial port, are polled every 30-50μs. In this case the bus is very active, and will cause the RP2040 to never

exit RESET state and not connect.

There is a hardware fix in RP2040B2 which avoids the need for 800μs of IDLE time after RESET state.

There is a software workaround for this issue (see workaround section). A user can also work around this

by closing the USB serial port or any other offending devices while connecting their RP2040 and then re-

opening their USB serial port.

On a larger hub, the problem may be fixed by moving the RP2040 far away (onto a different transaction

translator) from the offending device. For example, connecting the RP2040 to port 1 of a 7 port hub, and

connecting the USB serial console to port 7, may solve the issue. Connecting the RP2040 to a separate

USB hub to any busy devices will also fix the problem.

Workaround Use software to force USB device controller to see idle USB bus for 800μs to move the device from the

RESET state to the CONNECTED state. This fix uses internal debug logic that is connected to GPIO15 for a short

amount of time (~800μs). This forces the controller to see DP as a logical 1 (and DM as logical 0) to

make the USB Device controller believe there is a J-state on the USB bus. GPIO15 does not need to be tied

in any particular way for this fix to work. Instead, we can force the input path in software using the

Section 2.19 input override feature. See https://github.com/raspberrypi/pico-sdk/blob/master/src/

rp2_common/pico_fix/rp2040_usb_device_enumeration/rp2040_usb_device_enumeration.c.

NOTE The workaround takes control of GPIO 15 during a device reset, so you need to be sure that you are

not using GPIO 15 for anything else during a device reset before using the workaround. A device reset

happens after the first connection, but may also happen at other times under the host’s control.

Using the workaround with TinyUSB and the SDK is easy, as the above source file is included by the library

pico_fix_rp2040_usb_device_enumeration (which is automatically added as a dependency of TinyUSB in

device mode). The fix itself is still off by default though, since the fix’s use of GPIO 15 may conflict with

the application’s own use of GPIO 15. You can enable it by setting either

PICO_RP2040_USB_DEVICE_ENUMERATION_FIX=1 as part of your compiler definitions in your CMakeLists.txt, or

TUD_OPT_RP2040_USB_DEVICE_ENUMERATION_FIX=1 in your tusb_config.h.

It is safe (and inexpensive) to enable the software workaround even when using versions of RP2040

which include the fix in hardware.

Affects RP2040B0, RP2040B1

RP2040 Datasheet

USB 632

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_fix/rp2040_usb_device_enumeration/rp2040_usb_device_enumeration.c
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_fix/rp2040_usb_device_enumeration/rp2040_usb_device_enumeration.c

Fixed by RP2040B2. Software workaround on RP2040B0, RP2040B1. The workaround isn’t present in the USB

mass storage code in the bootrom. The software workaround requires use of GPIO15 during USB bus

reset.

RP2040-E15

Reference RP2040-E15

Summary USB Device controller will hang if certain bus errors occur during an IN transfer.

Description The USB Device controller enters an unrecoverable state if the following critical sequence of events

occurs:

• RP2040 is connected to a VL805 xHCI controller and is operating in full-speed mode

• The integrated hub detects an impending line collision between downstream port Transaction

Translator traffic and broadcast upstream traffic (Start-of-Frame token)

• The integrated hub forces a bitstuffing error during the PID or CRC portions of the downstream in-

progress packet or token.

This sequence is known to occur with the downstream-facing ports on a Raspberry Pi 4 or a Raspberry

Pi 400 and Bulk IN endpoints with data buffer sizes of more than 50 bytes. In this case, the integrated

USB2.0 hub incorrectly determines the remaining full-speed frame time in anticipation of a SOF packet

from the host, and erroneously transmits an IN token which results in the later ACK reply being corrupted

and replaced by the propagated SOF packet.

This type of data corruption is not properly handled by the device state machine, and the device

controller must be reset.

This sequence has not been seen to occur on commodity USB2.0 hubs, nor on Root Ports that are not

provided by a VL805 xHCI controller.

Workarounds 1) VL805 firmware version 0138c1

An updated firmware has been pushed to the DEFAULT channel in the raspberrypi-bootloader Apt package

on Pi 4 products. This corrects the erroneous hub time calculation. This firmware update is not

automatically applied, users must run sudo rpi-eeprom-update -a on the Pi 4 and follow on-screen

instructions.

2) Linux Kernel xHCI driver patch

A kernel update is available for the Raspberry Pi 4-series products that, for VL805 firmware versions

earlier than 0138c1, avoids enqueueing single Transfer Descriptors to the controller for affected

endpoints during the last microframe of a full-speed frame. This update is available in the raspberrypi-

kernel Apt package.

2) SDK v1.5.0 / TinyUSB 0.15.0

TinyUSB starting at version 0.15.0 adds a workaround for this erratum, and this version is picked up in

the v1.5.0 release of the SDK. The dcd_rp2040 driver will avoid enabling bulk IN buffers during the last

200μs of a full-speed frame. This reduces available Bulk IN bandwidth by approximately 20%, and

selectively enables the Start-of-Frame interrupt.

The TinyUSB workaround is not necessary for implementations that will never be connected to a

vulnerable VL805 port, for example in a circuit design where RP2040 is directly connected to an on-board

hub. The workaround can be disabled by defining TUD_OPT_RP2040_USB_DEVICE_UFRAME_FIX=0 in your

tusb_config.h.

RP2040 Datasheet

USB 633

Affects RP2040B0, RP2040B1, RP2040B2

Fixed by Documentation, Software

Watchdog

RP2040-E1

Reference RP2040-E1

Summary Watchdog count is decremented twice per tick.

Description The watchdog (Section 4.7) has a 24-bit counter, that decrements every tick, starting from a user defined

value set in LOAD register. There is a logic error which means the counter is decremented twice per tick,

instead of once per tick. In a recommended setup where the tick occurs at 1μs intervals, this halves the

maximum time between resetting the watchdog counter from ~16.7 seconds to ~8.3 seconds.

Workaround Use double the desired value in LOAD.

Affects RP2040B0, RP2040B1, RP2040B2

Fixed by Documentation, Software

XIP Flash

RP2040-E8

Reference RP2040-E8

Summary Race condition when aborting an XIP DMA stream and immediately starting a new stream

Description The XIP DMA streaming hardware allows a linear sequences of flash reads to proceed in the background,

and be read by the DMA, without subjecting the DMA to the bus stalls caused by a normal XIP-window

access. A stream is begun by writing to the STREAM_ADDR register, followed by STREAM_CTR, and can

be aborted midway by writing 0 to STREAM_CTR.

When a stream is aborted in this way, there is sufficient time for software to load a new address and

begin a new stream whilst the final SPI/QSPI access of the aborted stream is still in progress. This

causes the newly-loaded stream address to be incremented once before the first data transfer of the new

stream sequence, so the entire stream takes place at a 4-byte offset.

Workaround After clearing STREAM_CTR, immediately perform one dummy read from the uncached XIP window, e.g.

(void)*(io_ro_32*)XIP_NOCACHE_NOALLOC_BASE;. If an XIP stream transfer is still in progress, this dummy read

will stall until that transfer completes. It is then safe to begin a new stream by writing to STREAM_ADDR

followed by STREAM_CTR.

Affects RP2040B0, RP2040B1, RP2040B2

Fixed by Documentation, Software

RP2040 Datasheet

Watchdog 634

Appendix C: Availability
Raspberry Pi understands the value to customers of long term availability of product and therefore aims to continue

supply for as long as practically possible. We expect RP2040 to remain in production until at least January 2041.

Support

For support see the Pico section of the Raspberry Pi website, and post questions on the Raspberry Pi forum.

Ordering code

RP2040 can be ordered in bulk from Raspberry Pi Direct.

Table 633. Part

Number
Model Order Code Minimal Order

Quantity

RRP Equivalent price per

chip

7" reel of 500 ×

RP2040 chips

SC0914(7) 1+ pcs / Bulk US$400.00 US$0.80

13" reel of 3,400 ×

RP2040 chips

SC0914(13) 1+ pcs / Bulk US$2,380.00 US$0.70

 NOTE

RRP was correct at time of publication and excludes taxes.

RP2040 Datasheet

Support 635

https://www.raspberrypi.com/documentation/microcontrollers/
https://forums.raspberrypi.com
https://direct.raspberrypi.com/

Appendix D: Documentation release
history

Table 634.

Documentation

release history

Release Date Description

1.0 21 Jan 2021 • Initial release

1.1 26 Jan 2021 • Minor corrections

• Extra information about using DMA with ADC

• Clarified M0+ and SIO CPUID registers

• Added more discussion of Timers

• Update Windows and macOS build instructions

• Renamed books and optimised size of output PDFs

1.2 01 Feb 2021 • Minor corrections

• Small improvements to PIO documentation

• Added missing TIMER2 and TIMER3 registers to DMA

• Explained how to get MicroPython REPL on UART

• To accompany the V1.0.1 release of the C SDK

1.3 23 Feb 2021 • Minor corrections

• Changed font

• Additional documentation on sink/source limits for RP2040

• Major improvements to SWD documentation

• Updated MicroPython build instructions

• MicroPython UART example code

• Updated Thonny instructions

• Updated Project Generator instructions

• Added a FAQ document

• Added errata E7, E8 and E9

1.3.1 05 Mar 2021 • Minor corrections

• To accompany the V1.1.0 release of the C SDK

• Improved MicroPython UART example

• Improved Pinout diagram

1.4 07 Apr 2021 • Minor corrections

• Added errata E10

• Note about how to update the C SDK from Github

• To accompany the V1.1.2 release of the C SDK

RP2040 Datasheet

Appendix D: Documentation release history 636

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e7
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e8
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e9
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e10

Release Date Description

1.4.1 13 Apr 2021 • Minor corrections

• Clarified that all source code in the documentation is under the

3-Clause BSD license.

1.5 07 Jun 2021 • Minor updates and corrections

• Updated FAQ

• Added SDK release history

• To accompany the V1.2.0 release of the C SDK

1.6 23 Jun 2021 • Minor updates and corrections

• ADC information updated

• Added errata E11

1.6.1 30 Sep 2021 • Minor updates and corrections

• Information about B2 release

• Updated errata for B2 release

1.7 03 Nov 2021 • Minor updates and corrections

• Fixed some register access types and descriptions

• Added core 1 launch sequence info

• Described SDK "panic" handling

• Updated picotool documentation

• Additional examples added to Appendix A: App Notes appendix

in the Raspberry Pi Pico C/C++ SDK book

• To accompany the V1.3.0 release of the C SDK

1.7.1 04 Nov 2021 • Minor updates and corrections

• Better documentation of USB double buffering

• Picoprobe branch changes

• Updated links to documentation

1.8 17 Jun 2022 • Minor updates and corrections

• Updated setup instructions for Windows in Getting started with

Raspberry Pi Pico

• Additional explanation of SDK configuration

• RP2040 now qualified to -40°C, minimum operating temperature

changed from -20°C to -40°C

• Increased PLL min VCO from 400MHz to 750MHz for improved

stability across operating conditions

• Added reflow-soldering temperature profile

• Added errata E12, E13 and E14

• To accompany the V1.3.1 release of the C SDK

RP2040 Datasheet

Appendix D: Documentation release history 637

https://opensource.org/licenses/BSD-3-Clause
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e11
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf
https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf
https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e12
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e13
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e14

Release Date Description

1.9 30 Jun 2022 • Minor updates and corrections

• Update to VGA board hardware description for launch of

Raspberry Pi Pico W

• To accompany the V1.4.0 release of the C SDK

Pico and Pico W databooks combined into a unified release history

2.0 01 Dec 2022 • Minor updates and corrections

• Added RP2040 availability information

• Added RP2040 storage conditions and thermal characteristics

• Replace SDK library documentation with links to the online

version

• Updated Picoprobe build and usage instructions

2.1 03 Mar 2023 • A large number of minor updates and corrections

• SMT footprint of Pico W corrected

• Updated for the 1.5.0 release of the Raspberry Pi Pico C SDK

• Added errata E15

• Added documentation around the new Pico Windows Installer

• Added documentation around the Pico-W-Go extension for

Python development

• Added a wireless networking example to the Python

documentation

• Added package marking specifications

• Added RP2040 baseline power consumption figures

• Added antenna keep out diagram to Pico W datasheet

2.2 14 Jun 2023 • Minor updates and corrections

• Updated for the 1.5.1 release of the Raspberry Pi Pico C SDK

• Documentation around Bluetooth support for Pico W

2.3 02 Feb 2024 • Numerous minor updates and corrections

• Update ROSC register information

• Updated getting started documentation for MS Windows and

Apple macOS

• Updates arising from the release of Raspberry Pi 5

• Reintroduced updated SDK library documentation (was

withdrawn in 2.0 due to XML conflicts)

• Updated to include the new recommended part number for

crystals used with RP2040

• Added new paste stencil information for Pico and Pico W

• Other updates to supporting documentation

RP2040 Datasheet

Appendix D: Documentation release history 638

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e15
https://github.com/raspberrypi/pico-setup-windows
https://marketplace.visualstudio.com/items?itemName=paulober.pico-w-go

The latest release can be found at https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf.

RP2040 Datasheet

Appendix D: Documentation release history 639

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

	RP2040 Datasheet
	Colophon
	Legal disclaimer notice
	Table of contents

	Chapter 1. Introduction
	1.1. Why is the chip called RP2040?
	1.2. Summary
	1.3. The Chip
	1.4. Pinout Reference
	1.4.1. Pin Locations
	1.4.2. Pin Descriptions
	1.4.3. GPIO Functions

	Chapter 2. System Description
	2.1. Bus Fabric
	2.1.1. AHB-Lite Crossbar
	2.1.2. Atomic Register Access
	2.1.3. APB Bridge
	2.1.4. Narrow IO Register Writes
	2.1.5. List of Registers

	2.2. Address Map
	2.2.1. Summary
	2.2.2. Detail

	2.3. Processor subsystem
	2.3.1. SIO
	2.3.2. Interrupts
	2.3.3. Event Signals
	2.3.4. Debug

	2.4. Cortex-M0+
	2.4.1. Features
	2.4.2. Functional Description
	2.4.3. Programmer’s model
	2.4.4. System control
	2.4.5. NVIC
	2.4.6. MPU
	2.4.7. Debug
	2.4.8. List of Registers

	2.5. DMA
	2.5.1. Configuring Channels
	2.5.2. Starting Channels
	2.5.3. Data Request (DREQ)
	2.5.4. Interrupts
	2.5.5. Additional Features
	2.5.6. Example Use Cases
	2.5.7. List of Registers

	2.6. Memory
	2.6.1. ROM
	2.6.2. SRAM
	2.6.3. Flash

	2.7. Boot Sequence
	2.8. Bootrom
	2.8.1. Processor Controlled Boot Sequence
	2.8.2. Launching Code On Processor Core 1
	2.8.3. Bootrom Contents
	2.8.4. USB Mass Storage Interface
	2.8.5. USB PICOBOOT Interface

	2.9. Power Supplies
	2.9.1. Digital IO Supply (IOVDD)
	2.9.2. Digital Core Supply (DVDD)
	2.9.3. On-Chip Voltage Regulator Input Supply (VREG_VIN)
	2.9.4. USB PHY Supply (USB_VDD)
	2.9.5. ADC Supply (ADC_AVDD)
	2.9.6. Power Supply Sequencing
	2.9.7. Power Supply Schemes

	2.10. Core Supply Regulator
	2.10.1. Application Circuit
	2.10.2. Operating Modes
	2.10.3. Output Voltage Select
	2.10.4. Status
	2.10.5. Current Limit
	2.10.6. List of Registers
	2.10.7. Detailed Specifications

	2.11. Power Control
	2.11.1. Top-level Clock Gates
	2.11.2. SLEEP State
	2.11.3. DORMANT State
	2.11.4. Memory Power Down
	2.11.5. Programmer’s Model

	2.12. Chip-Level Reset
	2.12.1. Overview
	2.12.2. Power-on Reset
	2.12.3. Brown-out Detection
	2.12.4. Supply Monitor
	2.12.5. External Reset
	2.12.6. Rescue Debug Port Reset
	2.12.7. Source of Last Reset
	2.12.8. List of Registers

	2.13. Power-On State Machine
	2.13.1. Overview
	2.13.2. Power On Sequence
	2.13.3. Register Control
	2.13.4. Interaction with Watchdog
	2.13.5. List of Registers

	2.14. Subsystem Resets
	2.14.1. Overview
	2.14.2. Programmer’s Model
	2.14.3. List of Registers

	2.15. Clocks
	2.15.1. Overview
	2.15.2. Clock sources
	2.15.3. Clock Generators
	2.15.4. Frequency Counter
	2.15.5. Resus
	2.15.6. Programmer’s Model
	2.15.7. List of Registers

	2.16. Crystal Oscillator (XOSC)
	2.16.1. Overview
	2.16.2. Usage
	2.16.3. Startup Delay
	2.16.4. XOSC Counter
	2.16.5. DORMANT mode
	2.16.6. Programmer’s Model
	2.16.7. List of Registers

	2.17. Ring Oscillator (ROSC)
	2.17.1. Overview
	2.17.2. ROSC/XOSC trade-offs
	2.17.3. Modifying the frequency
	2.17.4. ROSC divider
	2.17.5. Random Number Generator
	2.17.6. ROSC Counter
	2.17.7. DORMANT mode
	2.17.8. List of Registers

	2.18. PLL
	2.18.1. Overview
	2.18.2. Calculating PLL parameters
	2.18.3. Configuration
	2.18.4. List of Registers

	2.19. GPIO
	2.19.1. Overview
	2.19.2. Function Select
	2.19.3. Interrupts
	2.19.4. Pads
	2.19.5. Software Examples
	2.19.6. List of Registers

	2.20. Sysinfo
	2.20.1. Overview
	2.20.2. List of Registers

	2.21. Syscfg
	2.21.1. Overview
	2.21.2. List of Registers

	2.22. TBMAN
	2.22.1. List of Registers

	Chapter 3. PIO
	3.1. Overview
	3.2. Programmer’s Model
	3.2.1. PIO Programs
	3.2.2. Control Flow
	3.2.3. Registers
	3.2.4. Stalling
	3.2.5. Pin Mapping
	3.2.6. IRQ Flags
	3.2.7. Interactions Between State Machines

	3.3. PIO Assembler (pioasm)
	3.3.1. Directives
	3.3.2. Values
	3.3.3. Expressions
	3.3.4. Comments
	3.3.5. Labels
	3.3.6. Instructions
	3.3.7. Pseudoinstructions

	3.4. Instruction Set
	3.4.1. Summary
	3.4.2. JMP
	3.4.3. WAIT
	3.4.4. IN
	3.4.5. OUT
	3.4.6. PUSH
	3.4.7. PULL
	3.4.8. MOV
	3.4.9. IRQ
	3.4.10. SET

	3.5. Functional Details
	3.5.1. Side-set
	3.5.2. Program Wrapping
	3.5.3. FIFO Joining
	3.5.4. Autopush and Autopull
	3.5.5. Clock Dividers
	3.5.6. GPIO Mapping
	3.5.7. Forced and EXEC’d Instructions

	3.6. Examples
	3.6.1. Duplex SPI
	3.6.2. WS2812 LEDs
	3.6.3. UART TX
	3.6.4. UART RX
	3.6.5. Manchester Serial TX and RX
	3.6.6. Differential Manchester (BMC) TX and RX
	3.6.7. I2C
	3.6.8. PWM
	3.6.9. Addition
	3.6.10. Further Examples

	3.7. List of Registers

	Chapter 4. Peripherals
	4.1. USB
	4.1.1. Overview
	4.1.2. Architecture
	4.1.3. Programmer’s Model
	4.1.4. List of Registers
	References

	4.2. UART
	4.2.1. Overview
	4.2.2. Functional description
	4.2.3. Operation
	4.2.4. UART hardware flow control
	4.2.5. UART DMA Interface
	4.2.6. Interrupts
	4.2.7. Programmer’s Model
	4.2.8. List of Registers

	4.3. I2C
	4.3.1. Features
	4.3.2. IP Configuration
	4.3.3. I2C Overview
	4.3.4. I2C Terminology
	4.3.5. I2C Behaviour
	4.3.6. I2C Protocols
	4.3.7. Tx FIFO Management and START, STOP and RESTART Generation
	4.3.8. Multiple Master Arbitration
	4.3.9. Clock Synchronization
	4.3.10. Operation Modes
	4.3.11. Spike Suppression
	4.3.12. Fast Mode Plus Operation
	4.3.13. Bus Clear Feature
	4.3.14. IC_CLK Frequency Configuration
	4.3.15. DMA Controller Interface
	4.3.16. Operation of Interrupt Registers
	4.3.17. List of Registers

	4.4. SPI
	4.4.1. Overview
	4.4.2. Functional Description
	4.4.3. Operation
	4.4.4. List of Registers

	4.5. PWM
	4.5.1. Overview
	4.5.2. Programmer’s Model
	4.5.3. List of Registers

	4.6. Timer
	4.6.1. Overview
	4.6.2. Counter
	4.6.3. Alarms
	4.6.4. Programmer’s Model
	4.6.5. List of Registers

	4.7. Watchdog
	4.7.1. Overview
	4.7.2. Tick generation
	4.7.3. Watchdog Counter
	4.7.4. Scratch Registers
	4.7.5. Programmer’s Model
	4.7.6. List of Registers

	4.8. RTC
	4.8.1. Storage Format
	4.8.2. Leap year
	4.8.3. Interrupts
	4.8.4. Reference clock
	4.8.5. Programmer’s Model
	4.8.6. List of Registers

	4.9. ADC and Temperature Sensor
	4.9.1. ADC controller
	4.9.2. SAR ADC
	4.9.3. ADC ENOB
	4.9.4. INL and DNL
	4.9.5. Temperature Sensor
	4.9.6. List of Registers

	4.10. SSI
	4.10.1. Overview
	4.10.2. Features
	4.10.3. IP Modifications
	4.10.4. Clock Ratios
	4.10.5. Transmit and Receive FIFO Buffers
	4.10.6. 32-Bit Frame Size Support
	4.10.7. SSI Interrupts
	4.10.8. Transfer Modes
	4.10.9. Operation Modes
	4.10.10. Partner Connection Interfaces
	4.10.11. DMA Controller Interface
	4.10.12. APB Interface
	4.10.13. List of Registers

	Chapter 5. Electrical and Mechanical
	5.1. Package
	5.1.1. Thermal characteristics
	5.1.2. Recommended PCB Footprint
	5.1.3. Package markings

	5.2. Storage conditions
	5.3. Solder profile
	5.4. Compliance
	5.5. Pinout
	5.5.1. Pin Locations
	5.5.2. Pin Definitions
	5.5.3. Pin Specifications

	5.6. Power Supplies
	5.7. Power Consumption
	5.7.1. Peripheral power consumption
	5.7.2. Power consumption for typical user cases

	Appendix A: Register Field Types
	Standard types
	RW
	RO
	WO

	Clear types
	SC
	WC

	FIFO types
	RF
	WF
	RWF

	Appendix B: Errata
	Bootrom
	RP2040-E9
	RP2040-E14

	Clocks
	RP2040-E7
	RP2040-E10

	DMA
	RP2040-E12
	RP2040-E13

	GPIO / ADC
	RP2040-E6
	RP2040-E11

	USB
	RP2040-E2
	RP2040-E3
	RP2040-E4
	RP2040-E5
	RP2040-E15

	Watchdog
	RP2040-E1

	XIP Flash
	RP2040-E8

	Appendix C: Availability
	Support
	Ordering code

	Appendix D: Documentation release history

